]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/powerpc/mm/nohash/tlb.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 152
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / mm / nohash / tlb.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * This file contains the routines for TLB flushing.
4 * On machines where the MMU does not use a hash table to store virtual to
5 * physical translations (ie, SW loaded TLBs or Book3E compilant processors,
6 * this does -not- include 603 however which shares the implementation with
7 * hash based processors)
8 *
9 * -- BenH
10 *
11 * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org>
12 * IBM Corp.
13 *
14 * Derived from arch/ppc/mm/init.c:
15 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
16 *
17 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
18 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
19 * Copyright (C) 1996 Paul Mackerras
20 *
21 * Derived from "arch/i386/mm/init.c"
22 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
23 */
24
25 #include <linux/kernel.h>
26 #include <linux/export.h>
27 #include <linux/mm.h>
28 #include <linux/init.h>
29 #include <linux/highmem.h>
30 #include <linux/pagemap.h>
31 #include <linux/preempt.h>
32 #include <linux/spinlock.h>
33 #include <linux/memblock.h>
34 #include <linux/of_fdt.h>
35 #include <linux/hugetlb.h>
36
37 #include <asm/tlbflush.h>
38 #include <asm/tlb.h>
39 #include <asm/code-patching.h>
40 #include <asm/cputhreads.h>
41 #include <asm/hugetlb.h>
42 #include <asm/paca.h>
43
44 #include <mm/mmu_decl.h>
45
46 /*
47 * This struct lists the sw-supported page sizes. The hardawre MMU may support
48 * other sizes not listed here. The .ind field is only used on MMUs that have
49 * indirect page table entries.
50 */
51 #if defined(CONFIG_PPC_BOOK3E_MMU) || defined(CONFIG_PPC_8xx)
52 #ifdef CONFIG_PPC_FSL_BOOK3E
53 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
54 [MMU_PAGE_4K] = {
55 .shift = 12,
56 .enc = BOOK3E_PAGESZ_4K,
57 },
58 [MMU_PAGE_2M] = {
59 .shift = 21,
60 .enc = BOOK3E_PAGESZ_2M,
61 },
62 [MMU_PAGE_4M] = {
63 .shift = 22,
64 .enc = BOOK3E_PAGESZ_4M,
65 },
66 [MMU_PAGE_16M] = {
67 .shift = 24,
68 .enc = BOOK3E_PAGESZ_16M,
69 },
70 [MMU_PAGE_64M] = {
71 .shift = 26,
72 .enc = BOOK3E_PAGESZ_64M,
73 },
74 [MMU_PAGE_256M] = {
75 .shift = 28,
76 .enc = BOOK3E_PAGESZ_256M,
77 },
78 [MMU_PAGE_1G] = {
79 .shift = 30,
80 .enc = BOOK3E_PAGESZ_1GB,
81 },
82 };
83 #elif defined(CONFIG_PPC_8xx)
84 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
85 /* we only manage 4k and 16k pages as normal pages */
86 #ifdef CONFIG_PPC_4K_PAGES
87 [MMU_PAGE_4K] = {
88 .shift = 12,
89 },
90 #else
91 [MMU_PAGE_16K] = {
92 .shift = 14,
93 },
94 #endif
95 [MMU_PAGE_512K] = {
96 .shift = 19,
97 },
98 [MMU_PAGE_8M] = {
99 .shift = 23,
100 },
101 };
102 #else
103 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
104 [MMU_PAGE_4K] = {
105 .shift = 12,
106 .ind = 20,
107 .enc = BOOK3E_PAGESZ_4K,
108 },
109 [MMU_PAGE_16K] = {
110 .shift = 14,
111 .enc = BOOK3E_PAGESZ_16K,
112 },
113 [MMU_PAGE_64K] = {
114 .shift = 16,
115 .ind = 28,
116 .enc = BOOK3E_PAGESZ_64K,
117 },
118 [MMU_PAGE_1M] = {
119 .shift = 20,
120 .enc = BOOK3E_PAGESZ_1M,
121 },
122 [MMU_PAGE_16M] = {
123 .shift = 24,
124 .ind = 36,
125 .enc = BOOK3E_PAGESZ_16M,
126 },
127 [MMU_PAGE_256M] = {
128 .shift = 28,
129 .enc = BOOK3E_PAGESZ_256M,
130 },
131 [MMU_PAGE_1G] = {
132 .shift = 30,
133 .enc = BOOK3E_PAGESZ_1GB,
134 },
135 };
136 #endif /* CONFIG_FSL_BOOKE */
137
138 static inline int mmu_get_tsize(int psize)
