]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/mm/numa.c
Merge tag 'media/v4.10-1' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / mm / numa.c
1 /*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #define pr_fmt(fmt) "numa: " fmt
12
13 #include <linux/threads.h>
14 #include <linux/bootmem.h>
15 #include <linux/init.h>
16 #include <linux/mm.h>
17 #include <linux/mmzone.h>
18 #include <linux/export.h>
19 #include <linux/nodemask.h>
20 #include <linux/cpu.h>
21 #include <linux/notifier.h>
22 #include <linux/memblock.h>
23 #include <linux/of.h>
24 #include <linux/pfn.h>
25 #include <linux/cpuset.h>
26 #include <linux/node.h>
27 #include <linux/stop_machine.h>
28 #include <linux/proc_fs.h>
29 #include <linux/seq_file.h>
30 #include <linux/uaccess.h>
31 #include <linux/slab.h>
32 #include <asm/cputhreads.h>
33 #include <asm/sparsemem.h>
34 #include <asm/prom.h>
35 #include <asm/smp.h>
36 #include <asm/cputhreads.h>
37 #include <asm/topology.h>
38 #include <asm/firmware.h>
39 #include <asm/paca.h>
40 #include <asm/hvcall.h>
41 #include <asm/setup.h>
42 #include <asm/vdso.h>
43
44 static int numa_enabled = 1;
45
46 static char *cmdline __initdata;
47
48 static int numa_debug;
49 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
50
51 int numa_cpu_lookup_table[NR_CPUS];
52 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
53 struct pglist_data *node_data[MAX_NUMNODES];
54
55 EXPORT_SYMBOL(numa_cpu_lookup_table);
56 EXPORT_SYMBOL(node_to_cpumask_map);
57 EXPORT_SYMBOL(node_data);
58
59 static int min_common_depth;
60 static int n_mem_addr_cells, n_mem_size_cells;
61 static int form1_affinity;
62
63 #define MAX_DISTANCE_REF_POINTS 4
64 static int distance_ref_points_depth;
65 static const __be32 *distance_ref_points;
66 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
67
68 /*
69 * Allocate node_to_cpumask_map based on number of available nodes
70 * Requires node_possible_map to be valid.
71 *
72 * Note: cpumask_of_node() is not valid until after this is done.
73 */
74 static void __init setup_node_to_cpumask_map(void)
75 {
76 unsigned int node;
77
78 /* setup nr_node_ids if not done yet */
79 if (nr_node_ids == MAX_NUMNODES)
80 setup_nr_node_ids();
81
82 /* allocate the map */
83 for_each_node(node)
84 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
85
86 /* cpumask_of_node() will now work */
87 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
88 }
89
90 static int __init fake_numa_create_new_node(unsigned long end_pfn,
91 unsigned int *nid)
92 {
93 unsigned long long mem;
94 char *p = cmdline;
95 static unsigned int fake_nid;
96 static unsigned long long curr_boundary;
97
98 /*
99 * Modify node id, iff we started creating NUMA nodes
100 * We want to continue from where we left of the last time
101 */
102 if (fake_nid)
103 *nid = fake_nid;
104 /*
105 * In case there are no more arguments to parse, the
106 * node_id should be the same as the last fake node id
107 * (we've handled this above).
108 */
109 if (!p)
110 return 0;
111
112 mem = memparse(p, &p);
113 if (!mem)
114 return 0;
115
116 if (mem < curr_boundary)
117 return 0;
118
119 curr_boundary = mem;
120
121 if ((end_pfn << PAGE_SHIFT) > mem) {
122 /*
123 * Skip commas and spaces
124 */
125 while (*p == ',' || *p == ' ' || *p == '\t')
126 p++;
127
128 cmdline = p;
129 fake_nid++;
130 *nid = fake_nid;
131 dbg("created new fake_node with id %d\n", fake_nid);
132 return 1;
133 }
134 return 0;
135 }
136
137 static void reset_numa_cpu_lookup_table(void)
138 {
139 unsigned int cpu;
140
141 for_each_possible_cpu(cpu)
142 numa_cpu_lookup_table[cpu] = -1;
143 }
144
145 static void update_numa_cpu_lookup_table(unsigned int cpu, int node)
146 {
147 numa_cpu_lookup_table[cpu] = node;
148 }
149
150 static void map_cpu_to_node(int cpu, int node)
151 {
152 update_numa_cpu_lookup_table(cpu, node);
153
154 dbg("adding cpu %d to node %d\n", cpu, node);
155
156 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
157 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
158 }
159
160 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
161 static void unmap_cpu_from_node(unsigned long cpu)
162 {
163 int node = numa_cpu_lookup_table[cpu];
164
165 dbg("removing cpu %lu from node %d\n", cpu, node);
166
167 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
168 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
169 } else {
170 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
171 cpu, node);
172 }
173 }
174 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
175
176 /* must hold reference to node during call */
177 static const __be32 *of_get_associativity(struct device_node *dev)
178 {
179 return of_get_property(dev, "ibm,associativity", NULL);
180 }
181
182 /*
183 * Returns the property linux,drconf-usable-memory if
184 * it exists (the property exists only in kexec/kdump kernels,
185 * added by kexec-tools)
186 */
187 static const __be32 *of_get_usable_memory(struct device_node *memory)
188 {
189 const __be32 *prop;
190 u32 len;
191 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
192 if (!prop || len < sizeof(unsigned int))
193 return NULL;
194 return prop;
195 }
196
197 int __node_distance(int a, int b)
198 {
199 int i;
200 int distance = LOCAL_DISTANCE;
201
202 if (!form1_affinity)
203 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
204
205 for (i = 0; i < distance_ref_points_depth; i++) {
206 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
207 break;
208
209 /* Double the distance for each NUMA level */
210 distance *= 2;
211 }
212
213 return distance;
214 }
215 EXPORT_SYMBOL(__node_distance);
216
217 static void initialize_distance_lookup_table(int nid,
218 const __be32 *associativity)
219 {
220 int i;
221
222 if (!form1_affinity)
223 return;
224
225 for (i = 0; i < distance_ref_points_depth; i++) {
226 const __be32 *entry;
227
228 entry = &associativity[be32_to_cpu(distance_ref_points[i]) - 1];
229 distance_lookup_table[nid][i] = of_read_number(entry, 1);
230 }
231 }
232
233 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
234 * info is found.
