]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/mm/numa.c
[media] rc: Add support for decoding Sanyo protocol
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / mm / numa.c
1 /*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/memblock.h>
21 #include <linux/of.h>
22 #include <linux/pfn.h>
23 #include <linux/cpuset.h>
24 #include <linux/node.h>
25 #include <asm/sparsemem.h>
26 #include <asm/prom.h>
27 #include <asm/system.h>
28 #include <asm/smp.h>
29 #include <asm/firmware.h>
30 #include <asm/paca.h>
31 #include <asm/hvcall.h>
32
33 static int numa_enabled = 1;
34
35 static char *cmdline __initdata;
36
37 static int numa_debug;
38 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
39
40 int numa_cpu_lookup_table[NR_CPUS];
41 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
42 struct pglist_data *node_data[MAX_NUMNODES];
43
44 EXPORT_SYMBOL(numa_cpu_lookup_table);
45 EXPORT_SYMBOL(node_to_cpumask_map);
46 EXPORT_SYMBOL(node_data);
47
48 static int min_common_depth;
49 static int n_mem_addr_cells, n_mem_size_cells;
50 static int form1_affinity;
51
52 #define MAX_DISTANCE_REF_POINTS 4
53 static int distance_ref_points_depth;
54 static const unsigned int *distance_ref_points;
55 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
56
57 /*
58 * Allocate node_to_cpumask_map based on number of available nodes
59 * Requires node_possible_map to be valid.
60 *
61 * Note: node_to_cpumask() is not valid until after this is done.
62 */
63 static void __init setup_node_to_cpumask_map(void)
64 {
65 unsigned int node, num = 0;
66
67 /* setup nr_node_ids if not done yet */
68 if (nr_node_ids == MAX_NUMNODES) {
69 for_each_node_mask(node, node_possible_map)
70 num = node;
71 nr_node_ids = num + 1;
72 }
73
74 /* allocate the map */
75 for (node = 0; node < nr_node_ids; node++)
76 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
77
78 /* cpumask_of_node() will now work */
79 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
80 }
81
82 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
83 unsigned int *nid)
84 {
85 unsigned long long mem;
86 char *p = cmdline;
87 static unsigned int fake_nid;
88 static unsigned long long curr_boundary;
89
90 /*
91 * Modify node id, iff we started creating NUMA nodes
92 * We want to continue from where we left of the last time
93 */
94 if (fake_nid)
95 *nid = fake_nid;
96 /*
97 * In case there are no more arguments to parse, the
98 * node_id should be the same as the last fake node id
99 * (we've handled this above).
100 */
101 if (!p)
102 return 0;
103
104 mem = memparse(p, &p);
105 if (!mem)
106 return 0;
107
108 if (mem < curr_boundary)
109 return 0;
110
111 curr_boundary = mem;
112
113 if ((end_pfn << PAGE_SHIFT) > mem) {
114 /*
115 * Skip commas and spaces
116 */
117 while (*p == ',' || *p == ' ' || *p == '\t')
118 p++;
119
120 cmdline = p;
121 fake_nid++;
122 *nid = fake_nid;
123 dbg("created new fake_node with id %d\n", fake_nid);
124 return 1;
125 }
126 return 0;
127 }
128
129 /*
130 * get_active_region_work_fn - A helper function for get_node_active_region
131 * Returns datax set to the start_pfn and end_pfn if they contain
132 * the initial value of datax->start_pfn between them
133 * @start_pfn: start page(inclusive) of region to check
134 * @end_pfn: end page(exclusive) of region to check
135 * @datax: comes in with ->start_pfn set to value to search for and
136 * goes out with active range if it contains it
137 * Returns 1 if search value is in range else 0
138 */
139 static int __init get_active_region_work_fn(unsigned long start_pfn,
140 unsigned long end_pfn, void *datax)
141 {
142 struct node_active_region *data;
143 data = (struct node_active_region *)datax;
144
145 if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
146 data->start_pfn = start_pfn;
147 data->end_pfn = end_pfn;
148 return 1;
149 }
150 return 0;
151
152 }
153
154 /*
155 * get_node_active_region - Return active region containing start_pfn
156 * Active range returned is empty if none found.
157 * @start_pfn: The page to return the region for.
158 * @node_ar: Returned set to the active region containing start_pfn
159 */
160 static void __init get_node_active_region(unsigned long start_pfn,
161 struct node_active_region *node_ar)
162 {
163 int nid = early_pfn_to_nid(start_pfn);
164
165 node_ar->nid = nid;
166 node_ar->start_pfn = start_pfn;
167 node_ar->end_pfn = start_pfn;
168 work_with_active_regions(nid, get_active_region_work_fn, node_ar);
169 }
170
171 static void map_cpu_to_node(int cpu, int node)
172 {
173 numa_cpu_lookup_table[cpu] = node;
174
175 dbg("adding cpu %d to node %d\n", cpu, node);
176
177 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
178 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
179 }
180
181 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
182 static void unmap_cpu_from_node(unsigned long cpu)
183 {
184 int node = numa_cpu_lookup_table[cpu];
185
186 dbg("removing cpu %lu from node %d\n", cpu, node);
187
188 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
189 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
190 } else {
191 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
192 cpu, node);
193 }
194 }
195 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
196
197 /* must hold reference to node during call */
198 static const int *of_get_associativity(struct device_node *dev)
199 {
200 return of_get_property(dev, "ibm,associativity", NULL);
201 }
202
203 /*
204 * Returns the property linux,drconf-usable-memory if
205 * it exists (the property exists only in kexec/kdump kernels,
206 * added by kexec-tools)
207 */
208 static const u32 *of_get_usable_memory(struct device_node *memory)
209 {
210 const u32 *prop;
211 u32 len;
212 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
213 if (!prop || len < sizeof(unsigned int))
214 return 0;
215 return prop;
216 }
217
218 int __node_distance(int a, int b)
219 {
220 int i;
221 int distance = LOCAL_DISTANCE;
222
223 if (!form1_affinity)
224 return distance;
225
226 for (i = 0; i < distance_ref_points_depth; i++) {
227 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
228 break;
229
230 /* Double the distance for each NUMA level */
231 distance *= 2;
232 }
233
234 return distance;
235 }
236
237 static void initialize_distance_lookup_table(int nid,
238 const unsigned int *associativity)
239 {
240 int i;
241
242 if (!form1_affinity)
243 return;
244
245 for (i = 0; i < distance_ref_points_depth; i++) {
246 distance_lookup_table[nid][i] =
247 associativity[distance_ref_points[i]];
248 }
249 }
250
251 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
252 * info is found.