139 {
140 return mmu_psize_defs[psize].enc;
141 }
142 #else
143 static inline int mmu_get_tsize(int psize)
144 {
145 /* This isn't used on !Book3E for now */
146 return 0;
147 }
148 #endif /* CONFIG_PPC_BOOK3E_MMU */
149
150 /* The variables below are currently only used on 64-bit Book3E
151 * though this will probably be made common with other nohash
152 * implementations at some point
153 */
154 #ifdef CONFIG_PPC64
155
156 int mmu_linear_psize; /* Page size used for the linear mapping */
157 int mmu_pte_psize; /* Page size used for PTE pages */
158 int mmu_vmemmap_psize; /* Page size used for the virtual mem map */
159 int book3e_htw_mode; /* HW tablewalk? Value is PPC_HTW_* */
160 unsigned long linear_map_top; /* Top of linear mapping */
161
162
163 /*
164 * Number of bytes to add to SPRN_SPRG_TLB_EXFRAME on crit/mcheck/debug
165 * exceptions. This is used for bolted and e6500 TLB miss handlers which
166 * do not modify this SPRG in the TLB miss code; for other TLB miss handlers,
167 * this is set to zero.
168 */
169 int extlb_level_exc;
170
171 #endif /* CONFIG_PPC64 */
172
173 #ifdef CONFIG_PPC_FSL_BOOK3E
174 /* next_tlbcam_idx is used to round-robin tlbcam entry assignment */
175 DEFINE_PER_CPU(int, next_tlbcam_idx);
176 EXPORT_PER_CPU_SYMBOL(next_tlbcam_idx);
177 #endif
178
179 /*
180 * Base TLB flushing operations:
181 *
182 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
183 * - flush_tlb_page(vma, vmaddr) flushes one page
184 * - flush_tlb_range(vma, start, end) flushes a range of pages
185 * - flush_tlb_kernel_range(start, end) flushes kernel pages
186 *
187 * - local_* variants of page and mm only apply to the current
188 * processor
189 */
190
191 /*
192 * These are the base non-SMP variants of page and mm flushing
193 */
194 void local_flush_tlb_mm(struct mm_struct *mm)
195 {
196 unsigned int pid;
197
198 preempt_disable();
199 pid = mm->context.id;
200 if (pid != MMU_NO_CONTEXT)
201 _tlbil_pid(pid);
202 preempt_enable();
203 }
204 EXPORT_SYMBOL(local_flush_tlb_mm);
205
206 void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
207 int tsize, int ind)
208 {
209 unsigned int pid;
210
211 preempt_disable();
212 pid = mm ? mm->context.id : 0;
213 if (pid != MMU_NO_CONTEXT)
214 _tlbil_va(vmaddr, pid, tsize, ind);
215 preempt_enable();
216 }
217
218 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
219 {
220 __local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
221 mmu_get_tsize(mmu_virtual_psize), 0);
222 }
223 EXPORT_SYMBOL(local_flush_tlb_page);
224
225 /*
226 * And here are the SMP non-local implementations
227 */
228 #ifdef CONFIG_SMP
229
230 static DEFINE_RAW_SPINLOCK(tlbivax_lock);
231
232 struct tlb_flush_param {
233 unsigned long addr;
234 unsigned int pid;
235 unsigned int tsize;
236 unsigned int ind;
237 };
238
239 static void do_flush_tlb_mm_ipi(void *param)
240 {
241 struct tlb_flush_param *p = param;
242
243 _tlbil_pid(p ? p->pid : 0);
244 }
245
246 static void do_flush_tlb_page_ipi(void *param)
247 {
248 struct tlb_flush_param *p = param;
249
250 _tlbil_va(p->addr, p->pid, p->tsize, p->ind);
251 }
252
253
254 /* Note on invalidations and PID:
255 *
256 * We snapshot the PID with preempt disabled. At this point, it can still
257 * change either because:
258 * - our context is being stolen (PID -> NO_CONTEXT) on another CPU
259 * - we are invaliating some target that isn't currently running here
260 * and is concurrently acquiring a new PID on another CPU
261 * - some other CPU is re-acquiring a lost PID for this mm
262 * etc...
