]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/mm/numa.c
powerpc: fix numa distance for form0 device tree
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / mm / numa.c
1 /*
2 * pSeries NUMA support
3 *
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/export.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/memblock.h>
21 #include <linux/of.h>
22 #include <linux/pfn.h>
23 #include <linux/cpuset.h>
24 #include <linux/node.h>
25 #include <asm/sparsemem.h>
26 #include <asm/prom.h>
27 #include <asm/smp.h>
28 #include <asm/firmware.h>
29 #include <asm/paca.h>
30 #include <asm/hvcall.h>
31 #include <asm/setup.h>
32
33 static int numa_enabled = 1;
34
35 static char *cmdline __initdata;
36
37 static int numa_debug;
38 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
39
40 int numa_cpu_lookup_table[NR_CPUS];
41 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
42 struct pglist_data *node_data[MAX_NUMNODES];
43
44 EXPORT_SYMBOL(numa_cpu_lookup_table);
45 EXPORT_SYMBOL(node_to_cpumask_map);
46 EXPORT_SYMBOL(node_data);
47
48 static int min_common_depth;
49 static int n_mem_addr_cells, n_mem_size_cells;
50 static int form1_affinity;
51
52 #define MAX_DISTANCE_REF_POINTS 4
53 static int distance_ref_points_depth;
54 static const unsigned int *distance_ref_points;
55 static int distance_lookup_table[MAX_NUMNODES][MAX_DISTANCE_REF_POINTS];
56
57 /*
58 * Allocate node_to_cpumask_map based on number of available nodes
59 * Requires node_possible_map to be valid.
60 *
61 * Note: cpumask_of_node() is not valid until after this is done.
62 */
63 static void __init setup_node_to_cpumask_map(void)
64 {
65 unsigned int node, num = 0;
66
67 /* setup nr_node_ids if not done yet */
68 if (nr_node_ids == MAX_NUMNODES) {
69 for_each_node_mask(node, node_possible_map)
70 num = node;
71 nr_node_ids = num + 1;
72 }
73
74 /* allocate the map */
75 for (node = 0; node < nr_node_ids; node++)
76 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
77
78 /* cpumask_of_node() will now work */
79 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
80 }
81
82 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
83 unsigned int *nid)
84 {
85 unsigned long long mem;
86 char *p = cmdline;
87 static unsigned int fake_nid;
88 static unsigned long long curr_boundary;
89
90 /*
91 * Modify node id, iff we started creating NUMA nodes
92 * We want to continue from where we left of the last time
93 */
94 if (fake_nid)
95 *nid = fake_nid;
96 /*
97 * In case there are no more arguments to parse, the
98 * node_id should be the same as the last fake node id
99 * (we've handled this above).
100 */
101 if (!p)
102 return 0;
103
104 mem = memparse(p, &p);
105 if (!mem)
106 return 0;
107
108 if (mem < curr_boundary)
109 return 0;
110
111 curr_boundary = mem;
112
113 if ((end_pfn << PAGE_SHIFT) > mem) {
114 /*
115 * Skip commas and spaces
116 */
117 while (*p == ',' || *p == ' ' || *p == '\t')
118 p++;
119
120 cmdline = p;
121 fake_nid++;
122 *nid = fake_nid;
123 dbg("created new fake_node with id %d\n", fake_nid);
124 return 1;
125 }
126 return 0;
127 }
128
129 /*
130 * get_node_active_region - Return active region containing pfn
131 * Active range returned is empty if none found.
132 * @pfn: The page to return the region for
133 * @node_ar: Returned set to the active region containing @pfn
134 */
135 static void __init get_node_active_region(unsigned long pfn,
136 struct node_active_region *node_ar)
137 {
138 unsigned long start_pfn, end_pfn;
139 int i, nid;
140
141 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
142 if (pfn >= start_pfn && pfn < end_pfn) {
143 node_ar->nid = nid;
144 node_ar->start_pfn = start_pfn;
145 node_ar->end_pfn = end_pfn;
146 break;
147 }
148 }
149 }
150
151 static void map_cpu_to_node(int cpu, int node)
152 {
153 numa_cpu_lookup_table[cpu] = node;
154
155 dbg("adding cpu %d to node %d\n", cpu, node);
156
157 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
158 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
159 }
160
161 #if defined(CONFIG_HOTPLUG_CPU) || defined(CONFIG_PPC_SPLPAR)
162 static void unmap_cpu_from_node(unsigned long cpu)
163 {
164 int node = numa_cpu_lookup_table[cpu];
165
166 dbg("removing cpu %lu from node %d\n", cpu, node);
167
168 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
169 cpumask_clear_cpu(cpu, node_to_cpumask_map[node]);
170 } else {
171 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
172 cpu, node);
173 }
174 }
175 #endif /* CONFIG_HOTPLUG_CPU || CONFIG_PPC_SPLPAR */
176
177 /* must hold reference to node during call */
178 static const int *of_get_associativity(struct device_node *dev)
179 {
180 return of_get_property(dev, "ibm,associativity", NULL);
181 }
182
183 /*
184 * Returns the property linux,drconf-usable-memory if
185 * it exists (the property exists only in kexec/kdump kernels,
186 * added by kexec-tools)
187 */
188 static const u32 *of_get_usable_memory(struct device_node *memory)
189 {
190 const u32 *prop;
191 u32 len;
192 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
193 if (!prop || len < sizeof(unsigned int))
194 return 0;
195 return prop;
196 }
197
198 int __node_distance(int a, int b)
199 {
200 int i;
201 int distance = LOCAL_DISTANCE;
202
203 if (!form1_affinity)
204 return ((a == b) ? LOCAL_DISTANCE : REMOTE_DISTANCE);
205
206 for (i = 0; i < distance_ref_points_depth; i++) {
207 if (distance_lookup_table[a][i] == distance_lookup_table[b][i])
208 break;
209
210 /* Double the distance for each NUMA level */
211 distance *= 2;
212 }
213
214 return distance;
215 }
216
217 static void initialize_distance_lookup_table(int nid,
218 const unsigned int *associativity)
219 {
220 int i;
221
222 if (!form1_affinity)
223 return;
224
225 for (i = 0; i < distance_ref_points_depth; i++) {
226 distance_lookup_table[nid][i] =
227 associativity[distance_ref_points[i]];
228 }
229 }
230
231 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
232 * info is found.