235 */
236 static int associativity_to_nid(const __be32 *associativity)
237 {
238 int nid = -1;
239
240 if (min_common_depth == -1)
241 goto out;
242
243 if (of_read_number(associativity, 1) >= min_common_depth)
244 nid = of_read_number(&associativity[min_common_depth], 1);
245
246 /* POWER4 LPAR uses 0xffff as invalid node */
247 if (nid == 0xffff || nid >= MAX_NUMNODES)
248 nid = -1;
249
250 if (nid > 0 &&
251 of_read_number(associativity, 1) >= distance_ref_points_depth) {
252 /*
253 * Skip the length field and send start of associativity array
254 */
255 initialize_distance_lookup_table(nid, associativity + 1);
256 }
257
258 out:
259 return nid;
260 }
261
262 /* Returns the nid associated with the given device tree node,
263 * or -1 if not found.
264 */
265 static int of_node_to_nid_single(struct device_node *device)
266 {
267 int nid = -1;
268 const __be32 *tmp;
269
270 tmp = of_get_associativity(device);
271 if (tmp)
272 nid = associativity_to_nid(tmp);
273 return nid;
274 }
275
276 /* Walk the device tree upwards, looking for an associativity id */
277 int of_node_to_nid(struct device_node *device)
278 {
279 int nid = -1;
280
281 of_node_get(device);
282 while (device) {
283 nid = of_node_to_nid_single(device);
284 if (nid != -1)
285 break;
286
287 device = of_get_next_parent(device);
288 }
289 of_node_put(device);
290
291 return nid;
292 }
293 EXPORT_SYMBOL_GPL(of_node_to_nid);
294
295 static int __init find_min_common_depth(void)
296 {
297 int depth;
298 struct device_node *root;
299
300 if (firmware_has_feature(FW_FEATURE_OPAL))
301 root = of_find_node_by_path("/ibm,opal");
302 else
303 root = of_find_node_by_path("/rtas");
304 if (!root)
305 root = of_find_node_by_path("/");
306
307 /*
308 * This property is a set of 32-bit integers, each representing
309 * an index into the ibm,associativity nodes.
310 *
311 * With form 0 affinity the first integer is for an SMP configuration
312 * (should be all 0's) and the second is for a normal NUMA
313 * configuration. We have only one level of NUMA.
314 *
315 * With form 1 affinity the first integer is the most significant
316 * NUMA boundary and the following are progressively less significant
317 * boundaries. There can be more than one level of NUMA.
318 */
319 distance_ref_points = of_get_property(root,
320 "ibm,associativity-reference-points",
321 &distance_ref_points_depth);
322
323 if (!distance_ref_points) {
324 dbg("NUMA: ibm,associativity-reference-points not found.\n");
325 goto err;
326 }
327
328 distance_ref_points_depth /= sizeof(int);
329
330 if (firmware_has_feature(FW_FEATURE_OPAL) ||
331 firmware_has_feature(FW_FEATURE_TYPE1_AFFINITY)) {
332 dbg("Using form 1 affinity\n");
333 form1_affinity = 1;
334 }
335
336 if (form1_affinity) {
337 depth = of_read_number(distance_ref_points, 1);
338 } else {
339 if (distance_ref_points_depth < 2) {
340 printk(KERN_WARNING "NUMA: "
341 "short ibm,associativity-reference-points\n");
342 goto err;
343 }
344
345 depth = of_read_number(&distance_ref_points[1], 1);
346 }
347
348 /*
349 * Warn and cap if the hardware supports more than
350 * MAX_DISTANCE_REF_POINTS domains.
351 */
352 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
353 printk(KERN_WARNING "NUMA: distance array capped at "
354 "%d entries\n", MAX_DISTANCE_REF_POINTS);
355 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
356 }
357
358 of_node_put(root);
359 return depth;
360
361 err:
362 of_node_put(root);
363 return -1;
364 }
365
366 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
367 {
368 struct device_node *memory = NULL;
369
370 memory = of_find_node_by_type(memory, "memory");
371 if (!memory)
372 panic("numa.c: No memory nodes found!");
373
374 *n_addr_cells = of_n_addr_cells(memory);
375 *n_size_cells = of_n_size_cells(memory);
376 of_node_put(memory);
377 }
378
379 static unsigned long read_n_cells(int n, const __be32 **buf)
380 {
381 unsigned long result = 0;
382
383 while (n--) {
384 result = (result << 32) | of_read_number(*buf, 1);
385 (*buf)++;
386 }
387 return result;
388 }
389
390 /*
391 * Read the next memblock list entry from the ibm,dynamic-memory property
392 * and return the information in the provided of_drconf_cell structure.
393 */
394 static void read_drconf_cell(struct of_drconf_cell *drmem, const __be32 **cellp)
395 {
396 const __be32 *cp;
397
398 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
399
400 cp = *cellp;
401 drmem->drc_index = of_read_number(cp, 1);
402 drmem->reserved = of_read_number(&cp[1], 1);
403 drmem->aa_index = of_read_number(&cp[2], 1);
404 drmem->flags = of_read_number(&cp[3], 1);
405
406 *cellp = cp + 4;
407 }
408
409 /*
410 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
411 *
412 * The layout of the ibm,dynamic-memory property is a number N of memblock
413 * list entries followed by N memblock list entries. Each memblock list entry
414 * contains information as laid out in the of_drconf_cell struct above.
415 */
416 static int of_get_drconf_memory(struct device_node *memory, const __be32 **dm)
417 {
418 const __be32 *prop;
419 u32 len, entries;
420
421 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
422 if (!prop || len < sizeof(unsigned int))
423 return 0;
424
425 entries = of_read_number(prop++, 1);
426
427 /* Now that we know the number of entries, revalidate the size
428 * of the property read in to ensure we have everything
429 */
430 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
431 return 0;
432
433 *dm = prop;
434 return entries;
435 }
436
437 /*
438 * Retrieve and validate the ibm,lmb-size property for drconf memory
439 * from the device tree.