253 */
254 static int associativity_to_nid(const unsigned int *associativity)
255 {
256 int nid = -1;
257
258 if (min_common_depth == -1)
259 goto out;
260
261 if (associativity[0] >= min_common_depth)
262 nid = associativity[min_common_depth];
263
264 /* POWER4 LPAR uses 0xffff as invalid node */
265 if (nid == 0xffff || nid >= MAX_NUMNODES)
266 nid = -1;
267
268 if (nid > 0 && associativity[0] >= distance_ref_points_depth)
269 initialize_distance_lookup_table(nid, associativity);
270
271 out:
272 return nid;
273 }
274
275 /* Returns the nid associated with the given device tree node,
276 * or -1 if not found.
277 */
278 static int of_node_to_nid_single(struct device_node *device)
279 {
280 int nid = -1;
281 const unsigned int *tmp;
282
283 tmp = of_get_associativity(device);
284 if (tmp)
285 nid = associativity_to_nid(tmp);
286 return nid;
287 }
288
289 /* Walk the device tree upwards, looking for an associativity id */
290 int of_node_to_nid(struct device_node *device)
291 {
292 struct device_node *tmp;
293 int nid = -1;
294
295 of_node_get(device);
296 while (device) {
297 nid = of_node_to_nid_single(device);
298 if (nid != -1)
299 break;
300
301 tmp = device;
302 device = of_get_parent(tmp);
303 of_node_put(tmp);
304 }
305 of_node_put(device);
306
307 return nid;
308 }
309 EXPORT_SYMBOL_GPL(of_node_to_nid);
310
311 static int __init find_min_common_depth(void)
312 {
313 int depth;
314 struct device_node *chosen;
315 struct device_node *root;
316 const char *vec5;
317
318 root = of_find_node_by_path("/rtas");
319 if (!root)
320 root = of_find_node_by_path("/");
321
322 /*
323 * This property is a set of 32-bit integers, each representing
324 * an index into the ibm,associativity nodes.
325 *
326 * With form 0 affinity the first integer is for an SMP configuration
327 * (should be all 0's) and the second is for a normal NUMA
328 * configuration. We have only one level of NUMA.
329 *
330 * With form 1 affinity the first integer is the most significant
331 * NUMA boundary and the following are progressively less significant
332 * boundaries. There can be more than one level of NUMA.
333 */
334 distance_ref_points = of_get_property(root,
335 "ibm,associativity-reference-points",
336 &distance_ref_points_depth);
337
338 if (!distance_ref_points) {
339 dbg("NUMA: ibm,associativity-reference-points not found.\n");
340 goto err;
341 }
342
343 distance_ref_points_depth /= sizeof(int);
344
345 #define VEC5_AFFINITY_BYTE 5
346 #define VEC5_AFFINITY 0x80
347 chosen = of_find_node_by_path("/chosen");
348 if (chosen) {
349 vec5 = of_get_property(chosen, "ibm,architecture-vec-5", NULL);
350 if (vec5 && (vec5[VEC5_AFFINITY_BYTE] & VEC5_AFFINITY)) {
351 dbg("Using form 1 affinity\n");
352 form1_affinity = 1;
353 }
354 }
355
356 if (form1_affinity) {
357 depth = distance_ref_points[0];
358 } else {
359 if (distance_ref_points_depth < 2) {
360 printk(KERN_WARNING "NUMA: "
361 "short ibm,associativity-reference-points\n");
362 goto err;
363 }
364
365 depth = distance_ref_points[1];
366 }
367
368 /*
369 * Warn and cap if the hardware supports more than
370 * MAX_DISTANCE_REF_POINTS domains.
371 */
372 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
373 printk(KERN_WARNING "NUMA: distance array capped at "
374 "%d entries\n", MAX_DISTANCE_REF_POINTS);
375 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
376 }
377
378 of_node_put(root);
379 return depth;
380
381 err:
382 of_node_put(root);
383 return -1;
384 }
385
386 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
387 {
388 struct device_node *memory = NULL;
389
390 memory = of_find_node_by_type(memory, "memory");
391 if (!memory)
392 panic("numa.c: No memory nodes found!");
393
394 *n_addr_cells = of_n_addr_cells(memory);
395 *n_size_cells = of_n_size_cells(memory);
396 of_node_put(memory);
397 }
398
399 static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
400 {
401 unsigned long result = 0;
402
403 while (n--) {
404 result = (result << 32) | **buf;
405 (*buf)++;
406 }
407 return result;
408 }
409
410 struct of_drconf_cell {
411 u64 base_addr;
412 u32 drc_index;
413 u32 reserved;
414 u32 aa_index;
415 u32 flags;
416 };
417
418 #define DRCONF_MEM_ASSIGNED 0x00000008
419 #define DRCONF_MEM_AI_INVALID 0x00000040
420 #define DRCONF_MEM_RESERVED 0x00000080
421
422 /*
423 * Read the next memblock list entry from the ibm,dynamic-memory property
424 * and return the information in the provided of_drconf_cell structure.