233 */
234 static int associativity_to_nid(const unsigned int *associativity)
235 {
236 int nid = -1;
237
238 if (min_common_depth == -1)
239 goto out;
240
241 if (associativity[0] >= min_common_depth)
242 nid = associativity[min_common_depth];
243
244 /* POWER4 LPAR uses 0xffff as invalid node */
245 if (nid == 0xffff || nid >= MAX_NUMNODES)
246 nid = -1;
247
248 if (nid > 0 && associativity[0] >= distance_ref_points_depth)
249 initialize_distance_lookup_table(nid, associativity);
250
251 out:
252 return nid;
253 }
254
255 /* Returns the nid associated with the given device tree node,
256 * or -1 if not found.
257 */
258 static int of_node_to_nid_single(struct device_node *device)
259 {
260 int nid = -1;
261 const unsigned int *tmp;
262
263 tmp = of_get_associativity(device);
264 if (tmp)
265 nid = associativity_to_nid(tmp);
266 return nid;
267 }
268
269 /* Walk the device tree upwards, looking for an associativity id */
270 int of_node_to_nid(struct device_node *device)
271 {
272 struct device_node *tmp;
273 int nid = -1;
274
275 of_node_get(device);
276 while (device) {
277 nid = of_node_to_nid_single(device);
278 if (nid != -1)
279 break;
280
281 tmp = device;
282 device = of_get_parent(tmp);
283 of_node_put(tmp);
284 }
285 of_node_put(device);
286
287 return nid;
288 }
289 EXPORT_SYMBOL_GPL(of_node_to_nid);
290
291 static int __init find_min_common_depth(void)
292 {
293 int depth;
294 struct device_node *chosen;
295 struct device_node *root;
296 const char *vec5;
297
298 if (firmware_has_feature(FW_FEATURE_OPAL))
299 root = of_find_node_by_path("/ibm,opal");
300 else
301 root = of_find_node_by_path("/rtas");
302 if (!root)
303 root = of_find_node_by_path("/");
304
305 /*
306 * This property is a set of 32-bit integers, each representing
307 * an index into the ibm,associativity nodes.
308 *
309 * With form 0 affinity the first integer is for an SMP configuration
310 * (should be all 0's) and the second is for a normal NUMA
311 * configuration. We have only one level of NUMA.
312 *
313 * With form 1 affinity the first integer is the most significant
314 * NUMA boundary and the following are progressively less significant
315 * boundaries. There can be more than one level of NUMA.
316 */
317 distance_ref_points = of_get_property(root,
318 "ibm,associativity-reference-points",
319 &distance_ref_points_depth);
320
321 if (!distance_ref_points) {
322 dbg("NUMA: ibm,associativity-reference-points not found.\n");
323 goto err;
324 }
325
326 distance_ref_points_depth /= sizeof(int);
327
328 #define VEC5_AFFINITY_BYTE 5
329 #define VEC5_AFFINITY 0x80
330
331 if (firmware_has_feature(FW_FEATURE_OPAL))
332 form1_affinity = 1;
333 else {
334 chosen = of_find_node_by_path("/chosen");
335 if (chosen) {
336 vec5 = of_get_property(chosen,
337 "ibm,architecture-vec-5", NULL);
338 if (vec5 && (vec5[VEC5_AFFINITY_BYTE] &
339 VEC5_AFFINITY)) {
340 dbg("Using form 1 affinity\n");
341 form1_affinity = 1;
342 }
343
344 of_node_put(chosen);
345 }
346 }
347
348 if (form1_affinity) {
349 depth = distance_ref_points[0];
350 } else {
351 if (distance_ref_points_depth < 2) {
352 printk(KERN_WARNING "NUMA: "
353 "short ibm,associativity-reference-points\n");
354 goto err;
355 }
356
357 depth = distance_ref_points[1];
358 }
359
360 /*
361 * Warn and cap if the hardware supports more than
362 * MAX_DISTANCE_REF_POINTS domains.
363 */
364 if (distance_ref_points_depth > MAX_DISTANCE_REF_POINTS) {
365 printk(KERN_WARNING "NUMA: distance array capped at "
366 "%d entries\n", MAX_DISTANCE_REF_POINTS);
367 distance_ref_points_depth = MAX_DISTANCE_REF_POINTS;
368 }
369
370 of_node_put(root);
371 return depth;
372
373 err:
374 of_node_put(root);
375 return -1;
376 }
377
378 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
379 {
380 struct device_node *memory = NULL;
381
382 memory = of_find_node_by_type(memory, "memory");
383 if (!memory)
384 panic("numa.c: No memory nodes found!");
385
386 *n_addr_cells = of_n_addr_cells(memory);
387 *n_size_cells = of_n_size_cells(memory);
388 of_node_put(memory);
389 }
390
391 static unsigned long read_n_cells(int n, const unsigned int **buf)
392 {
393 unsigned long result = 0;
394
395 while (n--) {
396 result = (result << 32) | **buf;
397 (*buf)++;
398 }
399 return result;
400 }
401
402 /*
403 * Read the next memblock list entry from the ibm,dynamic-memory property
404 * and return the information in the provided of_drconf_cell structure.