440 */
441 static u64 of_get_lmb_size(struct device_node *memory)
442 {
443 const __be32 *prop;
444 u32 len;
445
446 prop = of_get_property(memory, "ibm,lmb-size", &len);
447 if (!prop || len < sizeof(unsigned int))
448 return 0;
449
450 return read_n_cells(n_mem_size_cells, &prop);
451 }
452
453 struct assoc_arrays {
454 u32 n_arrays;
455 u32 array_sz;
456 const __be32 *arrays;
457 };
458
459 /*
460 * Retrieve and validate the list of associativity arrays for drconf
461 * memory from the ibm,associativity-lookup-arrays property of the
462 * device tree..
463 *
464 * The layout of the ibm,associativity-lookup-arrays property is a number N
465 * indicating the number of associativity arrays, followed by a number M
466 * indicating the size of each associativity array, followed by a list
467 * of N associativity arrays.
468 */
469 static int of_get_assoc_arrays(struct device_node *memory,
470 struct assoc_arrays *aa)
471 {
472 const __be32 *prop;
473 u32 len;
474
475 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
476 if (!prop || len < 2 * sizeof(unsigned int))
477 return -1;
478
479 aa->n_arrays = of_read_number(prop++, 1);
480 aa->array_sz = of_read_number(prop++, 1);
481
482 /* Now that we know the number of arrays and size of each array,
483 * revalidate the size of the property read in.
484 */
485 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
486 return -1;
487
488 aa->arrays = prop;
489 return 0;
490 }
491
492 /*
493 * This is like of_node_to_nid_single() for memory represented in the
494 * ibm,dynamic-reconfiguration-memory node.
495 */
496 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
497 struct assoc_arrays *aa)
498 {
499 int default_nid = 0;
500 int nid = default_nid;
501 int index;
502
503 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
504 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
505 drmem->aa_index < aa->n_arrays) {
506 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
507 nid = of_read_number(&aa->arrays[index], 1);
508
509 if (nid == 0xffff || nid >= MAX_NUMNODES)
510 nid = default_nid;
511
512 if (nid > 0) {
513 index = drmem->aa_index * aa->array_sz;
514 initialize_distance_lookup_table(nid,
515 &aa->arrays[index]);
516 }
517 }
518
519 return nid;
520 }
521
522 /*
523 * Figure out to which domain a cpu belongs and stick it there.
524 * Return the id of the domain used.
525 */
526 static int numa_setup_cpu(unsigned long lcpu)
527 {
528 int nid = -1;
529 struct device_node *cpu;
530
531 /*
532 * If a valid cpu-to-node mapping is already available, use it
533 * directly instead of querying the firmware, since it represents
534 * the most recent mapping notified to us by the platform (eg: VPHN).
535 */
536 if ((nid = numa_cpu_lookup_table[lcpu]) >= 0) {
537 map_cpu_to_node(lcpu, nid);
538 return nid;
539 }
540
541 cpu = of_get_cpu_node(lcpu, NULL);
542
543 if (!cpu) {
544 WARN_ON(1);
545 if (cpu_present(lcpu))
546 goto out_present;
547 else
548 goto out;
549 }
550
551 nid = of_node_to_nid_single(cpu);
552
553 out_present:
554 if (nid < 0 || !node_online(nid))
555 nid = first_online_node;
556
557 map_cpu_to_node(lcpu, nid);
558 of_node_put(cpu);
559 out:
560 return nid;
561 }
562
563 static void verify_cpu_node_mapping(int cpu, int node)
564 {
565 int base, sibling, i;
566
567 /* Verify that all the threads in the core belong to the same node */
568 base = cpu_first_thread_sibling(cpu);
569
570 for (i = 0; i < threads_per_core; i++) {
571 sibling = base + i;
572
573 if (sibling == cpu || cpu_is_offline(sibling))
574 continue;
575
576 if (cpu_to_node(sibling) != node) {
577 WARN(1, "CPU thread siblings %d and %d don't belong"
578 " to the same node!\n", cpu, sibling);
579 break;
580 }
581 }
582 }
583
584 /* Must run before sched domains notifier. */
585 static int ppc_numa_cpu_prepare(unsigned int cpu)
586 {
587 int nid;
588
589 nid = numa_setup_cpu(cpu);
590 verify_cpu_node_mapping(cpu, nid);
591 return 0;
592 }
593
594 static int ppc_numa_cpu_dead(unsigned int cpu)
595 {
596 #ifdef CONFIG_HOTPLUG_CPU
597 unmap_cpu_from_node(cpu);
598 #endif
599 return 0;
600 }
601
602 /*
603 * Check and possibly modify a memory region to enforce the memory limit.
604 *
605 * Returns the size the region should have to enforce the memory limit.
606 * This will either be the original value of size, a truncated value,
607 * or zero. If the returned value of size is 0 the region should be
608 * discarded as it lies wholly above the memory limit.
609 */
610 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
611 unsigned long size)
612 {
613 /*
614 * We use memblock_end_of_DRAM() in here instead of memory_limit because
615 * we've already adjusted it for the limit and it takes care of
616 * having memory holes below the limit. Also, in the case of
617 * iommu_is_off, memory_limit is not set but is implicitly enforced.
618 */
619
620 if (start + size <= memblock_end_of_DRAM())
621 return size;
622
623 if (start >= memblock_end_of_DRAM())
624 return 0;
625
626 return memblock_end_of_DRAM() - start;
627 }
628
629 /*
630 * Reads the counter for a given entry in
631 * linux,drconf-usable-memory property
632 */
633 static inline int __init read_usm_ranges(const __be32 **usm)
634 {
635 /*
636 * For each lmb in ibm,dynamic-memory a corresponding
637 * entry in linux,drconf-usable-memory property contains
638 * a counter followed by that many (base, size) duple.
639 * read the counter from linux,drconf-usable-memory
640 */
641 return read_n_cells(n_mem_size_cells, usm);
642 }
643
644 /*
645 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
646 * node. This assumes n_mem_{addr,size}_cells have been set.