425 */
426 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
427 {
428 const u32 *cp;
429
430 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
431
432 cp = *cellp;
433 drmem->drc_index = cp[0];
434 drmem->reserved = cp[1];
435 drmem->aa_index = cp[2];
436 drmem->flags = cp[3];
437
438 *cellp = cp + 4;
439 }
440
441 /*
442 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
443 *
444 * The layout of the ibm,dynamic-memory property is a number N of memblock
445 * list entries followed by N memblock list entries. Each memblock list entry
446 * contains information as laid out in the of_drconf_cell struct above.
447 */
448 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
449 {
450 const u32 *prop;
451 u32 len, entries;
452
453 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
454 if (!prop || len < sizeof(unsigned int))
455 return 0;
456
457 entries = *prop++;
458
459 /* Now that we know the number of entries, revalidate the size
460 * of the property read in to ensure we have everything
461 */
462 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
463 return 0;
464
465 *dm = prop;
466 return entries;
467 }
468
469 /*
470 * Retrieve and validate the ibm,lmb-size property for drconf memory
471 * from the device tree.
472 */
473 static u64 of_get_lmb_size(struct device_node *memory)
474 {
475 const u32 *prop;
476 u32 len;
477
478 prop = of_get_property(memory, "ibm,lmb-size", &len);
479 if (!prop || len < sizeof(unsigned int))
480 return 0;
481
482 return read_n_cells(n_mem_size_cells, &prop);
483 }
484
485 struct assoc_arrays {
486 u32 n_arrays;
487 u32 array_sz;
488 const u32 *arrays;
489 };
490
491 /*
492 * Retrieve and validate the list of associativity arrays for drconf
493 * memory from the ibm,associativity-lookup-arrays property of the
494 * device tree..
495 *
496 * The layout of the ibm,associativity-lookup-arrays property is a number N
497 * indicating the number of associativity arrays, followed by a number M
498 * indicating the size of each associativity array, followed by a list
499 * of N associativity arrays.
500 */
501 static int of_get_assoc_arrays(struct device_node *memory,
502 struct assoc_arrays *aa)
503 {
504 const u32 *prop;
505 u32 len;
506
507 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
508 if (!prop || len < 2 * sizeof(unsigned int))
509 return -1;
510
511 aa->n_arrays = *prop++;
512 aa->array_sz = *prop++;
513
514 /* Now that we know the number of arrrays and size of each array,
515 * revalidate the size of the property read in.
516 */
517 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
518 return -1;
519
520 aa->arrays = prop;
521 return 0;
522 }
523
524 /*
525 * This is like of_node_to_nid_single() for memory represented in the
526 * ibm,dynamic-reconfiguration-memory node.
527 */
528 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
529 struct assoc_arrays *aa)
530 {
531 int default_nid = 0;
532 int nid = default_nid;
533 int index;
534
535 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
536 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
537 drmem->aa_index < aa->n_arrays) {
538 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
539 nid = aa->arrays[index];
540
541 if (nid == 0xffff || nid >= MAX_NUMNODES)
542 nid = default_nid;
543 }
544
545 return nid;
546 }
547
548 /*
549 * Figure out to which domain a cpu belongs and stick it there.
550 * Return the id of the domain used.
551 */
552 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
553 {
554 int nid = 0;
555 struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
556
557 if (!cpu) {
558 WARN_ON(1);
559 goto out;
560 }
561
562 nid = of_node_to_nid_single(cpu);
563
564 if (nid < 0 || !node_online(nid))
565 nid = first_online_node;
566 out:
567 map_cpu_to_node(lcpu, nid);
568
569 of_node_put(cpu);
570
571 return nid;
572 }
573
574 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
575 unsigned long action,
576 void *hcpu)
577 {
578 unsigned long lcpu = (unsigned long)hcpu;
579 int ret = NOTIFY_DONE;
580
581 switch (action) {
582 case CPU_UP_PREPARE:
583 case CPU_UP_PREPARE_FROZEN:
584 numa_setup_cpu(lcpu);
585 ret = NOTIFY_OK;
586 break;
587 #ifdef CONFIG_HOTPLUG_CPU
588 case CPU_DEAD:
589 case CPU_DEAD_FROZEN:
590 case CPU_UP_CANCELED:
591 case CPU_UP_CANCELED_FROZEN:
592 unmap_cpu_from_node(lcpu);
593 break;
594 ret = NOTIFY_OK;
595 #endif
596 }
597 return ret;
598 }
599
600 /*
601 * Check and possibly modify a memory region to enforce the memory limit.
602 *
603 * Returns the size the region should have to enforce the memory limit.
604 * This will either be the original value of size, a truncated value,
605 * or zero. If the returned value of size is 0 the region should be
606 * discarded as it lies wholly above the memory limit.