405 */
406 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
407 {
408 const u32 *cp;
409
410 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
411
412 cp = *cellp;
413 drmem->drc_index = cp[0];
414 drmem->reserved = cp[1];
415 drmem->aa_index = cp[2];
416 drmem->flags = cp[3];
417
418 *cellp = cp + 4;
419 }
420
421 /*
422 * Retrieve and validate the ibm,dynamic-memory property of the device tree.
423 *
424 * The layout of the ibm,dynamic-memory property is a number N of memblock
425 * list entries followed by N memblock list entries. Each memblock list entry
426 * contains information as laid out in the of_drconf_cell struct above.
427 */
428 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
429 {
430 const u32 *prop;
431 u32 len, entries;
432
433 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
434 if (!prop || len < sizeof(unsigned int))
435 return 0;
436
437 entries = *prop++;
438
439 /* Now that we know the number of entries, revalidate the size
440 * of the property read in to ensure we have everything
441 */
442 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
443 return 0;
444
445 *dm = prop;
446 return entries;
447 }
448
449 /*
450 * Retrieve and validate the ibm,lmb-size property for drconf memory
451 * from the device tree.
452 */
453 static u64 of_get_lmb_size(struct device_node *memory)
454 {
455 const u32 *prop;
456 u32 len;
457
458 prop = of_get_property(memory, "ibm,lmb-size", &len);
459 if (!prop || len < sizeof(unsigned int))
460 return 0;
461
462 return read_n_cells(n_mem_size_cells, &prop);
463 }
464
465 struct assoc_arrays {
466 u32 n_arrays;
467 u32 array_sz;
468 const u32 *arrays;
469 };
470
471 /*
472 * Retrieve and validate the list of associativity arrays for drconf
473 * memory from the ibm,associativity-lookup-arrays property of the
474 * device tree..
475 *
476 * The layout of the ibm,associativity-lookup-arrays property is a number N
477 * indicating the number of associativity arrays, followed by a number M
478 * indicating the size of each associativity array, followed by a list
479 * of N associativity arrays.
480 */
481 static int of_get_assoc_arrays(struct device_node *memory,
482 struct assoc_arrays *aa)
483 {
484 const u32 *prop;
485 u32 len;
486
487 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
488 if (!prop || len < 2 * sizeof(unsigned int))
489 return -1;
490
491 aa->n_arrays = *prop++;
492 aa->array_sz = *prop++;
493
494 /* Now that we know the number of arrays and size of each array,
495 * revalidate the size of the property read in.
496 */
497 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
498 return -1;
499
500 aa->arrays = prop;
501 return 0;
502 }
503
504 /*
505 * This is like of_node_to_nid_single() for memory represented in the
506 * ibm,dynamic-reconfiguration-memory node.
507 */
508 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
509 struct assoc_arrays *aa)
510 {
511 int default_nid = 0;
512 int nid = default_nid;
513 int index;
514
515 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
516 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
517 drmem->aa_index < aa->n_arrays) {
518 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
519 nid = aa->arrays[index];
520
521 if (nid == 0xffff || nid >= MAX_NUMNODES)
522 nid = default_nid;
523 }
524
525 return nid;
526 }
527
528 /*
529 * Figure out to which domain a cpu belongs and stick it there.
530 * Return the id of the domain used.
531 */
532 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
533 {
534 int nid = 0;
535 struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
536
537 if (!cpu) {
538 WARN_ON(1);
539 goto out;
540 }
541
542 nid = of_node_to_nid_single(cpu);
543
544 if (nid < 0 || !node_online(nid))
545 nid = first_online_node;
546 out:
547 map_cpu_to_node(lcpu, nid);
548
549 of_node_put(cpu);
550
551 return nid;
552 }
553
554 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
555 unsigned long action,
556 void *hcpu)
557 {
558 unsigned long lcpu = (unsigned long)hcpu;
559 int ret = NOTIFY_DONE;
560
561 switch (action) {
562 case CPU_UP_PREPARE:
563 case CPU_UP_PREPARE_FROZEN:
564 numa_setup_cpu(lcpu);
565 ret = NOTIFY_OK;
566 break;
567 #ifdef CONFIG_HOTPLUG_CPU
568 case CPU_DEAD:
569 case CPU_DEAD_FROZEN:
570 case CPU_UP_CANCELED:
571 case CPU_UP_CANCELED_FROZEN:
572 unmap_cpu_from_node(lcpu);
573 break;
574 ret = NOTIFY_OK;
575 #endif
576 }
577 return ret;
578 }
579
580 /*
581 * Check and possibly modify a memory region to enforce the memory limit.
582 *
583 * Returns the size the region should have to enforce the memory limit.
584 * This will either be the original value of size, a truncated value,
585 * or zero. If the returned value of size is 0 the region should be
586 * discarded as it lies wholly above the memory limit.
587 */
588 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
589 unsigned long size)
590 {
591 /*
592 * We use memblock_end_of_DRAM() in here instead of memory_limit because
593 * we've already adjusted it for the limit and it takes care of
594 * having memory holes below the limit. Also, in the case of
595 * iommu_is_off, memory_limit is not set but is implicitly enforced.
596 */
597
598 if (start + size <= memblock_end_of_DRAM())
599 return size;
600
601 if (start >= memblock_end_of_DRAM())
602 return 0;
603
604 return memblock_end_of_DRAM() - start;
605 }
606
607 /*
608 * Reads the counter for a given entry in
609 * linux,drconf-usable-memory property
610 */
611 static inline int __init read_usm_ranges(const u32 **usm)
612 {
613 /*
614 * For each lmb in ibm,dynamic-memory a corresponding
615 * entry in linux,drconf-usable-memory property contains
616 * a counter followed by that many (base, size) duple.