647 */
648 static void __init parse_drconf_memory(struct device_node *memory)
649 {
650 const __be32 *uninitialized_var(dm), *usm;
651 unsigned int n, rc, ranges, is_kexec_kdump = 0;
652 unsigned long lmb_size, base, size, sz;
653 int nid;
654 struct assoc_arrays aa = { .arrays = NULL };
655
656 n = of_get_drconf_memory(memory, &dm);
657 if (!n)
658 return;
659
660 lmb_size = of_get_lmb_size(memory);
661 if (!lmb_size)
662 return;
663
664 rc = of_get_assoc_arrays(memory, &aa);
665 if (rc)
666 return;
667
668 /* check if this is a kexec/kdump kernel */
669 usm = of_get_usable_memory(memory);
670 if (usm != NULL)
671 is_kexec_kdump = 1;
672
673 for (; n != 0; --n) {
674 struct of_drconf_cell drmem;
675
676 read_drconf_cell(&drmem, &dm);
677
678 /* skip this block if the reserved bit is set in flags (0x80)
679 or if the block is not assigned to this partition (0x8) */
680 if ((drmem.flags & DRCONF_MEM_RESERVED)
681 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
682 continue;
683
684 base = drmem.base_addr;
685 size = lmb_size;
686 ranges = 1;
687
688 if (is_kexec_kdump) {
689 ranges = read_usm_ranges(&usm);
690 if (!ranges) /* there are no (base, size) duple */
691 continue;
692 }
693 do {
694 if (is_kexec_kdump) {
695 base = read_n_cells(n_mem_addr_cells, &usm);
696 size = read_n_cells(n_mem_size_cells, &usm);
697 }
698 nid = of_drconf_to_nid_single(&drmem, &aa);
699 fake_numa_create_new_node(
700 ((base + size) >> PAGE_SHIFT),
701 &nid);
702 node_set_online(nid);
703 sz = numa_enforce_memory_limit(base, size);
704 if (sz)
705 memblock_set_node(base, sz,
706 &memblock.memory, nid);
707 } while (--ranges);
708 }
709 }
710
711 static int __init parse_numa_properties(void)
712 {
713 struct device_node *memory;
714 int default_nid = 0;
715 unsigned long i;
716
717 if (numa_enabled == 0) {
718 printk(KERN_WARNING "NUMA disabled by user\n");
719 return -1;
720 }
721
722 min_common_depth = find_min_common_depth();
723
724 if (min_common_depth < 0)
725 return min_common_depth;
726
727 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
728
729 /*
730 * Even though we connect cpus to numa domains later in SMP
731 * init, we need to know the node ids now. This is because
732 * each node to be onlined must have NODE_DATA etc backing it.
733 */
734 for_each_present_cpu(i) {
735 struct device_node *cpu;
736 int nid;
737
738 cpu = of_get_cpu_node(i, NULL);
739 BUG_ON(!cpu);
740 nid = of_node_to_nid_single(cpu);
741 of_node_put(cpu);
742
743 /*
744 * Don't fall back to default_nid yet -- we will plug
745 * cpus into nodes once the memory scan has discovered
746 * the topology.
747 */
748 if (nid < 0)
749 continue;
750 node_set_online(nid);
751 }
752
753 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
754
755 for_each_node_by_type(memory, "memory") {
756 unsigned long start;
757 unsigned long size;
758 int nid;
759 int ranges;
760 const __be32 *memcell_buf;
761 unsigned int len;
762
763 memcell_buf = of_get_property(memory,
764 "linux,usable-memory", &len);
765 if (!memcell_buf || len <= 0)
766 memcell_buf = of_get_property(memory, "reg", &len);
767 if (!memcell_buf || len <= 0)
768 continue;
769
770 /* ranges in cell */
771 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
772 new_range:
773 /* these are order-sensitive, and modify the buffer pointer */
774 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
775 size = read_n_cells(n_mem_size_cells, &memcell_buf);
776
777 /*
778 * Assumption: either all memory nodes or none will
779 * have associativity properties. If none, then
780 * everything goes to default_nid.
781 */
782 nid = of_node_to_nid_single(memory);
783 if (nid < 0)
784 nid = default_nid;
785
786 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
787 node_set_online(nid);
788
789 if (!(size = numa_enforce_memory_limit(start, size))) {
790 if (--ranges)
791 goto new_range;
792 else
793 continue;
794 }
795
796 memblock_set_node(start, size, &memblock.memory, nid);
797
798 if (--ranges)
799 goto new_range;
800 }
801
802 /*
803 * Now do the same thing for each MEMBLOCK listed in the
804 * ibm,dynamic-memory property in the
805 * ibm,dynamic-reconfiguration-memory node.
806 */
807 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
808 if (memory)
809 parse_drconf_memory(memory);
810
811 return 0;
812 }
813
814 static void __init setup_nonnuma(void)
815 {
816 unsigned long top_of_ram = memblock_end_of_DRAM();
817 unsigned long total_ram = memblock_phys_mem_size();
818 unsigned long start_pfn, end_pfn;
819 unsigned int nid = 0;
820 struct memblock_region *reg;
821
822 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
823 top_of_ram, total_ram);
824 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
825 (top_of_ram - total_ram) >> 20);
826
827 for_each_memblock(memory, reg) {
828 start_pfn = memblock_region_memory_base_pfn(reg);
829 end_pfn = memblock_region_memory_end_pfn(reg);
830
831 fake_numa_create_new_node(end_pfn, &nid);
832 memblock_set_node(PFN_PHYS(start_pfn),
833 PFN_PHYS(end_pfn - start_pfn),
834 &memblock.memory, nid);
835 node_set_online(nid);
836 }
837 }
838
839 void __init dump_numa_cpu_topology(void)
840 {
841 unsigned int node;
842 unsigned int cpu, count;
843
844 if (min_common_depth == -1 || !numa_enabled)
845 return;
846
847 for_each_online_node(node) {
848 pr_info("Node %d CPUs:", node);
849
850 count = 0;
851 /*
852 * If we used a CPU iterator here we would miss printing
853 * the holes in the cpumap.