263 *
264 * However, this shouldn't be a problem as we only guarantee
265 * invalidation of TLB entries present prior to this call, so we
266 * don't care about the PID changing, and invalidating a stale PID
267 * is generally harmless.
268 */
269
270 void flush_tlb_mm(struct mm_struct *mm)
271 {
272 unsigned int pid;
273
274 preempt_disable();
275 pid = mm->context.id;
276 if (unlikely(pid == MMU_NO_CONTEXT))
277 goto no_context;
278 if (!mm_is_core_local(mm)) {
279 struct tlb_flush_param p = { .pid = pid };
280 /* Ignores smp_processor_id() even if set. */
281 smp_call_function_many(mm_cpumask(mm),
282 do_flush_tlb_mm_ipi, &p, 1);
283 }
284 _tlbil_pid(pid);
285 no_context:
286 preempt_enable();
287 }
288 EXPORT_SYMBOL(flush_tlb_mm);
289
290 void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
291 int tsize, int ind)
292 {
293 struct cpumask *cpu_mask;
294 unsigned int pid;
295
296 /*
297 * This function as well as __local_flush_tlb_page() must only be called
298 * for user contexts.
299 */
300 if (WARN_ON(!mm))
301 return;
302
303 preempt_disable();
304 pid = mm->context.id;
305 if (unlikely(pid == MMU_NO_CONTEXT))
306 goto bail;
307 cpu_mask = mm_cpumask(mm);
308 if (!mm_is_core_local(mm)) {
309 /* If broadcast tlbivax is supported, use it */
310 if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) {
311 int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL);
312 if (lock)
313 raw_spin_lock(&tlbivax_lock);
314 _tlbivax_bcast(vmaddr, pid, tsize, ind);
315 if (lock)
316 raw_spin_unlock(&tlbivax_lock);
317 goto bail;
318 } else {
319 struct tlb_flush_param p = {
320 .pid = pid,
321 .addr = vmaddr,
322 .tsize = tsize,
323 .ind = ind,
324 };
325 /* Ignores smp_processor_id() even if set in cpu_mask */
326 smp_call_function_many(cpu_mask,
327 do_flush_tlb_page_ipi, &p, 1);
328 }
329 }
330 _tlbil_va(vmaddr, pid, tsize, ind);
331 bail:
332 preempt_enable();
333 }
334
335 void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
336 {
337 #ifdef CONFIG_HUGETLB_PAGE
338 if (vma && is_vm_hugetlb_page(vma))
339 flush_hugetlb_page(vma, vmaddr);
340 #endif
341
342 __flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
343 mmu_get_tsize(mmu_virtual_psize), 0);
344 }
345 EXPORT_SYMBOL(flush_tlb_page);
346
347 #endif /* CONFIG_SMP */
348
349 #ifdef CONFIG_PPC_47x
350 void __init early_init_mmu_47x(void)
351 {
352 #ifdef CONFIG_SMP
353 unsigned long root = of_get_flat_dt_root();
354 if (of_get_flat_dt_prop(root, "cooperative-partition", NULL))
355 mmu_clear_feature(MMU_FTR_USE_TLBIVAX_BCAST);
356 #endif /* CONFIG_SMP */
357 }
358 #endif /* CONFIG_PPC_47x */
359
360 /*
361 * Flush kernel TLB entries in the given range
362 */
363 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
364 {
365 #ifdef CONFIG_SMP
366 preempt_disable();
367 smp_call_function(do_flush_tlb_mm_ipi, NULL, 1);
368 _tlbil_pid(0);
369 preempt_enable();
370 #else
371 _tlbil_pid(0);
372 #endif
373 }
374 EXPORT_SYMBOL(flush_tlb_kernel_range);
375
376 /*
377 * Currently, for range flushing, we just do a full mm flush. This should
378 * be optimized based on a threshold on the size of the range, since
379 * some implementation can stack multiple tlbivax before a tlbsync but
380 * for now, we keep it that way
381 */
382 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
383 unsigned long end)
384
385 {
386 if (end - start == PAGE_SIZE && !(start & ~PAGE_MASK))
387 flush_tlb_page(vma, start);
388 else
389 flush_tlb_mm(vma->vm_mm);
390 }
391 EXPORT_SYMBOL(flush_tlb_range);
392
393 void tlb_flush(struct mmu_gather *tlb)
394 {
395 flush_tlb_mm(tlb->mm);
396 }
397
398 /*
399 * Below are functions specific to the 64-bit variant of Book3E though that
400 * may change in the future
401 */
402
403 #ifdef CONFIG_PPC64