617 * read the counter from linux,drconf-usable-memory
618 */
619 return read_n_cells(n_mem_size_cells, usm);
620 }
621
622 /*
623 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
624 * node. This assumes n_mem_{addr,size}_cells have been set.
625 */
626 static void __init parse_drconf_memory(struct device_node *memory)
627 {
628 const u32 *uninitialized_var(dm), *usm;
629 unsigned int n, rc, ranges, is_kexec_kdump = 0;
630 unsigned long lmb_size, base, size, sz;
631 int nid;
632 struct assoc_arrays aa = { .arrays = NULL };
633
634 n = of_get_drconf_memory(memory, &dm);
635 if (!n)
636 return;
637
638 lmb_size = of_get_lmb_size(memory);
639 if (!lmb_size)
640 return;
641
642 rc = of_get_assoc_arrays(memory, &aa);
643 if (rc)
644 return;
645
646 /* check if this is a kexec/kdump kernel */
647 usm = of_get_usable_memory(memory);
648 if (usm != NULL)
649 is_kexec_kdump = 1;
650
651 for (; n != 0; --n) {
652 struct of_drconf_cell drmem;
653
654 read_drconf_cell(&drmem, &dm);
655
656 /* skip this block if the reserved bit is set in flags (0x80)
657 or if the block is not assigned to this partition (0x8) */
658 if ((drmem.flags & DRCONF_MEM_RESERVED)
659 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
660 continue;
661
662 base = drmem.base_addr;
663 size = lmb_size;
664 ranges = 1;
665
666 if (is_kexec_kdump) {
667 ranges = read_usm_ranges(&usm);
668 if (!ranges) /* there are no (base, size) duple */
669 continue;
670 }
671 do {
672 if (is_kexec_kdump) {
673 base = read_n_cells(n_mem_addr_cells, &usm);
674 size = read_n_cells(n_mem_size_cells, &usm);
675 }
676 nid = of_drconf_to_nid_single(&drmem, &aa);
677 fake_numa_create_new_node(
678 ((base + size) >> PAGE_SHIFT),
679 &nid);
680 node_set_online(nid);
681 sz = numa_enforce_memory_limit(base, size);
682 if (sz)
683 memblock_set_node(base, sz, nid);
684 } while (--ranges);
685 }
686 }
687
688 static int __init parse_numa_properties(void)
689 {
690 struct device_node *memory;
691 int default_nid = 0;
692 unsigned long i;
693
694 if (numa_enabled == 0) {
695 printk(KERN_WARNING "NUMA disabled by user\n");
696 return -1;
697 }
698
699 min_common_depth = find_min_common_depth();
700
701 if (min_common_depth < 0)
702 return min_common_depth;
703
704 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
705
706 /*
707 * Even though we connect cpus to numa domains later in SMP
708 * init, we need to know the node ids now. This is because
709 * each node to be onlined must have NODE_DATA etc backing it.
710 */
711 for_each_present_cpu(i) {
712 struct device_node *cpu;
713 int nid;
714
715 cpu = of_get_cpu_node(i, NULL);
716 BUG_ON(!cpu);
717 nid = of_node_to_nid_single(cpu);
718 of_node_put(cpu);
719
720 /*
721 * Don't fall back to default_nid yet -- we will plug
722 * cpus into nodes once the memory scan has discovered
723 * the topology.
724 */
725 if (nid < 0)
726 continue;
727 node_set_online(nid);
728 }
729
730 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
731
732 for_each_node_by_type(memory, "memory") {
733 unsigned long start;
734 unsigned long size;
735 int nid;
736 int ranges;
737 const unsigned int *memcell_buf;
738 unsigned int len;
739
740 memcell_buf = of_get_property(memory,
741 "linux,usable-memory", &len);
742 if (!memcell_buf || len <= 0)
743 memcell_buf = of_get_property(memory, "reg", &len);
744 if (!memcell_buf || len <= 0)
745 continue;
746
747 /* ranges in cell */
748 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
749 new_range:
750 /* these are order-sensitive, and modify the buffer pointer */
751 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
752 size = read_n_cells(n_mem_size_cells, &memcell_buf);
753
754 /*
755 * Assumption: either all memory nodes or none will
756 * have associativity properties. If none, then
757 * everything goes to default_nid.
758 */
759 nid = of_node_to_nid_single(memory);
760 if (nid < 0)
761 nid = default_nid;
762
763 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
764 node_set_online(nid);
765
766 if (!(size = numa_enforce_memory_limit(start, size))) {
767 if (--ranges)
768 goto new_range;
769 else
770 continue;
771 }
772
773 memblock_set_node(start, size, nid);
774
775 if (--ranges)
776 goto new_range;
777 }
778
779 /*
780 * Now do the same thing for each MEMBLOCK listed in the
781 * ibm,dynamic-memory property in the
782 * ibm,dynamic-reconfiguration-memory node.