854 */
855 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
856 if (cpumask_test_cpu(cpu,
857 node_to_cpumask_map[node])) {
858 if (count == 0)
859 pr_cont(" %u", cpu);
860 ++count;
861 } else {
862 if (count > 1)
863 pr_cont("-%u", cpu - 1);
864 count = 0;
865 }
866 }
867
868 if (count > 1)
869 pr_cont("-%u", nr_cpu_ids - 1);
870 pr_cont("\n");
871 }
872 }
873
874 /* Initialize NODE_DATA for a node on the local memory */
875 static void __init setup_node_data(int nid, u64 start_pfn, u64 end_pfn)
876 {
877 u64 spanned_pages = end_pfn - start_pfn;
878 const size_t nd_size = roundup(sizeof(pg_data_t), SMP_CACHE_BYTES);
879 u64 nd_pa;
880 void *nd;
881 int tnid;
882
883 if (spanned_pages)
884 pr_info("Initmem setup node %d [mem %#010Lx-%#010Lx]\n",
885 nid, start_pfn << PAGE_SHIFT,
886 (end_pfn << PAGE_SHIFT) - 1);
887 else
888 pr_info("Initmem setup node %d\n", nid);
889
890 nd_pa = memblock_alloc_try_nid(nd_size, SMP_CACHE_BYTES, nid);
891 nd = __va(nd_pa);
892
893 /* report and initialize */
894 pr_info(" NODE_DATA [mem %#010Lx-%#010Lx]\n",
895 nd_pa, nd_pa + nd_size - 1);
896 tnid = early_pfn_to_nid(nd_pa >> PAGE_SHIFT);
897 if (tnid != nid)
898 pr_info(" NODE_DATA(%d) on node %d\n", nid, tnid);
899
900 node_data[nid] = nd;
901 memset(NODE_DATA(nid), 0, sizeof(pg_data_t));
902 NODE_DATA(nid)->node_id = nid;
903 NODE_DATA(nid)->node_start_pfn = start_pfn;
904 NODE_DATA(nid)->node_spanned_pages = spanned_pages;
905 }
906
907 void __init initmem_init(void)
908 {
909 int nid, cpu;
910
911 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
912 max_pfn = max_low_pfn;
913
914 if (parse_numa_properties())
915 setup_nonnuma();
916
917 memblock_dump_all();
918
919 /*
920 * Reduce the possible NUMA nodes to the online NUMA nodes,
921 * since we do not support node hotplug. This ensures that we
922 * lower the maximum NUMA node ID to what is actually present.
923 */
924 nodes_and(node_possible_map, node_possible_map, node_online_map);
925
926 for_each_online_node(nid) {
927 unsigned long start_pfn, end_pfn;
928
929 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
930 setup_node_data(nid, start_pfn, end_pfn);
931 sparse_memory_present_with_active_regions(nid);
932 }
933
934 sparse_init();
935
936 setup_node_to_cpumask_map();
937
938 reset_numa_cpu_lookup_table();
939
940 /*
941 * We need the numa_cpu_lookup_table to be accurate for all CPUs,
942 * even before we online them, so that we can use cpu_to_{node,mem}
943 * early in boot, cf. smp_prepare_cpus().
944 * _nocalls() + manual invocation is used because cpuhp is not yet
945 * initialized for the boot CPU.
946 */
947 cpuhp_setup_state_nocalls(CPUHP_POWER_NUMA_PREPARE, "POWER_NUMA_PREPARE",
948 ppc_numa_cpu_prepare, ppc_numa_cpu_dead);
949 for_each_present_cpu(cpu)
950 numa_setup_cpu(cpu);
951 }
952
953 static int __init early_numa(char *p)
954 {
955 if (!p)
956 return 0;
957
958 if (strstr(p, "off"))
959 numa_enabled = 0;
960
961 if (strstr(p, "debug"))
962 numa_debug = 1;
963
964 p = strstr(p, "fake=");
965 if (p)
966 cmdline = p + strlen("fake=");
967
968 return 0;
969 }
970 early_param("numa", early_numa);
971
972 static bool topology_updates_enabled = true;
973
974 static int __init early_topology_updates(char *p)
975 {
976 if (!p)
977 return 0;
978
979 if (!strcmp(p, "off")) {
980 pr_info("Disabling topology updates\n");
981 topology_updates_enabled = false;
982 }
983
984 return 0;
985 }
986 early_param("topology_updates", early_topology_updates);
987
988 #ifdef CONFIG_MEMORY_HOTPLUG
989 /*
990 * Find the node associated with a hot added memory section for
991 * memory represented in the device tree by the property
992 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
993 */
994 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
995 unsigned long scn_addr)
996 {
997 const __be32 *dm;
998 unsigned int drconf_cell_cnt, rc;
999 unsigned long lmb_size;
1000 struct assoc_arrays aa;
1001 int nid = -1;
1002
1003 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1004 if (!drconf_cell_cnt)
1005 return -1;
1006
1007 lmb_size = of_get_lmb_size(memory);
1008 if (!lmb_size)
1009 return -1;
1010
1011 rc = of_get_assoc_arrays(memory, &aa);
1012 if (rc)
1013 return -1;
1014
1015 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1016 struct of_drconf_cell drmem;
1017
1018 read_drconf_cell(&drmem, &dm);
1019
1020 /* skip this block if it is reserved or not assigned to
1021 * this partition */
1022 if ((drmem.flags & DRCONF_MEM_RESERVED)
1023 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1024 continue;
1025
1026 if ((scn_addr < drmem.base_addr)
1027 || (scn_addr >= (drmem.base_addr + lmb_size)))
1028 continue;
1029
1030 nid = of_drconf_to_nid_single(&drmem, &aa);
1031 break;
1032 }
1033
1034 return nid;
1035 }
1036
1037 /*
1038 * Find the node associated with a hot added memory section for memory
1039 * represented in the device tree as a node (i.e. memory@XXXX) for
1040 * each memblock.