607 */
608 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
609 unsigned long size)
610 {
611 /*
612 * We use memblock_end_of_DRAM() in here instead of memory_limit because
613 * we've already adjusted it for the limit and it takes care of
614 * having memory holes below the limit. Also, in the case of
615 * iommu_is_off, memory_limit is not set but is implicitly enforced.
616 */
617
618 if (start + size <= memblock_end_of_DRAM())
619 return size;
620
621 if (start >= memblock_end_of_DRAM())
622 return 0;
623
624 return memblock_end_of_DRAM() - start;
625 }
626
627 /*
628 * Reads the counter for a given entry in
629 * linux,drconf-usable-memory property
630 */
631 static inline int __init read_usm_ranges(const u32 **usm)
632 {
633 /*
634 * For each lmb in ibm,dynamic-memory a corresponding
635 * entry in linux,drconf-usable-memory property contains
636 * a counter followed by that many (base, size) duple.
637 * read the counter from linux,drconf-usable-memory
638 */
639 return read_n_cells(n_mem_size_cells, usm);
640 }
641
642 /*
643 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
644 * node. This assumes n_mem_{addr,size}_cells have been set.
645 */
646 static void __init parse_drconf_memory(struct device_node *memory)
647 {
648 const u32 *dm, *usm;
649 unsigned int n, rc, ranges, is_kexec_kdump = 0;
650 unsigned long lmb_size, base, size, sz;
651 int nid;
652 struct assoc_arrays aa;
653
654 n = of_get_drconf_memory(memory, &dm);
655 if (!n)
656 return;
657
658 lmb_size = of_get_lmb_size(memory);
659 if (!lmb_size)
660 return;
661
662 rc = of_get_assoc_arrays(memory, &aa);
663 if (rc)
664 return;
665
666 /* check if this is a kexec/kdump kernel */
667 usm = of_get_usable_memory(memory);
668 if (usm != NULL)
669 is_kexec_kdump = 1;
670
671 for (; n != 0; --n) {
672 struct of_drconf_cell drmem;
673
674 read_drconf_cell(&drmem, &dm);
675
676 /* skip this block if the reserved bit is set in flags (0x80)
677 or if the block is not assigned to this partition (0x8) */
678 if ((drmem.flags & DRCONF_MEM_RESERVED)
679 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
680 continue;
681
682 base = drmem.base_addr;
683 size = lmb_size;
684 ranges = 1;
685
686 if (is_kexec_kdump) {
687 ranges = read_usm_ranges(&usm);
688 if (!ranges) /* there are no (base, size) duple */
689 continue;
690 }
691 do {
692 if (is_kexec_kdump) {
693 base = read_n_cells(n_mem_addr_cells, &usm);
694 size = read_n_cells(n_mem_size_cells, &usm);
695 }
696 nid = of_drconf_to_nid_single(&drmem, &aa);
697 fake_numa_create_new_node(
698 ((base + size) >> PAGE_SHIFT),
699 &nid);
700 node_set_online(nid);
701 sz = numa_enforce_memory_limit(base, size);
702 if (sz)
703 add_active_range(nid, base >> PAGE_SHIFT,
704 (base >> PAGE_SHIFT)
705 + (sz >> PAGE_SHIFT));
706 } while (--ranges);
707 }
708 }
709
710 static int __init parse_numa_properties(void)
711 {
712 struct device_node *cpu = NULL;
713 struct device_node *memory = NULL;
714 int default_nid = 0;
715 unsigned long i;
716
717 if (numa_enabled == 0) {
718 printk(KERN_WARNING "NUMA disabled by user\n");
719 return -1;
720 }
721
722 min_common_depth = find_min_common_depth();
723
724 if (min_common_depth < 0)
725 return min_common_depth;
726
727 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
728
729 /*
730 * Even though we connect cpus to numa domains later in SMP
731 * init, we need to know the node ids now. This is because
732 * each node to be onlined must have NODE_DATA etc backing it.
733 */
734 for_each_present_cpu(i) {
735 int nid;
736
737 cpu = of_get_cpu_node(i, NULL);
738 BUG_ON(!cpu);
739 nid = of_node_to_nid_single(cpu);
740 of_node_put(cpu);
741
742 /*
743 * Don't fall back to default_nid yet -- we will plug
744 * cpus into nodes once the memory scan has discovered
745 * the topology.
746 */
747 if (nid < 0)
748 continue;
749 node_set_online(nid);
750 }
751
752 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
753 memory = NULL;
754 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
755 unsigned long start;
756 unsigned long size;
757 int nid;
758 int ranges;
759 const unsigned int *memcell_buf;
760 unsigned int len;
761
762 memcell_buf = of_get_property(memory,
763 "linux,usable-memory", &len);
764 if (!memcell_buf || len <= 0)
765 memcell_buf = of_get_property(memory, "reg", &len);
766 if (!memcell_buf || len <= 0)
767 continue;
768
769 /* ranges in cell */
770 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
771 new_range:
772 /* these are order-sensitive, and modify the buffer pointer */
773 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
774 size = read_n_cells(n_mem_size_cells, &memcell_buf);
775
776 /*
777 * Assumption: either all memory nodes or none will
778 * have associativity properties. If none, then
779 * everything goes to default_nid.