783 */
784 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
785 if (memory)
786 parse_drconf_memory(memory);
787
788 return 0;
789 }
790
791 static void __init setup_nonnuma(void)
792 {
793 unsigned long top_of_ram = memblock_end_of_DRAM();
794 unsigned long total_ram = memblock_phys_mem_size();
795 unsigned long start_pfn, end_pfn;
796 unsigned int nid = 0;
797 struct memblock_region *reg;
798
799 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
800 top_of_ram, total_ram);
801 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
802 (top_of_ram - total_ram) >> 20);
803
804 for_each_memblock(memory, reg) {
805 start_pfn = memblock_region_memory_base_pfn(reg);
806 end_pfn = memblock_region_memory_end_pfn(reg);
807
808 fake_numa_create_new_node(end_pfn, &nid);
809 memblock_set_node(PFN_PHYS(start_pfn),
810 PFN_PHYS(end_pfn - start_pfn), nid);
811 node_set_online(nid);
812 }
813 }
814
815 void __init dump_numa_cpu_topology(void)
816 {
817 unsigned int node;
818 unsigned int cpu, count;
819
820 if (min_common_depth == -1 || !numa_enabled)
821 return;
822
823 for_each_online_node(node) {
824 printk(KERN_DEBUG "Node %d CPUs:", node);
825
826 count = 0;
827 /*
828 * If we used a CPU iterator here we would miss printing
829 * the holes in the cpumap.
830 */
831 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
832 if (cpumask_test_cpu(cpu,
833 node_to_cpumask_map[node])) {
834 if (count == 0)
835 printk(" %u", cpu);
836 ++count;
837 } else {
838 if (count > 1)
839 printk("-%u", cpu - 1);
840 count = 0;
841 }
842 }
843
844 if (count > 1)
845 printk("-%u", nr_cpu_ids - 1);
846 printk("\n");
847 }
848 }
849
850 static void __init dump_numa_memory_topology(void)
851 {
852 unsigned int node;
853 unsigned int count;
854
855 if (min_common_depth == -1 || !numa_enabled)
856 return;
857
858 for_each_online_node(node) {
859 unsigned long i;
860
861 printk(KERN_DEBUG "Node %d Memory:", node);
862
863 count = 0;
864
865 for (i = 0; i < memblock_end_of_DRAM();
866 i += (1 << SECTION_SIZE_BITS)) {
867 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
868 if (count == 0)
869 printk(" 0x%lx", i);
870 ++count;
871 } else {
872 if (count > 0)
873 printk("-0x%lx", i);
874 count = 0;
875 }
876 }
877
878 if (count > 0)
879 printk("-0x%lx", i);
880 printk("\n");
881 }
882 }
883
884 /*
885 * Allocate some memory, satisfying the memblock or bootmem allocator where
886 * required. nid is the preferred node and end is the physical address of
887 * the highest address in the node.
888 *
889 * Returns the virtual address of the memory.
890 */
891 static void __init *careful_zallocation(int nid, unsigned long size,
892 unsigned long align,
893 unsigned long end_pfn)
894 {
895 void *ret;
896 int new_nid;
897 unsigned long ret_paddr;
898
899 ret_paddr = __memblock_alloc_base(size, align, end_pfn << PAGE_SHIFT);
900
901 /* retry over all memory */
902 if (!ret_paddr)
903 ret_paddr = __memblock_alloc_base(size, align, memblock_end_of_DRAM());
904
905 if (!ret_paddr)
906 panic("numa.c: cannot allocate %lu bytes for node %d",
907 size, nid);
908
909 ret = __va(ret_paddr);
910
911 /*
912 * We initialize the nodes in numeric order: 0, 1, 2...
913 * and hand over control from the MEMBLOCK allocator to the
914 * bootmem allocator. If this function is called for
915 * node 5, then we know that all nodes <5 are using the
916 * bootmem allocator instead of the MEMBLOCK allocator.
917 *
918 * So, check the nid from which this allocation came
919 * and double check to see if we need to use bootmem
920 * instead of the MEMBLOCK. We don't free the MEMBLOCK memory
921 * since it would be useless.
922 */
923 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
924 if (new_nid < nid) {
925 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
926 size, align, 0);
927
928 dbg("alloc_bootmem %p %lx\n", ret, size);
929 }
930
931 memset(ret, 0, size);
932 return ret;
933 }
934
935 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
936 .notifier_call = cpu_numa_callback,
937 .priority = 1 /* Must run before sched domains notifier. */
938 };
939
940 static void __init mark_reserved_regions_for_nid(int nid)
941 {
942 struct pglist_data *node = NODE_DATA(nid);
943 struct memblock_region *reg;
944
945 for_each_memblock(reserved, reg) {
946 unsigned long physbase = reg->base;
947 unsigned long size = reg->size;
948 unsigned long start_pfn = physbase >> PAGE_SHIFT;
949 unsigned long end_pfn = PFN_UP(physbase + size);
950 struct node_active_region node_ar;
951 unsigned long node_end_pfn = node->node_start_pfn +
952 node->node_spanned_pages;
953
954 /*
955 * Check to make sure that this memblock.reserved area is
956 * within the bounds of the node that we care about.
957 * Checking the nid of the start and end points is not
958 * sufficient because the reserved area could span the
959 * entire node.
960 */
961 if (end_pfn <= node->node_start_pfn ||
962 start_pfn >= node_end_pfn)
963 continue;
964
965 get_node_active_region(start_pfn, &node_ar);
966 while (start_pfn < end_pfn &&
967 node_ar.start_pfn < node_ar.end_pfn) {
968 unsigned long reserve_size = size;
969 /*
970 * if reserved region extends past active region
971 * then trim size to active region
972 */
973 if (end_pfn > node_ar.end_pfn)
974 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
975 - physbase;
976 /*
977 * Only worry about *this* node, others may not
978 * yet have valid NODE_DATA().
979 */
980 if (node_ar.nid == nid) {
981 dbg("reserve_bootmem %lx %lx nid=%d\n",
982 physbase, reserve_size, node_ar.nid);
983 reserve_bootmem_node(NODE_DATA(node_ar.nid),
984 physbase, reserve_size,
985 BOOTMEM_DEFAULT);
986 }
987 /*
988 * if reserved region is contained in the active region
989 * then done.
