]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/mm/pgtable-radix.c
spi-imx: Implements handling of the SPI_READY mode flag.
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / mm / pgtable-radix.c
1 /*
2 * Page table handling routines for radix page table.
3 *
4 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/sched/mm.h>
12 #include <linux/memblock.h>
13 #include <linux/of_fdt.h>
14
15 #include <asm/pgtable.h>
16 #include <asm/pgalloc.h>
17 #include <asm/dma.h>
18 #include <asm/machdep.h>
19 #include <asm/mmu.h>
20 #include <asm/firmware.h>
21 #include <asm/powernv.h>
22
23 #include <trace/events/thp.h>
24
25 static int native_register_process_table(unsigned long base, unsigned long pg_sz,
26 unsigned long table_size)
27 {
28 unsigned long patb1 = base | table_size | PATB_GR;
29
30 partition_tb->patb1 = cpu_to_be64(patb1);
31 return 0;
32 }
33
34 static __ref void *early_alloc_pgtable(unsigned long size)
35 {
36 void *pt;
37
38 pt = __va(memblock_alloc_base(size, size, MEMBLOCK_ALLOC_ANYWHERE));
39 memset(pt, 0, size);
40
41 return pt;
42 }
43
44 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
45 pgprot_t flags,
46 unsigned int map_page_size)
47 {
48 pgd_t *pgdp;
49 pud_t *pudp;
50 pmd_t *pmdp;
51 pte_t *ptep;
52 /*
53 * Make sure task size is correct as per the max adddr
54 */
55 BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
56 if (slab_is_available()) {
57 pgdp = pgd_offset_k(ea);
58 pudp = pud_alloc(&init_mm, pgdp, ea);
59 if (!pudp)
60 return -ENOMEM;
61 if (map_page_size == PUD_SIZE) {
62 ptep = (pte_t *)pudp;
63 goto set_the_pte;
64 }
65 pmdp = pmd_alloc(&init_mm, pudp, ea);
66 if (!pmdp)
67 return -ENOMEM;
68 if (map_page_size == PMD_SIZE) {
69 ptep = pmdp_ptep(pmdp);
70 goto set_the_pte;
71 }
72 ptep = pte_alloc_kernel(pmdp, ea);
73 if (!ptep)
74 return -ENOMEM;
75 } else {
76 pgdp = pgd_offset_k(ea);
77 if (pgd_none(*pgdp)) {
78 pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
79 BUG_ON(pudp == NULL);
80 pgd_populate(&init_mm, pgdp, pudp);
81 }
82 pudp = pud_offset(pgdp, ea);
83 if (map_page_size == PUD_SIZE) {
84 ptep = (pte_t *)pudp;
85 goto set_the_pte;
86 }
87 if (pud_none(*pudp)) {
88 pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
89 BUG_ON(pmdp == NULL);
90 pud_populate(&init_mm, pudp, pmdp);
91 }
92 pmdp = pmd_offset(pudp, ea);
93 if (map_page_size == PMD_SIZE) {
94 ptep = pmdp_ptep(pmdp);
95 goto set_the_pte;
96 }
97 if (!pmd_present(*pmdp)) {
98 ptep = early_alloc_pgtable(PAGE_SIZE);
99 BUG_ON(ptep == NULL);
100 pmd_populate_kernel(&init_mm, pmdp, ptep);
101 }
102 ptep = pte_offset_kernel(pmdp, ea);
103 }
104
105 set_the_pte:
106 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, flags));
107 smp_wmb();
108 return 0;
109 }
110
111 static inline void __meminit print_mapping(unsigned long start,
112 unsigned long end,
113 unsigned long size)
114 {
115 if (end <= start)
116 return;
117
118 pr_info("Mapped range 0x%lx - 0x%lx with 0x%lx\n", start, end, size);
119 }
120
121 static int __meminit create_physical_mapping(unsigned long start,
122 unsigned long end)
123 {
124 unsigned long addr, mapping_size = 0;
125
126 start = _ALIGN_UP(start, PAGE_SIZE);
127 for (addr = start; addr < end; addr += mapping_size) {
128 unsigned long gap, previous_size;
129 int rc;
130
131 gap = end - addr;
132 previous_size = mapping_size;
133
134 if (IS_ALIGNED(addr, PUD_SIZE) && gap >= PUD_SIZE &&
135 mmu_psize_defs[MMU_PAGE_1G].shift)
136 mapping_size = PUD_SIZE;
137 else if (IS_ALIGNED(addr, PMD_SIZE) && gap >= PMD_SIZE &&
