]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/mm/init_64.c
ASoC: wm_adsp: add support for DSP region lock
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / mm / init_64.c
1 /*
2 * PowerPC version
3 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
4 *
5 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
6 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
7 * Copyright (C) 1996 Paul Mackerras
8 *
9 * Derived from "arch/i386/mm/init.c"
10 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
11 *
12 * Dave Engebretsen <engebret@us.ibm.com>
13 * Rework for PPC64 port.
14 *
15 * This program is free software; you can redistribute it and/or
16 * modify it under the terms of the GNU General Public License
17 * as published by the Free Software Foundation; either version
18 * 2 of the License, or (at your option) any later version.
19 *
20 */
21
22 #undef DEBUG
23
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/types.h>
30 #include <linux/mman.h>
31 #include <linux/mm.h>
32 #include <linux/swap.h>
33 #include <linux/stddef.h>
34 #include <linux/vmalloc.h>
35 #include <linux/init.h>
36 #include <linux/delay.h>
37 #include <linux/highmem.h>
38 #include <linux/idr.h>
39 #include <linux/nodemask.h>
40 #include <linux/module.h>
41 #include <linux/poison.h>
42 #include <linux/memblock.h>
43 #include <linux/hugetlb.h>
44 #include <linux/slab.h>
45 #include <linux/of_fdt.h>
46 #include <linux/libfdt.h>
47
48 #include <asm/pgalloc.h>
49 #include <asm/page.h>
50 #include <asm/prom.h>
51 #include <asm/rtas.h>
52 #include <asm/io.h>
53 #include <asm/mmu_context.h>
54 #include <asm/pgtable.h>
55 #include <asm/mmu.h>
56 #include <linux/uaccess.h>
57 #include <asm/smp.h>
58 #include <asm/machdep.h>
59 #include <asm/tlb.h>
60 #include <asm/eeh.h>
61 #include <asm/processor.h>
62 #include <asm/mmzone.h>
63 #include <asm/cputable.h>
64 #include <asm/sections.h>
65 #include <asm/iommu.h>
66 #include <asm/vdso.h>
67
68 #include "mmu_decl.h"
69
70 #ifdef CONFIG_PPC_STD_MMU_64
71 #if H_PGTABLE_RANGE > USER_VSID_RANGE
72 #warning Limited user VSID range means pagetable space is wasted
73 #endif
74
75 #if (TASK_SIZE_USER64 < H_PGTABLE_RANGE) && (TASK_SIZE_USER64 < USER_VSID_RANGE)
76 #warning TASK_SIZE is smaller than it needs to be.
77 #endif
78 #endif /* CONFIG_PPC_STD_MMU_64 */
79
80 phys_addr_t memstart_addr = ~0;
81 EXPORT_SYMBOL_GPL(memstart_addr);
82 phys_addr_t kernstart_addr;
83 EXPORT_SYMBOL_GPL(kernstart_addr);
84
85 #ifdef CONFIG_SPARSEMEM_VMEMMAP
86 /*
87 * Given an address within the vmemmap, determine the pfn of the page that
88 * represents the start of the section it is within. Note that we have to
89 * do this by hand as the proffered address may not be correctly aligned.
90 * Subtraction of non-aligned pointers produces undefined results.
91 */
92 static unsigned long __meminit vmemmap_section_start(unsigned long page)
93 {
94 unsigned long offset = page - ((unsigned long)(vmemmap));
95
96 /* Return the pfn of the start of the section. */
97 return (offset / sizeof(struct page)) & PAGE_SECTION_MASK;
98 }
99
100 /*
101 * Check if this vmemmap page is already initialised. If any section
102 * which overlaps this vmemmap page is initialised then this page is
103 * initialised already.