404
405 /*
406 * Handling of virtual linear page tables or indirect TLB entries
407 * flushing when PTE pages are freed
408 */
409 void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address)
410 {
411 int tsize = mmu_psize_defs[mmu_pte_psize].enc;
412
413 if (book3e_htw_mode != PPC_HTW_NONE) {
414 unsigned long start = address & PMD_MASK;
415 unsigned long end = address + PMD_SIZE;
416 unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift;
417
418 /* This isn't the most optimal, ideally we would factor out the
419 * while preempt & CPU mask mucking around, or even the IPI but
420 * it will do for now
421 */
422 while (start < end) {
423 __flush_tlb_page(tlb->mm, start, tsize, 1);
424 start += size;
425 }
426 } else {
427 unsigned long rmask = 0xf000000000000000ul;
428 unsigned long rid = (address & rmask) | 0x1000000000000000ul;
429 unsigned long vpte = address & ~rmask;
430
431 vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful;
432 vpte |= rid;
433 __flush_tlb_page(tlb->mm, vpte, tsize, 0);
434 }
435 }
436
437 static void setup_page_sizes(void)
438 {
439 unsigned int tlb0cfg;
440 unsigned int tlb0ps;
441 unsigned int eptcfg;
442 int i, psize;
443
444 #ifdef CONFIG_PPC_FSL_BOOK3E
445 unsigned int mmucfg = mfspr(SPRN_MMUCFG);
446 int fsl_mmu = mmu_has_feature(MMU_FTR_TYPE_FSL_E);
447
448 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) {
449 unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG);
450 unsigned int min_pg, max_pg;
451
452 min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT;
453 max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT;
454
455 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
456 struct mmu_psize_def *def;
457 unsigned int shift;
458
459 def = &mmu_psize_defs[psize];
460 shift = def->shift;
461
462 if (shift == 0 || shift & 1)
463 continue;
464
465 /* adjust to be in terms of 4^shift Kb */
466 shift = (shift - 10) >> 1;
467
468 if ((shift >= min_pg) && (shift <= max_pg))
469 def->flags |= MMU_PAGE_SIZE_DIRECT;
470 }
471
472 goto out;
473 }
474
475 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V2) {
476 u32 tlb1cfg, tlb1ps;
477
478 tlb0cfg = mfspr(SPRN_TLB0CFG);
479 tlb1cfg = mfspr(SPRN_TLB1CFG);
480 tlb1ps = mfspr(SPRN_TLB1PS);
481 eptcfg = mfspr(SPRN_EPTCFG);
482
483 if ((tlb1cfg & TLBnCFG_IND) && (tlb0cfg & TLBnCFG_PT))
484 book3e_htw_mode = PPC_HTW_E6500;
485
486 /*
487 * We expect 4K subpage size and unrestricted indirect size.
488 * The lack of a restriction on indirect size is a Freescale
489 * extension, indicated by PSn = 0 but SPSn != 0.
490 */
491 if (eptcfg != 2)
492 book3e_htw_mode = PPC_HTW_NONE;
493
494 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
495 struct mmu_psize_def *def = &mmu_psize_defs[psize];
496
497 if (!def->shift)
498 continue;
499
500 if (tlb1ps & (1U << (def->shift - 10))) {
501 def->flags |= MMU_PAGE_SIZE_DIRECT;
502
503 if (book3e_htw_mode && psize == MMU_PAGE_2M)
504 def->flags |= MMU_PAGE_SIZE_INDIRECT;
505 }
506 }
507
508 goto out;
509 }
510 #endif
511
512 tlb0cfg = mfspr(SPRN_TLB0CFG);
513 tlb0ps = mfspr(SPRN_TLB0PS);
514 eptcfg = mfspr(SPRN_EPTCFG);
515
516 /* Look for supported direct sizes */
517 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
518 struct mmu_psize_def *def = &mmu_psize_defs[psize];
519
520 if (tlb0ps & (1U << (def->shift - 10)))
521 def->flags |= MMU_PAGE_SIZE_DIRECT;
522 }
523
524 /* Indirect page sizes supported ? */
525 if ((tlb0cfg & TLBnCFG_IND) == 0 ||
526 (tlb0cfg & TLBnCFG_PT) == 0)
527 goto out;
528
529 book3e_htw_mode = PPC_HTW_IBM;
530
531 /* Now, we only deal with one IND page size for each
532 * direct size. Hopefully all implementations today are
533 * unambiguous, but we might want to be careful in the
534 * future.