1041 */
1042 static int hot_add_node_scn_to_nid(unsigned long scn_addr)
1043 {
1044 struct device_node *memory;
1045 int nid = -1;
1046
1047 for_each_node_by_type(memory, "memory") {
1048 unsigned long start, size;
1049 int ranges;
1050 const __be32 *memcell_buf;
1051 unsigned int len;
1052
1053 memcell_buf = of_get_property(memory, "reg", &len);
1054 if (!memcell_buf || len <= 0)
1055 continue;
1056
1057 /* ranges in cell */
1058 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1059
1060 while (ranges--) {
1061 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1062 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1063
1064 if ((scn_addr < start) || (scn_addr >= (start + size)))
1065 continue;
1066
1067 nid = of_node_to_nid_single(memory);
1068 break;
1069 }
1070
1071 if (nid >= 0)
1072 break;
1073 }
1074
1075 of_node_put(memory);
1076
1077 return nid;
1078 }
1079
1080 /*
1081 * Find the node associated with a hot added memory section. Section
1082 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1083 * sections are fully contained within a single MEMBLOCK.
1084 */
1085 int hot_add_scn_to_nid(unsigned long scn_addr)
1086 {
1087 struct device_node *memory = NULL;
1088 int nid;
1089
1090 if (!numa_enabled || (min_common_depth < 0))
1091 return first_online_node;
1092
1093 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1094 if (memory) {
1095 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1096 of_node_put(memory);
1097 } else {
1098 nid = hot_add_node_scn_to_nid(scn_addr);
1099 }
1100
1101 if (nid < 0 || !node_online(nid))
1102 nid = first_online_node;
1103
1104 return nid;
1105 }
1106
1107 static u64 hot_add_drconf_memory_max(void)
1108 {
1109 struct device_node *memory = NULL;
1110 struct device_node *dn = NULL;
1111 unsigned int drconf_cell_cnt = 0;
1112 u64 lmb_size = 0;
1113 const __be32 *dm = NULL;
1114 const __be64 *lrdr = NULL;
1115 struct of_drconf_cell drmem;
1116
1117 dn = of_find_node_by_path("/rtas");
1118 if (dn) {
1119 lrdr = of_get_property(dn, "ibm,lrdr-capacity", NULL);
1120 of_node_put(dn);
1121 if (lrdr)
1122 return be64_to_cpup(lrdr);
1123 }
1124
1125 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1126 if (memory) {
1127 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1128 lmb_size = of_get_lmb_size(memory);
1129
1130 /* Advance to the last cell, each cell has 6 32 bit integers */
1131 dm += (drconf_cell_cnt - 1) * 6;
1132 read_drconf_cell(&drmem, &dm);
1133 of_node_put(memory);
1134 return drmem.base_addr + lmb_size;
1135 }
1136 return 0;
1137 }
1138
1139 /*
1140 * memory_hotplug_max - return max address of memory that may be added
1141 *
1142 * This is currently only used on systems that support drconfig memory
1143 * hotplug.
1144 */
1145 u64 memory_hotplug_max(void)
1146 {
1147 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1148 }
1149 #endif /* CONFIG_MEMORY_HOTPLUG */
1150
1151 /* Virtual Processor Home Node (VPHN) support */
1152 #ifdef CONFIG_PPC_SPLPAR
1153
1154 #include "vphn.h"
1155
1156 struct topology_update_data {
1157 struct topology_update_data *next;
1158 unsigned int cpu;
1159 int old_nid;
1160 int new_nid;
1161 };
1162
1163 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1164 static cpumask_t cpu_associativity_changes_mask;
1165 static int vphn_enabled;
1166 static int prrn_enabled;
1167 static void reset_topology_timer(void);
1168
1169 /*
1170 * Store the current values of the associativity change counters in the
1171 * hypervisor.
1172 */
1173 static void setup_cpu_associativity_change_counters(void)
1174 {
1175 int cpu;
1176
1177 /* The VPHN feature supports a maximum of 8 reference points */
1178 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1179
1180 for_each_possible_cpu(cpu) {
1181 int i;
1182 u8 *counts = vphn_cpu_change_counts[cpu];
1183 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1184
1185 for (i = 0; i < distance_ref_points_depth; i++)
1186 counts[i] = hypervisor_counts[i];
1187 }
1188 }
1189
1190 /*
1191 * The hypervisor maintains a set of 8 associativity change counters in
1192 * the VPA of each cpu that correspond to the associativity levels in the
1193 * ibm,associativity-reference-points property. When an associativity
1194 * level changes, the corresponding counter is incremented.
1195 *
1196 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1197 * node associativity levels have changed.
1198 *
1199 * Returns the number of cpus with unhandled associativity changes.
1200 */
1201 static int update_cpu_associativity_changes_mask(void)
1202 {
1203 int cpu;
1204 cpumask_t *changes = &cpu_associativity_changes_mask;
1205
1206 for_each_possible_cpu(cpu) {
1207 int i, changed = 0;
1208 u8 *counts = vphn_cpu_change_counts[cpu];
1209 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1210
1211 for (i = 0; i < distance_ref_points_depth; i++) {
1212 if (hypervisor_counts[i] != counts[i]) {
1213 counts[i] = hypervisor_counts[i];
1214 changed = 1;
1215 }
1216 }
1217 if (changed) {
1218 cpumask_or(changes, changes, cpu_sibling_mask(cpu));
1219 cpu = cpu_last_thread_sibling(cpu);
1220 }
1221 }
1222
1223 return cpumask_weight(changes);
1224 }
1225
1226 /*
1227 * Retrieve the new associativity information for a virtual processor's
1228 * home node.
1229 */
1230 static long hcall_vphn(unsigned long cpu, __be32 *associativity)
1231 {
1232 long rc;
1233 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1234 u64 flags = 1;
1235 int hwcpu = get_hard_smp_processor_id(cpu);
1236
1237 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1238 vphn_unpack_associativity(retbuf, associativity);
1239
1240 return rc;
1241 }
1242
1243 static long vphn_get_associativity(unsigned long cpu,
1244 __be32 *associativity)
1245 {
1246 long rc;
1247
1248 rc = hcall_vphn(cpu, associativity);
1249
1250 switch (rc) {
1251 case H_FUNCTION:
1252 printk(KERN_INFO
1253 "VPHN is not supported. Disabling polling...\n");
1254 stop_topology_update();
1255 break;
1256 case H_HARDWARE:
1257 printk(KERN_ERR
1258 "hcall_vphn() experienced a hardware fault "
1259 "preventing VPHN. Disabling polling...\n");
1260 stop_topology_update();
1261 }
1262
1263 return rc;
1264 }
1265
1266 /*
1267 * Update the CPU maps and sysfs entries for a single CPU when its NUMA
1268 * characteristics change. This function doesn't perform any locking and is
1269 * only safe to call from stop_machine().