104 */
105 static int __meminit vmemmap_populated(unsigned long start, int page_size)
106 {
107 unsigned long end = start + page_size;
108 start = (unsigned long)(pfn_to_page(vmemmap_section_start(start)));
109
110 for (; start < end; start += (PAGES_PER_SECTION * sizeof(struct page)))
111 if (pfn_valid(page_to_pfn((struct page *)start)))
112 return 1;
113
114 return 0;
115 }
116
117 struct vmemmap_backing *vmemmap_list;
118 static struct vmemmap_backing *next;
119 static int num_left;
120 static int num_freed;
121
122 static __meminit struct vmemmap_backing * vmemmap_list_alloc(int node)
123 {
124 struct vmemmap_backing *vmem_back;
125 /* get from freed entries first */
126 if (num_freed) {
127 num_freed--;
128 vmem_back = next;
129 next = next->list;
130
131 return vmem_back;
132 }
133
134 /* allocate a page when required and hand out chunks */
135 if (!num_left) {
136 next = vmemmap_alloc_block(PAGE_SIZE, node);
137 if (unlikely(!next)) {
138 WARN_ON(1);
139 return NULL;
140 }
141 num_left = PAGE_SIZE / sizeof(struct vmemmap_backing);
142 }
143
144 num_left--;
145
146 return next++;
147 }
148
149 static __meminit void vmemmap_list_populate(unsigned long phys,
150 unsigned long start,
151 int node)
152 {
153 struct vmemmap_backing *vmem_back;
154
155 vmem_back = vmemmap_list_alloc(node);
156 if (unlikely(!vmem_back)) {
157 WARN_ON(1);
158 return;
159 }
160
161 vmem_back->phys = phys;
162 vmem_back->virt_addr = start;
163 vmem_back->list = vmemmap_list;
164
165 vmemmap_list = vmem_back;
166 }
167
168 int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node)
169 {
170 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
171
172 /* Align to the page size of the linear mapping. */
173 start = _ALIGN_DOWN(start, page_size);
174
175 pr_debug("vmemmap_populate %lx..%lx, node %d\n", start, end, node);
176
177 for (; start < end; start += page_size) {
178 void *p;
179 int rc;
180
181 if (vmemmap_populated(start, page_size))
182 continue;
183
184 p = vmemmap_alloc_block(page_size, node);
185 if (!p)
186 return -ENOMEM;
187
188 vmemmap_list_populate(__pa(p), start, node);
189
190 pr_debug(" * %016lx..%016lx allocated at %p\n",
191 start, start + page_size, p);
192
193 rc = vmemmap_create_mapping(start, page_size, __pa(p));
194 if (rc < 0) {
195 pr_warning(
196 "vmemmap_populate: Unable to create vmemmap mapping: %d\n",
197 rc);
198 return -EFAULT;
199 }
200 }
201
202 return 0;
203 }
204
205 #ifdef CONFIG_MEMORY_HOTPLUG
206 static unsigned long vmemmap_list_free(unsigned long start)
207 {
208 struct vmemmap_backing *vmem_back, *vmem_back_prev;
209
210 vmem_back_prev = vmem_back = vmemmap_list;
211
212 /* look for it with prev pointer recorded */
213 for (; vmem_back; vmem_back = vmem_back->list) {
214 if (vmem_back->virt_addr == start)
215 break;
216 vmem_back_prev = vmem_back;
217 }
218
219 if (unlikely(!vmem_back)) {
220 WARN_ON(1);
221 return 0;
222 }
223
224 /* remove it from vmemmap_list */
225 if (vmem_back == vmemmap_list) /* remove head */
226 vmemmap_list = vmem_back->list;
227 else
228 vmem_back_prev->list = vmem_back->list;
229
230 /* next point to this freed entry */
231 vmem_back->list = next;
232 next = vmem_back;
233 num_freed++;
234
235 return vmem_back->phys;
236 }
237
238 void __ref vmemmap_free(unsigned long start, unsigned long end)
239 {
240 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
241
242 start = _ALIGN_DOWN(start, page_size);
243
244 pr_debug("vmemmap_free %lx...%lx\n", start, end);
245
246 for (; start < end; start += page_size) {
247 unsigned long addr;
248
249 /*
250 * the section has already be marked as invalid, so
251 * vmemmap_populated() true means some other sections still
252 * in this page, so skip it.
253 */
254 if (vmemmap_populated(start, page_size))
255 continue;
256
257 addr = vmemmap_list_free(start);
258 if (addr) {
259 struct page *page = pfn_to_page(addr >> PAGE_SHIFT);
260
261 if (PageReserved(page)) {
262 /* allocated from bootmem */
263 if (page_size < PAGE_SIZE) {
264 /*
265 * this shouldn't happen, but if it is
266 * the case, leave the memory there
267 */
268 WARN_ON_ONCE(1);
269 } else {
270 unsigned int nr_pages =
271 1 << get_order(page_size);
272 while (nr_pages--)
273 free_reserved_page(page++);
274 }
275 } else
276 free_pages((unsigned long)(__va(addr)),
277 get_order(page_size));
278
279 vmemmap_remove_mapping(start, page_size);
280 }
281 }
282 }
283 #endif
284 void register_page_bootmem_memmap(unsigned long section_nr,
285 struct page *start_page, unsigned long size)
286 {
287 }
288
289 /*
290 * We do not have access to the sparsemem vmemmap, so we fallback to
291 * walking the list of sparsemem blocks which we already maintain for
292 * the sake of crashdump. In the long run, we might want to maintain
293 * a tree if performance of that linear walk becomes a problem.