138 mmu_psize_defs[MMU_PAGE_2M].shift)
139 mapping_size = PMD_SIZE;
140 else
141 mapping_size = PAGE_SIZE;
142
143 if (mapping_size != previous_size) {
144 print_mapping(start, addr, previous_size);
145 start = addr;
146 }
147
148 rc = radix__map_kernel_page((unsigned long)__va(addr), addr,
149 PAGE_KERNEL_X, mapping_size);
150 if (rc)
151 return rc;
152 }
153
154 print_mapping(start, addr, mapping_size);
155 return 0;
156 }
157
158 static void __init radix_init_pgtable(void)
159 {
160 unsigned long rts_field;
161 struct memblock_region *reg;
162
163 /* We don't support slb for radix */
164 mmu_slb_size = 0;
165 /*
166 * Create the linear mapping, using standard page size for now
167 */
168 for_each_memblock(memory, reg)
169 WARN_ON(create_physical_mapping(reg->base,
170 reg->base + reg->size));
171 /*
172 * Allocate Partition table and process table for the
173 * host.
174 */
175 BUILD_BUG_ON_MSG((PRTB_SIZE_SHIFT > 36), "Process table size too large.");
176 process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT);
177 /*
178 * Fill in the process table.
179 */
180 rts_field = radix__get_tree_size();
181 process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
182 /*
183 * Fill in the partition table. We are suppose to use effective address
184 * of process table here. But our linear mapping also enable us to use
185 * physical address here.
186 */
187 register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12);
188 pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd);
189 }
190
191 static void __init radix_init_partition_table(void)
192 {
193 unsigned long rts_field, dw0;
194
195 mmu_partition_table_init();
196 rts_field = radix__get_tree_size();
197 dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
198 mmu_partition_table_set_entry(0, dw0, 0);
199
200 pr_info("Initializing Radix MMU\n");
201 pr_info("Partition table %p\n", partition_tb);
202 }
203
204 void __init radix_init_native(void)
205 {
206 register_process_table = native_register_process_table;
207 }
208
209 static int __init get_idx_from_shift(unsigned int shift)
210 {
211 int idx = -1;
212
213 switch (shift) {
214 case 0xc:
215 idx = MMU_PAGE_4K;
216 break;
217 case 0x10:
218 idx = MMU_PAGE_64K;
219 break;
220 case 0x15:
221 idx = MMU_PAGE_2M;
222 break;
223 case 0x1e:
224 idx = MMU_PAGE_1G;
225 break;
226 }
227 return idx;
228 }
229
230 static int __init radix_dt_scan_page_sizes(unsigned long node,
231 const char *uname, int depth,
232 void *data)
233 {
234 int size = 0;
235 int shift, idx;
236 unsigned int ap;
237 const __be32 *prop;
238 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
239
240 /* We are scanning "cpu" nodes only */
241 if (type == NULL || strcmp(type, "cpu") != 0)
242 return 0;
243
244 prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
245 if (!prop)
246 return 0;
247
248 pr_info("Page sizes from device-tree:\n");
249 for (; size >= 4; size -= 4, ++prop) {
250
251 struct mmu_psize_def *def;
252
253 /* top 3 bit is AP encoding */
254 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
255 ap = be32_to_cpu(prop[0]) >> 29;
256 pr_info("Page size shift = %d AP=0x%x\n", shift, ap);
257
258 idx = get_idx_from_shift(shift);
259 if (idx < 0)
260 continue;
261
262 def = &mmu_psize_defs[idx];
263 def->shift = shift;
264 def->ap = ap;
265 }
266
267 /* needed ? */
268 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
269 return 1;
270 }
271
272 void __init radix__early_init_devtree(void)
273 {
274 int rc;
275
276 /*
277 * Try to find the available page sizes in the device-tree
278 */