780 */
781 nid = of_node_to_nid_single(memory);
782 if (nid < 0)
783 nid = default_nid;
784
785 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
786 node_set_online(nid);
787
788 if (!(size = numa_enforce_memory_limit(start, size))) {
789 if (--ranges)
790 goto new_range;
791 else
792 continue;
793 }
794
795 add_active_range(nid, start >> PAGE_SHIFT,
796 (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
797
798 if (--ranges)
799 goto new_range;
800 }
801
802 /*
803 * Now do the same thing for each MEMBLOCK listed in the ibm,dynamic-memory
804 * property in the ibm,dynamic-reconfiguration-memory node.
805 */
806 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
807 if (memory)
808 parse_drconf_memory(memory);
809
810 return 0;
811 }
812
813 static void __init setup_nonnuma(void)
814 {
815 unsigned long top_of_ram = memblock_end_of_DRAM();
816 unsigned long total_ram = memblock_phys_mem_size();
817 unsigned long start_pfn, end_pfn;
818 unsigned int nid = 0;
819 struct memblock_region *reg;
820
821 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
822 top_of_ram, total_ram);
823 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
824 (top_of_ram - total_ram) >> 20);
825
826 for_each_memblock(memory, reg) {
827 start_pfn = memblock_region_memory_base_pfn(reg);
828 end_pfn = memblock_region_memory_end_pfn(reg);
829
830 fake_numa_create_new_node(end_pfn, &nid);
831 add_active_range(nid, start_pfn, end_pfn);
832 node_set_online(nid);
833 }
834 }
835
836 void __init dump_numa_cpu_topology(void)
837 {
838 unsigned int node;
839 unsigned int cpu, count;
840
841 if (min_common_depth == -1 || !numa_enabled)
842 return;
843
844 for_each_online_node(node) {
845 printk(KERN_DEBUG "Node %d CPUs:", node);
846
847 count = 0;
848 /*
849 * If we used a CPU iterator here we would miss printing
850 * the holes in the cpumap.
851 */
852 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
853 if (cpumask_test_cpu(cpu,
854 node_to_cpumask_map[node])) {
855 if (count == 0)
856 printk(" %u", cpu);
857 ++count;
858 } else {
859 if (count > 1)
860 printk("-%u", cpu - 1);
861 count = 0;
862 }
863 }
864
865 if (count > 1)
866 printk("-%u", nr_cpu_ids - 1);
867 printk("\n");
868 }
869 }
870
871 static void __init dump_numa_memory_topology(void)
872 {
873 unsigned int node;
874 unsigned int count;
875
876 if (min_common_depth == -1 || !numa_enabled)
877 return;
878
879 for_each_online_node(node) {
880 unsigned long i;
881
882 printk(KERN_DEBUG "Node %d Memory:", node);
883
884 count = 0;
885
886 for (i = 0; i < memblock_end_of_DRAM();
887 i += (1 << SECTION_SIZE_BITS)) {
888 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
889 if (count == 0)
890 printk(" 0x%lx", i);
891 ++count;
892 } else {
893 if (count > 0)
894 printk("-0x%lx", i);
895 count = 0;
896 }
897 }
898
899 if (count > 0)
900 printk("-0x%lx", i);
901 printk("\n");
902 }
903 }
904
905 /*
906 * Allocate some memory, satisfying the memblock or bootmem allocator where
907 * required. nid is the preferred node and end is the physical address of
908 * the highest address in the node.
909 *
910 * Returns the virtual address of the memory.
911 */
912 static void __init *careful_zallocation(int nid, unsigned long size,
913 unsigned long align,
914 unsigned long end_pfn)
915 {
916 void *ret;
917 int new_nid;
918 unsigned long ret_paddr;
919
920 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
921
922 /* retry over all memory */
923 if (!ret_paddr)
924 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
925
926 if (!ret_paddr)
927 panic("numa.c: cannot allocate %lu bytes for node %d",
928 size, nid);
929
930 ret = __va(ret_paddr);
931
932 /*
933 * We initialize the nodes in numeric order: 0, 1, 2...
934 * and hand over control from the MEMBLOCK allocator to the
935 * bootmem allocator. If this function is called for
936 * node 5, then we know that all nodes <5 are using the
937 * bootmem allocator instead of the MEMBLOCK allocator.
938 *
939 * So, check the nid from which this allocation came
940 * and double check to see if we need to use bootmem
941 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
942 * since it would be useless.
943 */
944 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
945 if (new_nid < nid) {
946 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
947 size, align, 0);
948
949 dbg("alloc_bootmem %p %lx\n", ret, size);
950 }
951
952 memset(ret, 0, size);
953 return ret;
954 }
955
956 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
957 .notifier_call = cpu_numa_callback,
958 .priority = 1 /* Must run before sched domains notifier. */
959 };
960
961 static void mark_reserved_regions_for_nid(int nid)
962 {
963 struct pglist_data *node = NODE_DATA(nid);
964 struct memblock_region *reg;
965
966 for_each_memblock(reserved, reg) {
967 unsigned long physbase = reg->base;
968 unsigned long size = reg->size;
969 unsigned long start_pfn = physbase >> PAGE_SHIFT;
970 unsigned long end_pfn = PFN_UP(physbase + size);
971 struct node_active_region node_ar;
972 unsigned long node_end_pfn = node->node_start_pfn +
973 node->node_spanned_pages;
974
975 /*
976 * Check to make sure that this memblock.reserved area is
977 * within the bounds of the node that we care about.
978 * Checking the nid of the start and end points is not
979 * sufficient because the reserved area could span the
980 * entire node.