294 *
295 * realmode_pfn_to_page functions can fail due to:
296 * 1) As real sparsemem blocks do not lay in RAM continously (they
297 * are in virtual address space which is not available in the real mode),
298 * the requested page struct can be split between blocks so get_page/put_page
299 * may fail.
300 * 2) When huge pages are used, the get_page/put_page API will fail
301 * in real mode as the linked addresses in the page struct are virtual
302 * too.
303 */
304 struct page *realmode_pfn_to_page(unsigned long pfn)
305 {
306 struct vmemmap_backing *vmem_back;
307 struct page *page;
308 unsigned long page_size = 1 << mmu_psize_defs[mmu_vmemmap_psize].shift;
309 unsigned long pg_va = (unsigned long) pfn_to_page(pfn);
310
311 for (vmem_back = vmemmap_list; vmem_back; vmem_back = vmem_back->list) {
312 if (pg_va < vmem_back->virt_addr)
313 continue;
314
315 /* After vmemmap_list entry free is possible, need check all */
316 if ((pg_va + sizeof(struct page)) <=
317 (vmem_back->virt_addr + page_size)) {
318 page = (struct page *) (vmem_back->phys + pg_va -
319 vmem_back->virt_addr);
320 return page;
321 }
322 }
323
324 /* Probably that page struct is split between real pages */
325 return NULL;
326 }
327 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
328
329 #elif defined(CONFIG_FLATMEM)
330
331 struct page *realmode_pfn_to_page(unsigned long pfn)
332 {
333 struct page *page = pfn_to_page(pfn);
334 return page;
335 }
336 EXPORT_SYMBOL_GPL(realmode_pfn_to_page);
337
338 #endif /* CONFIG_SPARSEMEM_VMEMMAP/CONFIG_FLATMEM */
339
340 #ifdef CONFIG_PPC_STD_MMU_64
341 static bool disable_radix;
342 static int __init parse_disable_radix(char *p)
343 {
344 disable_radix = true;
345 return 0;
346 }
347 early_param("disable_radix", parse_disable_radix);
348
349 /*
350 * If we're running under a hypervisor, we need to check the contents of
351 * /chosen/ibm,architecture-vec-5 to see if the hypervisor is willing to do
352 * radix. If not, we clear the radix feature bit so we fall back to hash.
353 */
354 static void early_check_vec5(void)
355 {
356 unsigned long root, chosen;
357 int size;
358 const u8 *vec5;
359
360 root = of_get_flat_dt_root();
361 chosen = of_get_flat_dt_subnode_by_name(root, "chosen");
362 if (chosen == -FDT_ERR_NOTFOUND)
363 return;
364 vec5 = of_get_flat_dt_prop(chosen, "ibm,architecture-vec-5", &size);
365 if (!vec5)
366 return;
367 if (size <= OV5_INDX(OV5_MMU_RADIX_300) ||
368 !(vec5[OV5_INDX(OV5_MMU_RADIX_300)] & OV5_FEAT(OV5_MMU_RADIX_300)))
369 /* Hypervisor doesn't support radix */
370 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
371 }
372
373 void __init mmu_early_init_devtree(void)
374 {
375 /* Disable radix mode based on kernel command line. */
376 /* We don't yet have the machinery to do radix as a guest. */
377 if (disable_radix || !(mfmsr() & MSR_HV))
378 cur_cpu_spec->mmu_features &= ~MMU_FTR_TYPE_RADIX;
379
380 /*
381 * Check /chosen/ibm,architecture-vec-5 if running as a guest.
382 * When running bare-metal, we can use radix if we like
383 * even though the ibm,architecture-vec-5 property created by
384 * skiboot doesn't have the necessary bits set.
385 */
386 if (early_radix_enabled() && !(mfmsr() & MSR_HV))
387 early_check_vec5();
388
389 if (early_radix_enabled())
390 radix__early_init_devtree();
391 else
392 hash__early_init_devtree();
393 }
394 #endif /* CONFIG_PPC_STD_MMU_64 */