990 */
991 if (end_pfn <= node_ar.end_pfn)
992 break;
993
994 /*
995 * reserved region extends past the active region
996 * get next active region that contains this
997 * reserved region
998 */
999 start_pfn = node_ar.end_pfn;
1000 physbase = start_pfn << PAGE_SHIFT;
1001 size = size - reserve_size;
1002 get_node_active_region(start_pfn, &node_ar);
1003 }
1004 }
1005 }
1006
1007
1008 void __init do_init_bootmem(void)
1009 {
1010 int nid;
1011
1012 min_low_pfn = 0;
1013 max_low_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
1014 max_pfn = max_low_pfn;
1015
1016 if (parse_numa_properties())
1017 setup_nonnuma();
1018 else
1019 dump_numa_memory_topology();
1020
1021 for_each_online_node(nid) {
1022 unsigned long start_pfn, end_pfn;
1023 void *bootmem_vaddr;
1024 unsigned long bootmap_pages;
1025
1026 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
1027
1028 /*
1029 * Allocate the node structure node local if possible
1030 *
1031 * Be careful moving this around, as it relies on all
1032 * previous nodes' bootmem to be initialized and have
1033 * all reserved areas marked.
1034 */
1035 NODE_DATA(nid) = careful_zallocation(nid,
1036 sizeof(struct pglist_data),
1037 SMP_CACHE_BYTES, end_pfn);
1038
1039 dbg("node %d\n", nid);
1040 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
1041
1042 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
1043 NODE_DATA(nid)->node_start_pfn = start_pfn;
1044 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
1045
1046 if (NODE_DATA(nid)->node_spanned_pages == 0)
1047 continue;
1048
1049 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
1050 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
1051
1052 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
1053 bootmem_vaddr = careful_zallocation(nid,
1054 bootmap_pages << PAGE_SHIFT,
1055 PAGE_SIZE, end_pfn);
1056
1057 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
1058
1059 init_bootmem_node(NODE_DATA(nid),
1060 __pa(bootmem_vaddr) >> PAGE_SHIFT,
1061 start_pfn, end_pfn);
1062
1063 free_bootmem_with_active_regions(nid, end_pfn);
1064 /*
1065 * Be very careful about moving this around. Future
1066 * calls to careful_zallocation() depend on this getting
1067 * done correctly.
1068 */
1069 mark_reserved_regions_for_nid(nid);
1070 sparse_memory_present_with_active_regions(nid);
1071 }
1072
1073 init_bootmem_done = 1;
1074
1075 /*
1076 * Now bootmem is initialised we can create the node to cpumask
1077 * lookup tables and setup the cpu callback to populate them.
1078 */
1079 setup_node_to_cpumask_map();
1080
1081 register_cpu_notifier(&ppc64_numa_nb);
1082 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1083 (void *)(unsigned long)boot_cpuid);
1084 }
1085
1086 void __init paging_init(void)
1087 {
1088 unsigned long max_zone_pfns[MAX_NR_ZONES];
1089 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1090 max_zone_pfns[ZONE_DMA] = memblock_end_of_DRAM() >> PAGE_SHIFT;
1091 free_area_init_nodes(max_zone_pfns);
1092 }
1093
1094 static int __init early_numa(char *p)
1095 {
1096 if (!p)
1097 return 0;
1098
1099 if (strstr(p, "off"))
1100 numa_enabled = 0;
1101
1102 if (strstr(p, "debug"))
1103 numa_debug = 1;
1104
1105 p = strstr(p, "fake=");
1106 if (p)
1107 cmdline = p + strlen("fake=");
1108
1109 return 0;
1110 }
1111 early_param("numa", early_numa);
1112
1113 #ifdef CONFIG_MEMORY_HOTPLUG
1114 /*
1115 * Find the node associated with a hot added memory section for
1116 * memory represented in the device tree by the property
1117 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1118 */
1119 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1120 unsigned long scn_addr)
1121 {
1122 const u32 *dm;
1123 unsigned int drconf_cell_cnt, rc;
1124 unsigned long lmb_size;
1125 struct assoc_arrays aa;
1126 int nid = -1;
1127
1128 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1129 if (!drconf_cell_cnt)
1130 return -1;
1131
1132 lmb_size = of_get_lmb_size(memory);
1133 if (!lmb_size)
1134 return -1;
1135
1136 rc = of_get_assoc_arrays(memory, &aa);
1137 if (rc)
1138 return -1;
1139
1140 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1141 struct of_drconf_cell drmem;
1142
1143 read_drconf_cell(&drmem, &dm);
1144
1145 /* skip this block if it is reserved or not assigned to
1146 * this partition */
1147 if ((drmem.flags & DRCONF_MEM_RESERVED)
1148 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1149 continue;
1150
1151 if ((scn_addr < drmem.base_addr)
1152 || (scn_addr >= (drmem.base_addr + lmb_size)))
1153 continue;
1154
1155 nid = of_drconf_to_nid_single(&drmem, &aa);
1156 break;
1157 }
1158
1159 return nid;
1160 }
1161
1162 /*
1163 * Find the node associated with a hot added memory section for memory
1164 * represented in the device tree as a node (i.e. memory@XXXX) for
1165 * each memblock.
1166 */
1167 int hot_add_node_scn_to_nid(unsigned long scn_addr)
1168 {
1169 struct device_node *memory;
1170 int nid = -1;
1171
1172 for_each_node_by_type(memory, "memory") {
1173 unsigned long start, size;
1174 int ranges;
1175 const unsigned int *memcell_buf;
1176 unsigned int len;
1177
1178 memcell_buf = of_get_property(memory, "reg", &len);
1179 if (!memcell_buf || len <= 0)
1180 continue;
1181
1182 /* ranges in cell */
1183 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1184
1185 while (ranges--) {
1186 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1187 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1188
1189 if ((scn_addr < start) || (scn_addr >= (start + size)))
1190 continue;
1191
1192 nid = of_node_to_nid_single(memory);
1193 break;
1194 }
1195
1196 if (nid >= 0)
1197 break;
1198 }
1199
1200 of_node_put(memory);
1201
1202 return nid;
1203 }
1204
1205 /*
1206 * Find the node associated with a hot added memory section. Section
1207 * corresponds to a SPARSEMEM section, not an MEMBLOCK. It is assumed that
1208 * sections are fully contained within a single MEMBLOCK.
1209 */
1210 int hot_add_scn_to_nid(unsigned long scn_addr)
1211 {
1212 struct device_node *memory = NULL;
1213 int nid, found = 0;
1214
1215 if (!numa_enabled || (min_common_depth < 0))
1216 return first_online_node;
1217
1218 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1219 if (memory) {
1220 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1221 of_node_put(memory);
1222 } else {
1223 nid = hot_add_node_scn_to_nid(scn_addr);
1224 }
1225
1226 if (nid < 0 || !node_online(nid))
1227 nid = first_online_node;
1228
1229 if (NODE_DATA(nid)->node_spanned_pages)
1230 return nid;
1231
1232 for_each_online_node(nid) {
1233 if (NODE_DATA(nid)->node_spanned_pages) {
1234 found = 1;
1235 break;
1236 }
1237 }
1238
1239 BUG_ON(!found);
1240 return nid;
1241 }
1242
1243 static u64 hot_add_drconf_memory_max(void)
1244 {
1245 struct device_node *memory = NULL;
1246 unsigned int drconf_cell_cnt = 0;
1247 u64 lmb_size = 0;
1248 const u32 *dm = 0;
1249
1250 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1251 if (memory) {
1252 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1253 lmb_size = of_get_lmb_size(memory);
1254 of_node_put(memory);
1255 }
1256 return lmb_size * drconf_cell_cnt;
1257 }
1258
1259 /*
1260 * memory_hotplug_max - return max address of memory that may be added
1261 *
1262 * This is currently only used on systems that support drconfig memory
1263 * hotplug.
1264 */
1265 u64 memory_hotplug_max(void)
1266 {
1267 return max(hot_add_drconf_memory_max(), memblock_end_of_DRAM());
1268 }
1269 #endif /* CONFIG_MEMORY_HOTPLUG */
1270
1271 /* Virtual Processor Home Node (VPHN) support */
1272 #ifdef CONFIG_PPC_SPLPAR
1273 static u8 vphn_cpu_change_counts[NR_CPUS][MAX_DISTANCE_REF_POINTS];
1274 static cpumask_t cpu_associativity_changes_mask;
1275 static int vphn_enabled;
1276 static void set_topology_timer(void);
1277
1278 /*
1279 * Store the current values of the associativity change counters in the
1280 * hypervisor.
1281 */
1282 static void setup_cpu_associativity_change_counters(void)
1283 {
1284 int cpu;
1285
1286 /* The VPHN feature supports a maximum of 8 reference points */
1287 BUILD_BUG_ON(MAX_DISTANCE_REF_POINTS > 8);
1288
1289 for_each_possible_cpu(cpu) {
1290 int i;
1291 u8 *counts = vphn_cpu_change_counts[cpu];
1292 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1293
1294 for (i = 0; i < distance_ref_points_depth; i++)
1295 counts[i] = hypervisor_counts[i];
1296 }
1297 }
1298
1299 /*
1300 * The hypervisor maintains a set of 8 associativity change counters in
1301 * the VPA of each cpu that correspond to the associativity levels in the
1302 * ibm,associativity-reference-points property. When an associativity
1303 * level changes, the corresponding counter is incremented.
1304 *
1305 * Set a bit in cpu_associativity_changes_mask for each cpu whose home
1306 * node associativity levels have changed.
1307 *
1308 * Returns the number of cpus with unhandled associativity changes.
1309 */
1310 static int update_cpu_associativity_changes_mask(void)
1311 {
1312 int cpu, nr_cpus = 0;
1313 cpumask_t *changes = &cpu_associativity_changes_mask;
1314
1315 cpumask_clear(changes);
1316
1317 for_each_possible_cpu(cpu) {
1318 int i, changed = 0;
1319 u8 *counts = vphn_cpu_change_counts[cpu];
1320 volatile u8 *hypervisor_counts = lppaca[cpu].vphn_assoc_counts;
1321
1322 for (i = 0; i < distance_ref_points_depth; i++) {
1323 if (hypervisor_counts[i] != counts[i]) {
1324 counts[i] = hypervisor_counts[i];
1325 changed = 1;
1326 }
1327 }
1328 if (changed) {
1329 cpumask_set_cpu(cpu, changes);
1330 nr_cpus++;
1331 }
1332 }
1333
1334 return nr_cpus;
1335 }
1336
1337 /*
1338 * 6 64-bit registers unpacked into 12 32-bit associativity values. To form
1339 * the complete property we have to add the length in the first cell.
1340 */
1341 #define VPHN_ASSOC_BUFSIZE (6*sizeof(u64)/sizeof(u32) + 1)
1342
1343 /*
1344 * Convert the associativity domain numbers returned from the hypervisor
1345 * to the sequence they would appear in the ibm,associativity property.
1346 */
1347 static int vphn_unpack_associativity(const long *packed, unsigned int *unpacked)
1348 {
1349 int i, nr_assoc_doms = 0;
1350 const u16 *field = (const u16*) packed;
1351
1352 #define VPHN_FIELD_UNUSED (0xffff)
1353 #define VPHN_FIELD_MSB (0x8000)
1354 #define VPHN_FIELD_MASK (~VPHN_FIELD_MSB)
1355
1356 for (i = 1; i < VPHN_ASSOC_BUFSIZE; i++) {
1357 if (*field == VPHN_FIELD_UNUSED) {
1358 /* All significant fields processed, and remaining
1359 * fields contain the reserved value of all 1's.
1360 * Just store them.
1361 */
1362 unpacked[i] = *((u32*)field);
1363 field += 2;
1364 } else if (*field & VPHN_FIELD_MSB) {
1365 /* Data is in the lower 15 bits of this field */
1366 unpacked[i] = *field & VPHN_FIELD_MASK;
1367 field++;
1368 nr_assoc_doms++;
1369 } else {
1370 /* Data is in the lower 15 bits of this field
1371 * concatenated with the next 16 bit field
1372 */
1373 unpacked[i] = *((u32*)field);
1374 field += 2;
1375 nr_assoc_doms++;
1376 }
1377 }
1378
1379 /* The first cell contains the length of the property */
1380 unpacked[0] = nr_assoc_doms;
1381
1382 return nr_assoc_doms;
1383 }
1384
1385 /*
1386 * Retrieve the new associativity information for a virtual processor's
1387 * home node.
1388 */
1389 static long hcall_vphn(unsigned long cpu, unsigned int *associativity)
1390 {
1391 long rc;
1392 long retbuf[PLPAR_HCALL9_BUFSIZE] = {0};
1393 u64 flags = 1;
1394 int hwcpu = get_hard_smp_processor_id(cpu);
1395
1396 rc = plpar_hcall9(H_HOME_NODE_ASSOCIATIVITY, retbuf, flags, hwcpu);
1397 vphn_unpack_associativity(retbuf, associativity);
1398
1399 return rc;
1400 }
1401
1402 static long vphn_get_associativity(unsigned long cpu,
1403 unsigned int *associativity)
1404 {
1405 long rc;
1406
1407 rc = hcall_vphn(cpu, associativity);
1408
1409 switch (rc) {
1410 case H_FUNCTION:
1411 printk(KERN_INFO
1412 "VPHN is not supported. Disabling polling...\n");
1413 stop_topology_update();
1414 break;
1415 case H_HARDWARE:
1416 printk(KERN_ERR
1417 "hcall_vphn() experienced a hardware fault "
1418 "preventing VPHN. Disabling polling...\n");
1419 stop_topology_update();
1420 }
1421
1422 return rc;
1423 }
1424
1425 /*
1426 * Update the node maps and sysfs entries for each cpu whose home node
1427 * has changed. Returns 1 when the topology has changed, and 0 otherwise.
1428 */
1429 int arch_update_cpu_topology(void)
1430 {
1431 int cpu, nid, old_nid, changed = 0;
1432 unsigned int associativity[VPHN_ASSOC_BUFSIZE] = {0};
1433 struct device *dev;
1434
1435 for_each_cpu(cpu,&cpu_associativity_changes_mask) {
1436 vphn_get_associativity(cpu, associativity);
1437 nid = associativity_to_nid(associativity);
1438
1439 if (nid < 0 || !node_online(nid))
1440 nid = first_online_node;
1441
1442 old_nid = numa_cpu_lookup_table[cpu];
1443
1444 /* Disable hotplug while we update the cpu
1445 * masks and sysfs.
1446 */
1447 get_online_cpus();
1448 unregister_cpu_under_node(cpu, old_nid);
1449 unmap_cpu_from_node(cpu);
1450 map_cpu_to_node(cpu, nid);
1451 register_cpu_under_node(cpu, nid);
1452 put_online_cpus();
1453
1454 dev = get_cpu_device(cpu);
1455 if (dev)
1456 kobject_uevent(&dev->kobj, KOBJ_CHANGE);
1457 changed = 1;
1458 }
1459
1460 return changed;
1461 }
1462
1463 static void topology_work_fn(struct work_struct *work)
1464 {
1465 rebuild_sched_domains();
1466 }
1467 static DECLARE_WORK(topology_work, topology_work_fn);
1468
1469 void topology_schedule_update(void)
1470 {
1471 schedule_work(&topology_work);
1472 }
1473
1474 static void topology_timer_fn(unsigned long ignored)
1475 {
1476 if (!vphn_enabled)
1477 return;
1478 if (update_cpu_associativity_changes_mask() > 0)
1479 topology_schedule_update();
1480 set_topology_timer();
1481 }
1482 static struct timer_list topology_timer =
1483 TIMER_INITIALIZER(topology_timer_fn, 0, 0);
1484
1485 static void set_topology_timer(void)
1486 {
1487 topology_timer.data = 0;
1488 topology_timer.expires = jiffies + 60 * HZ;
1489 add_timer(&topology_timer);
1490 }
1491
1492 /*
1493 * Start polling for VPHN associativity changes.
1494 */
1495 int start_topology_update(void)
1496 {
1497 int rc = 0;
1498
1499 /* Disabled until races with load balancing are fixed */
1500 if (0 && firmware_has_feature(FW_FEATURE_VPHN) &&
1501 get_lppaca()->shared_proc) {
1502 vphn_enabled = 1;
1503 setup_cpu_associativity_change_counters();
1504 init_timer_deferrable(&topology_timer);
1505 set_topology_timer();
1506 rc = 1;
1507 }
1508
1509 return rc;
1510 }
1511 __initcall(start_topology_update);
1512
1513 /*
1514 * Disable polling for VPHN associativity changes.
1515 */
1516 int stop_topology_update(void)
1517 {
1518 vphn_enabled = 0;
1519 return del_timer_sync(&topology_timer);
1520 }
1521 #endif /* CONFIG_PPC_SPLPAR */