981 */
982 if (end_pfn <= node->node_start_pfn ||
983 start_pfn >= node_end_pfn)
984 continue;
985
986 get_node_active_region(start_pfn, &node_ar);
987 while (start_pfn < end_pfn &&
988 node_ar.start_pfn < node_ar.end_pfn) {
989 unsigned long reserve_size = size;
990 /*
991 * if reserved region extends past active region
992 * then trim size to active region
993 */
994 if (end_pfn > node_ar.end_pfn)
995 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
996 - physbase;
997 /*
998 * Only worry about *this* node, others may not
999 * yet have valid NODE_DATA().
1000 */
1001 if (node_ar.nid == nid) {
1002 dbg("reserve_bootmem %lx %lx nid=%d\n",
1003 physbase, reserve_size, node_ar.nid);
1004 reserve_bootmem_node(NODE_DATA(node_ar.nid),
1005 physbase, reserve_size,
1006 BOOTMEM_DEFAULT);
1007 }
1008 /*
1009 * if reserved region is contained in the active region
1010 * then done.
1011 */
1012 if (end_pfn <= node_ar.end_pfn)
1013 break;
1014
1015 /*
1016 * reserved region extends past the active region
1017 * get next active region that contains this
1018 * reserved region
1019 */
1020 start_pfn = node_ar.end_pfn;
1021 physbase = start_pfn << PAGE_SHIFT;
1022 size = size - reserve_size;
1023 get_node_active_region(start_pfn, &node_ar);
1024 }
1025 }
1026 }
1027
1028
1029 void __init do_init_bootmem(void)
1030 {
1031 int nid;
1032
1033 min_low_pfn = 0;
1034 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1035 max_pfn = max_low_pfn;
1036
1037 if (parse_numa_properties())
1038 setup_nonnuma();
1039 else
1040 dump_numa_memory_topology();
1041
1042 for_each_online_node(nid) {
1043 unsigned long start_pfn, end_pfn;
1044 void *bootmem_vaddr;
1045 unsigned long bootmap_pages;
1046
1047 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1048
1049 /*
1050 * Allocate the node structure node local if possible
1051 *
1052 * Be careful moving this around, as it relies on all
1053 * previous nodes' bootmem to be initialized and have
1054 * all reserved areas marked.
1055 */
1056 NODE_DATA(nid) = careful_zallocation(nid,
1057 sizeof(struct pglist_data),
1058 SMP_CACHE_BYTES, end_pfn);
1059
1060 dbg("node %d\n", nid);
1061 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1062
1063 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1064 NODE_DATA(nid)->node_start_pfn = start_pfn;
1065 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1066
1067 if (NODE_DATA(nid)->node_spanned_pages == 0)
1068 continue;
1069
1070 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1071 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1072
1073 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1074 bootmem_vaddr = careful_zallocation(nid,
1075 bootmap_pages << PAGE_SHIFT,
1076 PAGE_SIZE, end_pfn);
1077
1078 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1079
1080 init_bootmem_node(NODE_DATA(nid),
1081 __pa(bootmem_vaddr) >> PAGE_SHIFT,
1082 start_pfn, end_pfn);
1083
1084 free_bootmem_with_active_regions(nid, end_pfn);
1085 /*
1086 * Be very careful about moving this around. Future
1087 * calls to careful_zallocation() depend on this getting
1088 * done correctly.
1089 */
1090 mark_reserved_regions_for_nid(nid);
1091 sparse_memory_present_with_active_regions(nid);
1092 }
1093
1094 init_bootmem_done = 1;
1095
1096 /*
1097 * Now bootmem is initialised we can create the node to cpumask
1098 * lookup tables and setup the cpu callback to populate them.
1099 */
1100 setup_node_to_cpumask_map();
1101
1102 register_cpu_notifier(&ppc64_numa_nb);
1103 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1104 (void *)(unsigned long)boot_cpuid);
1105 }
1106
1107 void __init paging_init(void)
1108 {
1109 unsigned long max_zone_pfns[MAX_NR_ZONES];
1110 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1111 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1112 free_area_init_nodes(max_zone_pfns);
1113 }
1114
1115 static int __init early_numa(char *p)
1116 {
1117 if (!p)
1118 return 0;
1119
1120 if (strstr(p, "off"))
1121 numa_enabled = 0;
1122
1123 if (strstr(p, "debug"))
1124 numa_debug = 1;
1125
1126 p = strstr(p, "fake=");
1127 if (p)
1128 cmdline = p + strlen("fake=");
1129
1130 return 0;
1131 }
1132 early_param("numa", early_numa);
1133
1134 #ifdef CONFIG_MEMORY_HOTPLUG
1135 /*
1136 * Find the node associated with a hot added memory section for
1137 * memory represented in the device tree by the property
1138 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1139 */
1140 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1141 unsigned long scn_addr)
1142 {
1143 const u32 *dm;
1144 unsigned int drconf_cell_cnt, rc;
1145 unsigned long lmb_size;
1146 struct assoc_arrays aa;
1147 int nid = -1;
1148
1149 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1150 if (!drconf_cell_cnt)
1151 return -1;
1152
1153 lmb_size = of_get_lmb_size(memory);
1154 if (!lmb_size)
1155 return -1;
1156
1157 rc = of_get_assoc_arrays(memory, &aa);
1158 if (rc)
1159 return -1;
1160
1161 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1162 struct of_drconf_cell drmem;
1163
1164 read_drconf_cell(&drmem, &dm);
1165
1166 /* skip this block if it is reserved or not assigned to
1167 * this partition */
1168 if ((drmem.flags & DRCONF_MEM_RESERVED)
1169 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1170 continue;
1171
1172 if ((scn_addr < drmem.base_addr)
1173 || (scn_addr >= (drmem.base_addr + lmb_size)))
1174 continue;
1175
1176 nid = of_drconf_to_nid_single(&drmem, &aa);
1177 break;
1178 }
1179
1180 return nid;
1181 }
1182
1183 /*
1184 * Find the node associated with a hot added memory section for memory
1185 * represented in the device tree as a node (i.e. memory@XXXX) for
1186 * each memblock.
1187 */
1188 int hot_add_node_scn_to_nid(unsigned long scn_addr)
1189 {
1190 struct device_node *memory = NULL;
1191 int nid = -1;
1192
1193 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
1194 unsigned long start, size;
1195 int ranges;
1196 const unsigned int *memcell_buf;
1197 unsigned int len;
1198
1199 memcell_buf = of_get_property(memory, "reg", &len);
1200 if (!memcell_buf || len <= 0)
1201 continue;
1202
1203 /* ranges in cell */
1204 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1205
1206 while (ranges--) {
1207 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1208 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1209
1210 if ((scn_addr < start) || (scn_addr >= (start + size)))
1211 continue;
1212
1213 nid = of_node_to_nid_single(memory);
1214 break;
1215 }
1216
1217 of_node_put(memory);
1218 if (nid >= 0)
1219 break;
1220 }
1221
1222 return nid;
1223 }
1224
1225 /*
1226 * Find the node associated with a hot added memory section. Section
1227 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1228 * sections are fully contained within a single MEMBLOCK.
1229 */
1230 int hot_add_scn_to_nid(unsigned long scn_addr)
1231 {
1232 struct device_node *memory = NULL;
1233 int nid, found = 0;
1234
1235 if (!numa_enabled || (min_common_depth < 0))
1236 return first_online_node;
1237
1238 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1239 if (memory) {
1240 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1241 of_node_put(memory);
1242 } else {
1243 nid = hot_add_node_scn_to_nid(scn_addr);
1244 }
1245
1246 if (nid < 0 || !node_online(nid))
1247 nid = first_online_node;
1248
1249 if (NODE_DATA(nid)->node_spanned_pages)
1250 return nid;
1251
1252 for_each_online_node(nid) {
1253 if (NODE_DATA(nid)->node_spanned_pages) {
1254 found = 1;
1255 break;
1256 }
1257 }
1258
1259 BUG_ON(!found);
1260 return nid;
1261 }
1262
1263 static u64 hot_add_drconf_memory_max(void)
1264 {
1265 struct device_node *memory = NULL;
1266 unsigned int drconf_cell_cnt = 0;
1267 u64 lmb_size = 0;
1268 const u32 *dm = 0;
1269
1270 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1271 if (memory) {
1272 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1273 lmb_size = of_get_lmb_size(memory);
1274 of_node_put(memory);
1275 }
1276 return lmb_size * drconf_cell_cnt;
1277 }
1278
1279 /*
1280 * memory_hotplug_max - return max address of memory that may be added
1281 *
1282 * This is currently only used on systems that support drconfig memory
1283 * hotplug.
1284 */
1285 u64 memory_hotplug_max(void)
1286 {
1287 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1288 }
1289 #endif /* CONFIG_MEMORY_HOTPLUG */
1290
1291 /* Virtual Processor Home Node (VPHN) support */
1292 #ifdef CONFIG_PPC_SPLPAR
1293 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1294 static cpumask_t cpu_associativity_changes_mask;
1295 static int vphn_enabled;
1296 static void set_topology_timer(void);
1297
1298 /*
1299 * Store the current values of the associativity change counters in the
1300 * hypervisor.
1301 */
1302 static void setup_cpu_associativity_change_counters(void)
1303 {
1304 int cpu;
1305
1306 /* The VPHN feature supports a maximum of 8 reference points */
1307 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1308
1309 for_each_possible_cpu(cpu) {
1310 int i;
1311 u8 *counts = vphn_cpu_change_counts[cpu];
1312 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1313
1314 for (i = 0; i < distance_ref_points_depth; i++)
1315 counts[i] = hypervisor_counts[i];
1316 }
1317 }
1318
1319 /*
1320 * The hypervisor maintains a set of 8 associativity change counters in
1321 * the VPA of each cpu that correspond to the associativity levels in the
1322 * ibm,associativity-reference-points property. When an associativity
1323 * level changes, the corresponding counter is incremented.
1324 *
1325 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1326 * node associativity levels have changed.
1327 *
1328 * Returns the number of cpus with unhandled associativity changes.
1329 */
1330 static int update_cpu_associativity_changes_mask(void)
1331 {
1332 int cpu, nr_cpus = 0;
1333 cpumask_t *changes = &cpu_associativity_changes_mask;
1334
1335 cpumask_clear(changes);
1336
1337 for_each_possible_cpu(cpu) {
1338 int i, changed = 0;
1339 u8 *counts = vphn_cpu_change_counts[cpu];
1340 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1341
1342 for (i = 0; i < distance_ref_points_depth; i++) {
1343 if (hypervisor_counts[i] != counts[i]) {
1344 counts[i] = hypervisor_counts[i];
1345 changed = 1;
1346 }
1347 }
1348 if (changed) {
1349 cpumask_set_cpu(cpu, changes);
1350 nr_cpus++;
1351 }
1352 }
1353
1354 return nr_cpus;
1355 }
1356
1357 /*
1358 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1359 * the complete property we have to add the length in the first cell.
1360 */
1361 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1362
1363 /*
1364 * Convert the associativity domain numbers returned from the hypervisor
1365 * to the sequence they would appear in the ibm,associativity property.
1366 */
1367 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1368 {
1369 int i, nr_assoc_doms = 0;
1370 const u16 *field = (const u16*) packed;
1371
1372 #define VPHN_FIELD_UNUSED (0xffff)
1373 #define VPHN_FIELD_MSB (0x8000)
1374 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1375
1376 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1377 if (*field == VPHN_FIELD_UNUSED) {
1378 /* All significant fields processed, and remaining
1379 * fields contain the reserved value of all 1's.
1380 * Just store them.
1381 */
1382 unpacked[i] = *((u32*)field);
1383 field += 2;
1384 } else if (*field & VPHN_FIELD_MSB) {
1385 /* Data is in the lower 15 bits of this field */
1386 unpacked[i] = *field & VPHN_FIELD_MASK;
1387 field++;
1388 nr_assoc_doms++;
1389 } else {
1390 /* Data is in the lower 15 bits of this field
1391 * concatenated with the next 16 bit field
1392 */
1393 unpacked[i] = *((u32*)field);
1394 field += 2;
1395 nr_assoc_doms++;
1396 }
1397 }
1398
1399 /* The first cell contains the length of the property */
1400 unpacked[0] = nr_assoc_doms;
1401
1402 return nr_assoc_doms;
1403 }
1404
1405 /*
1406 * Retrieve the new associativity information for a virtual processor's
1407 * home node.
1408 */
1409 static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1410 {
1411 long rc;
1412 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1413 u64 flags = 1;
1414 int hwcpu = get_hard_smp_processor_id(cpu);
1415
1416 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1417 vphn_unpack_associativity(retbuf, associativity);
1418
1419 return rc;
1420 }
1421
1422 static long vphn_get_associativity(unsigned long cpu,
1423 unsigned int *associativity)
1424 {
1425 long rc;
1426
1427 rc = hcall_vphn(cpu, associativity);
1428
1429 switch (rc) {
1430 case H_FUNCTION:
1431 printk(KERN_INFO
1432 "VPHN is not supported. Disabling polling...\n");
1433 stop_topology_update();
1434 break;
1435 case H_HARDWARE:
1436 printk(KERN_ERR
1437 "hcall_vphn() experienced a hardware fault "
1438 "preventing VPHN. Disabling polling...\n");
1439 stop_topology_update();
1440 }
1441
1442 return rc;
1443 }
1444
1445 /*
1446 * Update the node maps and sysfs entries for each cpu whose home node
1447 * has changed.
1448 */
1449 int arch_update_cpu_topology(void)
1450 {
1451 int cpu, nid, old_nid;
1452 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1453 struct sys_device *sysdev;
1454
1455 for_each_cpu(cpu,&cpu_associativity_changes_mask) {
1456 vphn_get_associativity(cpu, associativity);
1457 nid = associativity_to_nid(associativity);
1458
1459 if (nid < 0 || !node_online(nid))
1460 nid = first_online_node;
1461
1462 old_nid = numa_cpu_lookup_table[cpu];
1463
1464 /* Disable hotplug while we update the cpu
1465 * masks and sysfs.
1466 */
1467 get_online_cpus();
1468 unregister_cpu_under_node(cpu, old_nid);
1469 unmap_cpu_from_node(cpu);
1470 map_cpu_to_node(cpu, nid);
1471 register_cpu_under_node(cpu, nid);
1472 put_online_cpus();
1473
1474 sysdev = get_cpu_sysdev(cpu);
1475 if (sysdev)
1476 kobject_uevent(&sysdev->kobj, KOBJ_CHANGE);
1477 }
1478
1479 return 1;
1480 }
1481
1482 static void topology_work_fn(struct work_struct *work)
1483 {
1484 rebuild_sched_domains();
1485 }
1486 static DECLARE_WORK(topology_work, topology_work_fn);
1487
1488 void topology_schedule_update(void)
1489 {
1490 schedule_work(&topology_work);
1491 }
1492
1493 static void topology_timer_fn(unsigned long ignored)
1494 {
1495 if (!vphn_enabled)
1496 return;
1497 if (update_cpu_associativity_changes_mask() > 0)
1498 topology_schedule_update();
1499 set_topology_timer();
1500 }
1501 static struct timer_list topology_timer =
1502 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1503
1504 static void set_topology_timer(void)
1505 {
1506 topology_timer.data = 0;
1507 topology_timer.expires = jiffies + 60 * HZ;
1508 add_timer(&topology_timer);
1509 }
1510
1511 /*
1512 * Start polling for VPHN associativity changes.
1513 */
1514 int start_topology_update(void)
1515 {
1516 int rc = 0;
1517
1518 /* Disabled until races with load balancing are fixed */
1519 if (0 && firmware_has_feature(FW_FEATURE_VPHN) &&
1520 get_lppaca()->shared_proc) {
1521 vphn_enabled = 1;
1522 setup_cpu_associativity_change_counters();
1523 init_timer_deferrable(&topology_timer);
1524 set_topology_timer();
1525 rc = 1;
1526 }
1527
1528 return rc;
1529 }
1530 __initcall(start_topology_update);
1531
1532 /*
1533 * Disable polling for VPHN associativity changes.
1534 */
1535 int stop_topology_update(void)
1536 {
1537 vphn_enabled = 0;
1538 return del_timer_sync(&topology_timer);
1539 }
1540 #endif /* CONFIG_PPC_SPLPAR */