279 rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
280 if (rc != 0) /* Found */
281 goto found;
282 /*
283 * let's assume we have page 4k and 64k support
284 */
285 mmu_psize_defs[MMU_PAGE_4K].shift = 12;
286 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
287
288 mmu_psize_defs[MMU_PAGE_64K].shift = 16;
289 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
290 found:
291 #ifdef CONFIG_SPARSEMEM_VMEMMAP
292 if (mmu_psize_defs[MMU_PAGE_2M].shift) {
293 /*
294 * map vmemmap using 2M if available
295 */
296 mmu_vmemmap_psize = MMU_PAGE_2M;
297 }
298 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
299 return;
300 }
301
302 static void update_hid_for_radix(void)
303 {
304 unsigned long hid0;
305 unsigned long rb = 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
306
307 asm volatile("ptesync": : :"memory");
308 /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
309 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
310 : : "r"(rb), "i"(1), "i"(0), "i"(2), "r"(0) : "memory");
311 /* prs = 1, ric = 2, rs = 0, r = 1 is = 3 */
312 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
313 : : "r"(rb), "i"(1), "i"(1), "i"(2), "r"(0) : "memory");
314 asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
315 /*
316 * now switch the HID
317 */
318 hid0 = mfspr(SPRN_HID0);
319 hid0 |= HID0_POWER9_RADIX;
320 mtspr(SPRN_HID0, hid0);
321 asm volatile("isync": : :"memory");
322
323 /* Wait for it to happen */
324 while (!(mfspr(SPRN_HID0) & HID0_POWER9_RADIX))
325 cpu_relax();
326 }
327
328 static void radix_init_amor(void)
329 {
330 /*
331 * In HV mode, we init AMOR (Authority Mask Override Register) so that
332 * the hypervisor and guest can setup IAMR (Instruction Authority Mask
333 * Register), enable key 0 and set it to 1.
334 *
335 * AMOR = 0b1100 .... 0000 (Mask for key 0 is 11)
336 */
337 mtspr(SPRN_AMOR, (3ul << 62));
338 }
339
340 static void radix_init_iamr(void)
341 {
342 unsigned long iamr;
343
344 /*
345 * The IAMR should set to 0 on DD1.
346 */
347 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
348 iamr = 0;
349 else
350 iamr = (1ul << 62);
351
352 /*
353 * Radix always uses key0 of the IAMR to determine if an access is
354 * allowed. We set bit 0 (IBM bit 1) of key0, to prevent instruction
355 * fetch.
356 */
357 mtspr(SPRN_IAMR, iamr);
358 }
359
360 void __init radix__early_init_mmu(void)
361 {
362 unsigned long lpcr;
363
364 #ifdef CONFIG_PPC_64K_PAGES
365 /* PAGE_SIZE mappings */
366 mmu_virtual_psize = MMU_PAGE_64K;
367 #else
368 mmu_virtual_psize = MMU_PAGE_4K;
369 #endif
370
371 #ifdef CONFIG_SPARSEMEM_VMEMMAP
372 /* vmemmap mapping */
373 mmu_vmemmap_psize = mmu_virtual_psize;
374 #endif
375 /*
376 * initialize page table size
377 */
378 __pte_index_size = RADIX_PTE_INDEX_SIZE;
379 __pmd_index_size = RADIX_PMD_INDEX_SIZE;
380 __pud_index_size = RADIX_PUD_INDEX_SIZE;
381 __pgd_index_size = RADIX_PGD_INDEX_SIZE;
382 __pmd_cache_index = RADIX_PMD_INDEX_SIZE;
383 __pte_table_size = RADIX_PTE_TABLE_SIZE;
384 __pmd_table_size = RADIX_PMD_TABLE_SIZE;
385 __pud_table_size = RADIX_PUD_TABLE_SIZE;
386 __pgd_table_size = RADIX_PGD_TABLE_SIZE;
387
388 __pmd_val_bits = RADIX_PMD_VAL_BITS;
389 __pud_val_bits = RADIX_PUD_VAL_BITS;
390 __pgd_val_bits = RADIX_PGD_VAL_BITS;
391
392 __kernel_virt_start = RADIX_KERN_VIRT_START;
393 __kernel_virt_size = RADIX_KERN_VIRT_SIZE;
394 __vmalloc_start = RADIX_VMALLOC_START;
395 __vmalloc_end = RADIX_VMALLOC_END;
396 vmemmap = (struct page *)RADIX_VMEMMAP_BASE;
397 ioremap_bot = IOREMAP_BASE;
398
399 #ifdef CONFIG_PCI