1270 */
1271 static int update_cpu_topology(void *data)
1272 {
1273 struct topology_update_data *update;
1274 unsigned long cpu;
1275
1276 if (!data)
1277 return -EINVAL;
1278
1279 cpu = smp_processor_id();
1280
1281 for (update = data; update; update = update->next) {
1282 int new_nid = update->new_nid;
1283 if (cpu != update->cpu)
1284 continue;
1285
1286 unmap_cpu_from_node(cpu);
1287 map_cpu_to_node(cpu, new_nid);
1288 set_cpu_numa_node(cpu, new_nid);
1289 set_cpu_numa_mem(cpu, local_memory_node(new_nid));
1290 vdso_getcpu_init();
1291 }
1292
1293 return 0;
1294 }
1295
1296 static int update_lookup_table(void *data)
1297 {
1298 struct topology_update_data *update;
1299
1300 if (!data)
1301 return -EINVAL;
1302
1303 /*
1304 * Upon topology update, the numa-cpu lookup table needs to be updated
1305 * for all threads in the core, including offline CPUs, to ensure that
1306 * future hotplug operations respect the cpu-to-node associativity
1307 * properly.
1308 */
1309 for (update = data; update; update = update->next) {
1310 int nid, base, j;
1311
1312 nid = update->new_nid;
1313 base = cpu_first_thread_sibling(update->cpu);
1314
1315 for (j = 0; j < threads_per_core; j++) {
1316 update_numa_cpu_lookup_table(base + j, nid);
1317 }
1318 }
1319
1320 return 0;
1321 }
1322
1323 /*
1324 * Update the node maps and sysfs entries for each cpu whose home node
1325 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1326 */
1327 int arch_update_cpu_topology(void)
1328 {
1329 unsigned int cpu, sibling, changed = 0;
1330 struct topology_update_data *updates, *ud;
1331 __be32 associativity[VPHN_ASSOC_BUFSIZE] = {0};
1332 cpumask_t updated_cpus;
1333 struct device *dev;
1334 int weight, new_nid, i = 0;
1335
1336 if (!prrn_enabled && !vphn_enabled)
1337 return 0;
1338
1339 weight = cpumask_weight(&cpu_associativity_changes_mask);
1340 if (!weight)
1341 return 0;
1342
1343 updates = kzalloc(weight * (sizeof(*updates)), GFP_KERNEL);
1344 if (!updates)
1345 return 0;
1346
1347 cpumask_clear(&updated_cpus);
1348
1349 for_each_cpu(cpu, &cpu_associativity_changes_mask) {
1350 /*
1351 * If siblings aren't flagged for changes, updates list
1352 * will be too short. Skip on this update and set for next
1353 * update.
1354 */
1355 if (!cpumask_subset(cpu_sibling_mask(cpu),
1356 &cpu_associativity_changes_mask)) {
1357 pr_info("Sibling bits not set for associativity "
1358 "change, cpu%d\n", cpu);
1359 cpumask_or(&cpu_associativity_changes_mask,
1360 &cpu_associativity_changes_mask,
1361 cpu_sibling_mask(cpu));
1362 cpu = cpu_last_thread_sibling(cpu);
1363 continue;
1364 }
1365
1366 /* Use associativity from first thread for all siblings */
1367 vphn_get_associativity(cpu, associativity);
1368 new_nid = associativity_to_nid(associativity);
1369 if (new_nid < 0 || !node_online(new_nid))
1370 new_nid = first_online_node;
1371
1372 if (new_nid == numa_cpu_lookup_table[cpu]) {
1373 cpumask_andnot(&cpu_associativity_changes_mask,
1374 &cpu_associativity_changes_mask,
1375 cpu_sibling_mask(cpu));
1376 cpu = cpu_last_thread_sibling(cpu);
1377 continue;
1378 }
1379
1380 for_each_cpu(sibling, cpu_sibling_mask(cpu)) {
1381 ud = &updates[i++];
1382 ud->cpu = sibling;
1383 ud->new_nid = new_nid;
1384 ud->old_nid = numa_cpu_lookup_table[sibling];
1385 cpumask_set_cpu(sibling, &updated_cpus);
1386 if (i < weight)
1387 ud->next = &updates[i];
1388 }
1389 cpu = cpu_last_thread_sibling(cpu);
1390 }
1391
1392 pr_debug("Topology update for the following CPUs:\n");
1393 if (cpumask_weight(&updated_cpus)) {
1394 for (ud = &updates[0]; ud; ud = ud->next) {
1395 pr_debug("cpu %d moving from node %d "
1396 "to %d\n", ud->cpu,
1397 ud->old_nid, ud->new_nid);
1398 }
1399 }
1400
1401 /*
1402 * In cases where we have nothing to update (because the updates list
1403 * is too short or because the new topology is same as the old one),
1404 * skip invoking update_cpu_topology() via stop-machine(). This is
1405 * necessary (and not just a fast-path optimization) since stop-machine
1406 * can end up electing a random CPU to run update_cpu_topology(), and
1407 * thus trick us into setting up incorrect cpu-node mappings (since
1408 * 'updates' is kzalloc()'ed).
1409 *
1410 * And for the similar reason, we will skip all the following updating.
1411 */
1412 if (!cpumask_weight(&updated_cpus))
1413 goto out;
1414
1415 stop_machine(update_cpu_topology, &updates[0], &updated_cpus);
1416
1417 /*
1418 * Update the numa-cpu lookup table with the new mappings, even for
1419 * offline CPUs. It is best to perform this update from the stop-
1420 * machine context.