535 */
536 for (i = 0; i < 3; i++) {
537 unsigned int ps, sps;
538
539 sps = eptcfg & 0x1f;
540 eptcfg >>= 5;
541 ps = eptcfg & 0x1f;
542 eptcfg >>= 5;
543 if (!ps || !sps)
544 continue;
545 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
546 struct mmu_psize_def *def = &mmu_psize_defs[psize];
547
548 if (ps == (def->shift - 10))
549 def->flags |= MMU_PAGE_SIZE_INDIRECT;
550 if (sps == (def->shift - 10))
551 def->ind = ps + 10;
552 }
553 }
554
555 out:
556 /* Cleanup array and print summary */
557 pr_info("MMU: Supported page sizes\n");
558 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
559 struct mmu_psize_def *def = &mmu_psize_defs[psize];
560 const char *__page_type_names[] = {
561 "unsupported",
562 "direct",
563 "indirect",
564 "direct & indirect"
565 };
566 if (def->flags == 0) {
567 def->shift = 0;
568 continue;
569 }
570 pr_info(" %8ld KB as %s\n", 1ul << (def->shift - 10),
571 __page_type_names[def->flags & 0x3]);
572 }
573 }
574
575 static void setup_mmu_htw(void)
576 {
577 /*
578 * If we want to use HW tablewalk, enable it by patching the TLB miss
579 * handlers to branch to the one dedicated to it.
580 */
581
582 switch (book3e_htw_mode) {
583 case PPC_HTW_IBM:
584 patch_exception(0x1c0, exc_data_tlb_miss_htw_book3e);
585 patch_exception(0x1e0, exc_instruction_tlb_miss_htw_book3e);
586 break;
587 #ifdef CONFIG_PPC_FSL_BOOK3E
588 case PPC_HTW_E6500:
589 extlb_level_exc = EX_TLB_SIZE;
590 patch_exception(0x1c0, exc_data_tlb_miss_e6500_book3e);
591 patch_exception(0x1e0, exc_instruction_tlb_miss_e6500_book3e);
592 break;
593 #endif
594 }
595 pr_info("MMU: Book3E HW tablewalk %s\n",
596 book3e_htw_mode != PPC_HTW_NONE ? "enabled" : "not supported");
597 }
598
599 /*
600 * Early initialization of the MMU TLB code
601 */
602 static void early_init_this_mmu(void)
603 {
604 unsigned int mas4;
605
606 /* Set MAS4 based on page table setting */
607
608 mas4 = 0x4 << MAS4_WIMGED_SHIFT;
609 switch (book3e_htw_mode) {
610 case PPC_HTW_E6500:
611 mas4 |= MAS4_INDD;
612 mas4 |= BOOK3E_PAGESZ_2M << MAS4_TSIZED_SHIFT;
613 mas4 |= MAS4_TLBSELD(1);
614 mmu_pte_psize = MMU_PAGE_2M;
615 break;
616
617 case PPC_HTW_IBM:
618 mas4 |= MAS4_INDD;
619 mas4 |= BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT;
620 mmu_pte_psize = MMU_PAGE_1M;
621 break;
622
623 case PPC_HTW_NONE:
624 mas4 |= BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT;
625 mmu_pte_psize = mmu_virtual_psize;
626 break;
627 }
628 mtspr(SPRN_MAS4, mas4);
629
630 #ifdef CONFIG_PPC_FSL_BOOK3E
631 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
632 unsigned int num_cams;
633 int __maybe_unused cpu = smp_processor_id();
634 bool map = true;
635
636 /* use a quarter of the TLBCAM for bolted linear map */
637 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
638
639 /*
640 * Only do the mapping once per core, or else the
641 * transient mapping would cause problems.
642 */
643 #ifdef CONFIG_SMP
644 if (hweight32(get_tensr()) > 1)
645 map = false;
646 #endif
647
648 if (map)
649 linear_map_top = map_mem_in_cams(linear_map_top,
650 num_cams, false);
651 }
652 #endif
653
654 /* A sync won't hurt us after mucking around with
655 * the MMU configuration
656 */
657 mb();
658 }
659
660 static void __init early_init_mmu_global(void)
661 {
662 /* XXX This will have to be decided at runtime, but right
663 * now our boot and TLB miss code hard wires it. Ideally
664 * we should find out a suitable page size and patch the
665 * TLB miss code (either that or use the PACA to store
666 * the value we want)
667 */
668 mmu_linear_psize = MMU_PAGE_1G;
669
670 /* XXX This should be decided at runtime based on supported
671 * page sizes in the TLB, but for now let's assume 16M is
672 * always there and a good fit (which it probably is)
673 *
674 * Freescale booke only supports 4K pages in TLB0, so use that.