400 pci_io_base = ISA_IO_BASE;
401 #endif
402
403 /*
404 * For now radix also use the same frag size
405 */
406 __pte_frag_nr = H_PTE_FRAG_NR;
407 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
408
409 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
410 radix_init_native();
411 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
412 update_hid_for_radix();
413 lpcr = mfspr(SPRN_LPCR);
414 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
415 radix_init_partition_table();
416 radix_init_amor();
417 } else {
418 radix_init_pseries();
419 }
420
421 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
422
423 radix_init_iamr();
424 radix_init_pgtable();
425 }
426
427 void radix__early_init_mmu_secondary(void)
428 {
429 unsigned long lpcr;
430 /*
431 * update partition table control register and UPRT
432 */
433 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
434
435 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
436 update_hid_for_radix();
437
438 lpcr = mfspr(SPRN_LPCR);
439 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
440
441 mtspr(SPRN_PTCR,
442 __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
443 radix_init_amor();
444 }
445 radix_init_iamr();
446 }
447
448 void radix__mmu_cleanup_all(void)
449 {
450 unsigned long lpcr;
451
452 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
453 lpcr = mfspr(SPRN_LPCR);
454 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
455 mtspr(SPRN_PTCR, 0);
456 powernv_set_nmmu_ptcr(0);
457 radix__flush_tlb_all();
458 }
459 }
460
461 void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
462 phys_addr_t first_memblock_size)
463 {
464 /* We don't currently support the first MEMBLOCK not mapping 0
465 * physical on those processors
466 */
467 BUG_ON(first_memblock_base != 0);
468 /*
469 * We limit the allocation that depend on ppc64_rma_size
470 * to first_memblock_size. We also clamp it to 1GB to
471 * avoid some funky things such as RTAS bugs.
472 *
473 * On radix config we really don't have a limitation
474 * on real mode access. But keeping it as above works
475 * well enough.
476 */
477 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
478 /*
479 * Finally limit subsequent allocations. We really don't want
480 * to limit the memblock allocations to rma_size. FIXME!! should
481 * we even limit at all ?
482 */
483 memblock_set_current_limit(first_memblock_base + first_memblock_size);
484 }
485
486 #ifdef CONFIG_MEMORY_HOTPLUG
487 static void free_pte_table(pte_t *pte_start, pmd_t *pmd)
488 {
489 pte_t *pte;
490 int i;
491
492 for (i = 0; i < PTRS_PER_PTE; i++) {
493 pte = pte_start + i;
494 if (!pte_none(*pte))
495 return;
496 }
497
498 pte_free_kernel(&init_mm, pte_start);
499 pmd_clear(pmd);
500 }
501
502 static void free_pmd_table(pmd_t *pmd_start, pud_t *pud)
503 {
504 pmd_t *pmd;
505 int i;
506
507 for (i = 0; i < PTRS_PER_PMD; i++) {
508 pmd = pmd_start + i;
509 if (!pmd_none(*pmd))
510 return;
511 }
512
513 pmd_free(&init_mm, pmd_start);
514 pud_clear(pud);
515 }
516
517 static void remove_pte_table(pte_t *pte_start, unsigned long addr,
518 unsigned long end)
519 {
520 unsigned long next;
521 pte_t *pte;
522
523 pte = pte_start + pte_index(addr);
524 for (; addr < end; addr = next, pte++) {
525 next = (addr + PAGE_SIZE) & PAGE_MASK;
526 if (next > end)
527 next = end;
528
529 if (!pte_present(*pte))
530 continue;
531
532 if (!PAGE_ALIGNED(addr) || !PAGE_ALIGNED(next)) {
533 /*
534 * The vmemmap_free() and remove_section_mapping()
535 * codepaths call us with aligned addresses.