1421 */
1422 stop_machine(update_lookup_table, &updates[0],
1423 cpumask_of(raw_smp_processor_id()));
1424
1425 for (ud = &updates[0]; ud; ud = ud->next) {
1426 unregister_cpu_under_node(ud->cpu, ud->old_nid);
1427 register_cpu_under_node(ud->cpu, ud->new_nid);
1428
1429 dev = get_cpu_device(ud->cpu);
1430 if (dev)
1431 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1432 cpumask_clear_cpu(ud->cpu, &cpu_associativity_changes_mask);
1433 changed = 1;
1434 }
1435
1436 out:
1437 kfree(updates);
1438 return changed;
1439 }
1440
1441 static void topology_work_fn(struct work_struct *work)
1442 {
1443 rebuild_sched_domains();
1444 }
1445 static DECLARE_WORK(topology_work, topology_work_fn);
1446
1447 static void topology_schedule_update(void)
1448 {
1449 schedule_work(&topology_work);
1450 }
1451
1452 static void topology_timer_fn(unsigned long ignored)
1453 {
1454 if (prrn_enabled && cpumask_weight(&cpu_associativity_changes_mask))
1455 topology_schedule_update();
1456 else if (vphn_enabled) {
1457 if (update_cpu_associativity_changes_mask() > 0)
1458 topology_schedule_update();
1459 reset_topology_timer();
1460 }
1461 }
1462 static struct timer_list topology_timer =
1463 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1464
1465 static void reset_topology_timer(void)
1466 {
1467 topology_timer.data = 0;
1468 topology_timer.expires = jiffies + 60 * HZ;
1469 mod_timer(&topology_timer, topology_timer.expires);
1470 }
1471
1472 #ifdef CONFIG_SMP
1473
1474 static void stage_topology_update(int core_id)
1475 {
1476 cpumask_or(&cpu_associativity_changes_mask,
1477 &cpu_associativity_changes_mask, cpu_sibling_mask(core_id));
1478 reset_topology_timer();
1479 }
1480
1481 static int dt_update_callback(struct notifier_block *nb,
1482 unsigned long action, void *data)
1483 {
1484 struct of_reconfig_data *update = data;
1485 int rc = NOTIFY_DONE;
1486
1487 switch (action) {
1488 case OF_RECONFIG_UPDATE_PROPERTY:
1489 if (!of_prop_cmp(update->dn->type, "cpu") &&
1490 !of_prop_cmp(update->prop->name, "ibm,associativity")) {
1491 u32 core_id;
1492 of_property_read_u32(update->dn, "reg", &core_id);
1493 stage_topology_update(core_id);
1494 rc = NOTIFY_OK;
1495 }
1496 break;
1497 }
1498
1499 return rc;
1500 }
1501
1502 static struct notifier_block dt_update_nb = {
1503 .notifier_call = dt_update_callback,
1504 };
1505
1506 #endif
1507
1508 /*
1509 * Start polling for associativity changes.
1510 */
1511 int start_topology_update(void)
1512 {
1513 int rc = 0;
1514
1515 if (firmware_has_feature(FW_FEATURE_PRRN)) {
1516 if (!prrn_enabled) {
1517 prrn_enabled = 1;
1518 vphn_enabled = 0;
1519 #ifdef CONFIG_SMP
1520 rc = of_reconfig_notifier_register(&dt_update_nb);
1521 #endif
1522 }
1523 } else if (firmware_has_feature(FW_FEATURE_VPHN) &&
1524 lppaca_shared_proc(get_lppaca())) {
1525 if (!vphn_enabled) {
1526 prrn_enabled = 0;
1527 vphn_enabled = 1;
1528 setup_cpu_associativity_change_counters();
1529 init_timer_deferrable(&topology_timer);
1530 reset_topology_timer();
1531 }
1532 }
1533
1534 return rc;
1535 }
1536
1537 /*
1538 * Disable polling for VPHN associativity changes.
1539 */
1540 int stop_topology_update(void)
1541 {
1542 int rc = 0;
1543
1544 if (prrn_enabled) {
1545 prrn_enabled = 0;
1546 #ifdef CONFIG_SMP
1547 rc = of_reconfig_notifier_unregister(&dt_update_nb);
1548 #endif
1549 } else if (vphn_enabled) {
1550 vphn_enabled = 0;
1551 rc = del_timer_sync(&topology_timer);
1552 }
1553
1554 return rc;
1555 }
1556
1557 int prrn_is_enabled(void)
1558 {
1559 return prrn_enabled;
1560 }
1561
1562 static int topology_read(struct seq_file *file, void *v)
1563 {
1564 if (vphn_enabled || prrn_enabled)
1565 seq_puts(file, "on\n");
1566 else
1567 seq_puts(file, "off\n");
1568
1569 return 0;
1570 }
1571
1572 static int topology_open(struct inode *inode, struct file *file)
1573 {
1574 return single_open(file, topology_read, NULL);
1575 }
1576
1577 static ssize_t topology_write(struct file *file, const char __user *buf,
1578 size_t count, loff_t *off)
1579 {
1580 char kbuf[4]; /* "on" or "off" plus null. */
1581 int read_len;
1582
1583 read_len = count < 3 ? count : 3;
1584 if (copy_from_user(kbuf, buf, read_len))
1585 return -EINVAL;
1586
1587 kbuf[read_len] = '\0';
1588
1589 if (!strncmp(kbuf, "on", 2))
1590 start_topology_update();
1591 else if (!strncmp(kbuf, "off", 3))
1592 stop_topology_update();
1593 else
1594 return -EINVAL;
1595
1596 return count;
1597 }
1598
1599 static const struct file_operations topology_ops = {
1600 .read = seq_read,
1601 .write = topology_write,
1602 .open = topology_open,
1603 .release = single_release
1604 };
1605
1606 static int topology_update_init(void)
1607 {
1608 /* Do not poll for changes if disabled at boot */
1609 if (topology_updates_enabled)
1610 start_topology_update();
1611
1612 if (!proc_create("powerpc/topology_updates", 0644, NULL, &topology_ops))
1613 return -ENOMEM;
1614
1615 return 0;
1616 }
1617 device_initcall(topology_update_init);
1618 #endif /* CONFIG_PPC_SPLPAR */