675 */
676 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
677 mmu_vmemmap_psize = MMU_PAGE_4K;
678 else
679 mmu_vmemmap_psize = MMU_PAGE_16M;
680
681 /* XXX This code only checks for TLB 0 capabilities and doesn't
682 * check what page size combos are supported by the HW. It
683 * also doesn't handle the case where a separate array holds
684 * the IND entries from the array loaded by the PT.
685 */
686 /* Look for supported page sizes */
687 setup_page_sizes();
688
689 /* Look for HW tablewalk support */
690 setup_mmu_htw();
691
692 #ifdef CONFIG_PPC_FSL_BOOK3E
693 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
694 if (book3e_htw_mode == PPC_HTW_NONE) {
695 extlb_level_exc = EX_TLB_SIZE;
696 patch_exception(0x1c0, exc_data_tlb_miss_bolted_book3e);
697 patch_exception(0x1e0,
698 exc_instruction_tlb_miss_bolted_book3e);
699 }
700 }
701 #endif
702
703 /* Set the global containing the top of the linear mapping
704 * for use by the TLB miss code
705 */
706 linear_map_top = memblock_end_of_DRAM();
707 }
708
709 static void __init early_mmu_set_memory_limit(void)
710 {
711 #ifdef CONFIG_PPC_FSL_BOOK3E
712 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
713 /*
714 * Limit memory so we dont have linear faults.
715 * Unlike memblock_set_current_limit, which limits
716 * memory available during early boot, this permanently
717 * reduces the memory available to Linux. We need to
718 * do this because highmem is not supported on 64-bit.
719 */
720 memblock_enforce_memory_limit(linear_map_top);
721 }
722 #endif
723
724 memblock_set_current_limit(linear_map_top);
725 }
726
727 /* boot cpu only */
728 void __init early_init_mmu(void)
729 {
730 early_init_mmu_global();
731 early_init_this_mmu();
732 early_mmu_set_memory_limit();
733 }
734
735 void early_init_mmu_secondary(void)
736 {
737 early_init_this_mmu();
738 }
739
740 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
741 phys_addr_t first_memblock_size)
742 {
743 /* On non-FSL Embedded 64-bit, we adjust the RMA size to match
744 * the bolted TLB entry. We know for now that only 1G
745 * entries are supported though that may eventually
746 * change.
747 *
748 * on FSL Embedded 64-bit, usually all RAM is bolted, but with
749 * unusual memory sizes it's possible for some RAM to not be mapped
750 * (such RAM is not used at all by Linux, since we don't support
751 * highmem on 64-bit). We limit ppc64_rma_size to what would be
752 * mappable if this memblock is the only one. Additional memblocks
753 * can only increase, not decrease, the amount that ends up getting
754 * mapped. We still limit max to 1G even if we'll eventually map
755 * more. This is due to what the early init code is set up to do.
756 *
757 * We crop it to the size of the first MEMBLOCK to
758 * avoid going over total available memory just in case...
759 */
760 #ifdef CONFIG_PPC_FSL_BOOK3E
761 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
762 unsigned long linear_sz;
763 unsigned int num_cams;
764
765 /* use a quarter of the TLBCAM for bolted linear map */
766 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
767
768 linear_sz = map_mem_in_cams(first_memblock_size, num_cams,
769 true);
770
771 ppc64_rma_size = min_t(u64, linear_sz, 0x40000000);
772 } else
773 #endif
774 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
775
776 /* Finally limit subsequent allocations */
777 memblock_set_current_limit(first_memblock_base + ppc64_rma_size);
778 }
779 #else /* ! CONFIG_PPC64 */
780 void __init early_init_mmu(void)
781 {
782 #ifdef CONFIG_PPC_47x
783 early_init_mmu_47x();
784 #endif
785
786 #ifdef CONFIG_PPC_MM_SLICES
787 mm_ctx_set_slb_addr_limit(&init_mm.context, SLB_ADDR_LIMIT_DEFAULT);
788 #endif
789 }
790 #endif /* CONFIG_PPC64 */