536 */
537 WARN_ONCE(1, "%s: unaligned range\n", __func__);
538 continue;
539 }
540
541 pte_clear(&init_mm, addr, pte);
542 }
543 }
544
545 static void remove_pmd_table(pmd_t *pmd_start, unsigned long addr,
546 unsigned long end)
547 {
548 unsigned long next;
549 pte_t *pte_base;
550 pmd_t *pmd;
551
552 pmd = pmd_start + pmd_index(addr);
553 for (; addr < end; addr = next, pmd++) {
554 next = pmd_addr_end(addr, end);
555
556 if (!pmd_present(*pmd))
557 continue;
558
559 if (pmd_huge(*pmd)) {
560 if (!IS_ALIGNED(addr, PMD_SIZE) ||
561 !IS_ALIGNED(next, PMD_SIZE)) {
562 WARN_ONCE(1, "%s: unaligned range\n", __func__);
563 continue;
564 }
565
566 pte_clear(&init_mm, addr, (pte_t *)pmd);
567 continue;
568 }
569
570 pte_base = (pte_t *)pmd_page_vaddr(*pmd);
571 remove_pte_table(pte_base, addr, next);
572 free_pte_table(pte_base, pmd);
573 }
574 }
575
576 static void remove_pud_table(pud_t *pud_start, unsigned long addr,
577 unsigned long end)
578 {
579 unsigned long next;
580 pmd_t *pmd_base;
581 pud_t *pud;
582
583 pud = pud_start + pud_index(addr);
584 for (; addr < end; addr = next, pud++) {
585 next = pud_addr_end(addr, end);
586
587 if (!pud_present(*pud))
588 continue;
589
590 if (pud_huge(*pud)) {
591 if (!IS_ALIGNED(addr, PUD_SIZE) ||
592 !IS_ALIGNED(next, PUD_SIZE)) {
593 WARN_ONCE(1, "%s: unaligned range\n", __func__);
594 continue;
595 }
596
597 pte_clear(&init_mm, addr, (pte_t *)pud);
598 continue;
599 }
600
601 pmd_base = (pmd_t *)pud_page_vaddr(*pud);
602 remove_pmd_table(pmd_base, addr, next);
603 free_pmd_table(pmd_base, pud);
604 }
605 }
606
607 static void remove_pagetable(unsigned long start, unsigned long end)
608 {
609 unsigned long addr, next;
610 pud_t *pud_base;
611 pgd_t *pgd;
612
613 spin_lock(&init_mm.page_table_lock);
614
615 for (addr = start; addr < end; addr = next) {
616 next = pgd_addr_end(addr, end);
617
618 pgd = pgd_offset_k(addr);
619 if (!pgd_present(*pgd))
620 continue;
621
622 if (pgd_huge(*pgd)) {
623 if (!IS_ALIGNED(addr, PGDIR_SIZE) ||
624 !IS_ALIGNED(next, PGDIR_SIZE)) {
625 WARN_ONCE(1, "%s: unaligned range\n", __func__);
626 continue;
627 }
628
629 pte_clear(&init_mm, addr, (pte_t *)pgd);
630 continue;
631 }
632
633 pud_base = (pud_t *)pgd_page_vaddr(*pgd);
634 remove_pud_table(pud_base, addr, next);
635 }
636
637 spin_unlock(&init_mm.page_table_lock);
638 radix__flush_tlb_kernel_range(start, end);
639 }
640
641 int __ref radix__create_section_mapping(unsigned long start, unsigned long end)
642 {
643 return create_physical_mapping(start, end);
644 }
645
646 int radix__remove_section_mapping(unsigned long start, unsigned long end)
647 {
648 remove_pagetable(start, end);
649 return 0;
650 }
651 #endif /* CONFIG_MEMORY_HOTPLUG */
652
653 #ifdef CONFIG_SPARSEMEM_VMEMMAP
654 int __meminit radix__vmemmap_create_mapping(unsigned long start,
655 unsigned long page_size,
656 unsigned long phys)
657 {
658 /* Create a PTE encoding */
659 unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
660
661 BUG_ON(radix__map_kernel_page(start, phys, __pgprot(flags), page_size));
662 return 0;
663 }
664
665 #ifdef CONFIG_MEMORY_HOTPLUG
666 void radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
667 {
668 remove_pagetable(start, start + page_size);
669 }
670 #endif
671 #endif
672
673 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
674
675 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
676 pmd_t *pmdp, unsigned long clr,
677 unsigned long set)
678 {
679 unsigned long old;
680
681 #ifdef CONFIG_DEBUG_VM
682 WARN_ON(!radix__pmd_trans_huge(*pmdp));
683 assert_spin_locked(&mm->page_table_lock);
684 #endif
685
686 old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
687 trace_hugepage_update(addr, old, clr, set);
688
689 return old;
690 }
691
692 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
693 pmd_t *pmdp)
694
695 {
696 pmd_t pmd;
697
698 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
699 VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
700 /*
701 * khugepaged calls this for normal pmd
702 */
703 pmd = *pmdp;
704 pmd_clear(pmdp);
705 /*FIXME!! Verify whether we need this kick below */
706 kick_all_cpus_sync();
707 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
708 return pmd;
709 }
710
711 /*
712 * For us pgtable_t is pte_t *. Inorder to save the deposisted
713 * page table, we consider the allocated page table as a list
714 * head. On withdraw we need to make sure we zero out the used
715 * list_head memory area.
716 */
717 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
718 pgtable_t pgtable)
719 {
720 struct list_head *lh = (struct list_head *) pgtable;
721
722 assert_spin_locked(pmd_lockptr(mm, pmdp));
723
724 /* FIFO */
725 if (!pmd_huge_pte(mm, pmdp))
726 INIT_LIST_HEAD(lh);
727 else
728 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
729 pmd_huge_pte(mm, pmdp) = pgtable;
730 }
731
732 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
733 {
734 pte_t *ptep;
735 pgtable_t pgtable;
736 struct list_head *lh;
737
738 assert_spin_locked(pmd_lockptr(mm, pmdp));
739
740 /* FIFO */
741 pgtable = pmd_huge_pte(mm, pmdp);
742 lh = (struct list_head *) pgtable;
743 if (list_empty(lh))
744 pmd_huge_pte(mm, pmdp) = NULL;
745 else {
746 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
747 list_del(lh);
748 }
749 ptep = (pte_t *) pgtable;
750 *ptep = __pte(0);
751 ptep++;
752 *ptep = __pte(0);
753 return pgtable;
754 }
755
756
757 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
758 unsigned long addr, pmd_t *pmdp)
759 {
760 pmd_t old_pmd;
761 unsigned long old;
762
763 old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
764 old_pmd = __pmd(old);
765 /*
766 * Serialize against find_linux_pte_or_hugepte which does lock-less
767 * lookup in page tables with local interrupts disabled. For huge pages
768 * it casts pmd_t to pte_t. Since format of pte_t is different from
769 * pmd_t we want to prevent transit from pmd pointing to page table
770 * to pmd pointing to huge page (and back) while interrupts are disabled.
771 * We clear pmd to possibly replace it with page table pointer in
772 * different code paths. So make sure we wait for the parallel
773 * find_linux_pte_or_hugepage to finish.
774 */
775 kick_all_cpus_sync();
776 return old_pmd;
777 }
778
779 int radix__has_transparent_hugepage(void)
780 {
781 /* For radix 2M at PMD level means thp */
782 if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT)
783 return 1;
784 return 0;
785 }
786 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */