]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/mm/pgtable-radix.c
Merge tag 'armsoc-arm64' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / mm / pgtable-radix.c
1 /*
2 * Page table handling routines for radix page table.
3 *
4 * Copyright 2015-2016, Aneesh Kumar K.V, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/sched.h>
12 #include <linux/memblock.h>
13 #include <linux/of_fdt.h>
14
15 #include <asm/pgtable.h>
16 #include <asm/pgalloc.h>
17 #include <asm/dma.h>
18 #include <asm/machdep.h>
19 #include <asm/mmu.h>
20 #include <asm/firmware.h>
21
22 #include <trace/events/thp.h>
23
24 static int native_register_process_table(unsigned long base, unsigned long pg_sz,
25 unsigned long table_size)
26 {
27 unsigned long patb1 = base | table_size | PATB_GR;
28
29 partition_tb->patb1 = cpu_to_be64(patb1);
30 return 0;
31 }
32
33 static __ref void *early_alloc_pgtable(unsigned long size)
34 {
35 void *pt;
36
37 pt = __va(memblock_alloc_base(size, size, MEMBLOCK_ALLOC_ANYWHERE));
38 memset(pt, 0, size);
39
40 return pt;
41 }
42
43 int radix__map_kernel_page(unsigned long ea, unsigned long pa,
44 pgprot_t flags,
45 unsigned int map_page_size)
46 {
47 pgd_t *pgdp;
48 pud_t *pudp;
49 pmd_t *pmdp;
50 pte_t *ptep;
51 /*
52 * Make sure task size is correct as per the max adddr
53 */
54 BUILD_BUG_ON(TASK_SIZE_USER64 > RADIX_PGTABLE_RANGE);
55 if (slab_is_available()) {
56 pgdp = pgd_offset_k(ea);
57 pudp = pud_alloc(&init_mm, pgdp, ea);
58 if (!pudp)
59 return -ENOMEM;
60 if (map_page_size == PUD_SIZE) {
61 ptep = (pte_t *)pudp;
62 goto set_the_pte;
63 }
64 pmdp = pmd_alloc(&init_mm, pudp, ea);
65 if (!pmdp)
66 return -ENOMEM;
67 if (map_page_size == PMD_SIZE) {
68 ptep = (pte_t *)pudp;
69 goto set_the_pte;
70 }
71 ptep = pte_alloc_kernel(pmdp, ea);
72 if (!ptep)
73 return -ENOMEM;
74 } else {
75 pgdp = pgd_offset_k(ea);
76 if (pgd_none(*pgdp)) {
77 pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
78 BUG_ON(pudp == NULL);
79 pgd_populate(&init_mm, pgdp, pudp);
80 }
81 pudp = pud_offset(pgdp, ea);
82 if (map_page_size == PUD_SIZE) {
83 ptep = (pte_t *)pudp;
84 goto set_the_pte;
85 }
86 if (pud_none(*pudp)) {
87 pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
88 BUG_ON(pmdp == NULL);
89 pud_populate(&init_mm, pudp, pmdp);
90 }
91 pmdp = pmd_offset(pudp, ea);
92 if (map_page_size == PMD_SIZE) {
93 ptep = (pte_t *)pudp;
94 goto set_the_pte;
95 }
96 if (!pmd_present(*pmdp)) {
97 ptep = early_alloc_pgtable(PAGE_SIZE);
98 BUG_ON(ptep == NULL);
99 pmd_populate_kernel(&init_mm, pmdp, ptep);
100 }
101 ptep = pte_offset_kernel(pmdp, ea);
102 }
103
104 set_the_pte:
105 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT, flags));
106 smp_wmb();
107 return 0;
108 }
109
110 static void __init radix_init_pgtable(void)
111 {
112 int loop_count;
113 u64 base, end, start_addr;
114 unsigned long rts_field;
115 struct memblock_region *reg;
116 unsigned long linear_page_size;
117
118 /* We don't support slb for radix */
119 mmu_slb_size = 0;
120 /*
121 * Create the linear mapping, using standard page size for now
122 */
123 loop_count = 0;
124 for_each_memblock(memory, reg) {
125
126 start_addr = reg->base;
127
128 redo:
129 if (loop_count < 1 && mmu_psize_defs[MMU_PAGE_1G].shift)
130 linear_page_size = PUD_SIZE;
131 else if (loop_count < 2 && mmu_psize_defs[MMU_PAGE_2M].shift)
132 linear_page_size = PMD_SIZE;
133 else
134 linear_page_size = PAGE_SIZE;
135
136 base = _ALIGN_UP(start_addr, linear_page_size);
137 end = _ALIGN_DOWN(reg->base + reg->size, linear_page_size);
138
139 pr_info("Mapping range 0x%lx - 0x%lx with 0x%lx\n",
140 (unsigned long)base, (unsigned long)end,
141 linear_page_size);
142
143 while (base < end) {
144 radix__map_kernel_page((unsigned long)__va(base),
145 base, PAGE_KERNEL_X,
146 linear_page_size);
147 base += linear_page_size;
148 }
149 /*
150 * map the rest using lower page size
151 */
152 if (end < reg->base + reg->size) {
153 start_addr = end;
154 loop_count++;
155 goto redo;
156 }
157 }
158 /*
159 * Allocate Partition table and process table for the
160 * host.
161 */
162 BUILD_BUG_ON_MSG((PRTB_SIZE_SHIFT > 23), "Process table size too large.");
163 process_tb = early_alloc_pgtable(1UL << PRTB_SIZE_SHIFT);
164 /*
165 * Fill in the process table.
166 */
167 rts_field = radix__get_tree_size();
168 process_tb->prtb0 = cpu_to_be64(rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE);
169 /*
170 * Fill in the partition table. We are suppose to use effective address
171 * of process table here. But our linear mapping also enable us to use
172 * physical address here.
173 */
174 register_process_table(__pa(process_tb), 0, PRTB_SIZE_SHIFT - 12);
175 pr_info("Process table %p and radix root for kernel: %p\n", process_tb, init_mm.pgd);
176 }
177
178 static void __init radix_init_partition_table(void)
179 {
180 unsigned long rts_field, dw0;
181
182 mmu_partition_table_init();
183 rts_field = radix__get_tree_size();
184 dw0 = rts_field | __pa(init_mm.pgd) | RADIX_PGD_INDEX_SIZE | PATB_HR;
185 mmu_partition_table_set_entry(0, dw0, 0);
186
187 pr_info("Initializing Radix MMU\n");
188 pr_info("Partition table %p\n", partition_tb);
189 }
190
191 void __init radix_init_native(void)
192 {
193 register_process_table = native_register_process_table;
194 }
195
196 static int __init get_idx_from_shift(unsigned int shift)
197 {
198 int idx = -1;
199
200 switch (shift) {
201 case 0xc:
202 idx = MMU_PAGE_4K;
203 break;
204 case 0x10:
205 idx = MMU_PAGE_64K;
206 break;
207 case 0x15:
208 idx = MMU_PAGE_2M;
209 break;
210 case 0x1e:
211 idx = MMU_PAGE_1G;
212 break;
213 }
214 return idx;
215 }
216
217 static int __init radix_dt_scan_page_sizes(unsigned long node,
218 const char *uname, int depth,
219 void *data)
220 {
221 int size = 0;
222 int shift, idx;
223 unsigned int ap;
224 const __be32 *prop;
225 const char *type = of_get_flat_dt_prop(node, "device_type", NULL);
226
227 /* We are scanning "cpu" nodes only */
228 if (type == NULL || strcmp(type, "cpu") != 0)
229 return 0;
230
231 prop = of_get_flat_dt_prop(node, "ibm,processor-radix-AP-encodings", &size);
232 if (!prop)
233 return 0;
234
235 pr_info("Page sizes from device-tree:\n");
236 for (; size >= 4; size -= 4, ++prop) {
237
238 struct mmu_psize_def *def;
239
240 /* top 3 bit is AP encoding */
241 shift = be32_to_cpu(prop[0]) & ~(0xe << 28);
242 ap = be32_to_cpu(prop[0]) >> 29;
243 pr_info("Page size sift = %d AP=0x%x\n", shift, ap);
244
245 idx = get_idx_from_shift(shift);
246 if (idx < 0)
247 continue;
248
249 def = &mmu_psize_defs[idx];
250 def->shift = shift;
251 def->ap = ap;
252 }
253
254 /* needed ? */
255 cur_cpu_spec->mmu_features &= ~MMU_FTR_NO_SLBIE_B;
256 return 1;
257 }
258
259 void __init radix__early_init_devtree(void)
260 {
261 int rc;
262
263 /*
264 * Try to find the available page sizes in the device-tree
265 */
266 rc = of_scan_flat_dt(radix_dt_scan_page_sizes, NULL);
267 if (rc != 0) /* Found */
268 goto found;
269 /*
270 * let's assume we have page 4k and 64k support
271 */
272 mmu_psize_defs[MMU_PAGE_4K].shift = 12;
273 mmu_psize_defs[MMU_PAGE_4K].ap = 0x0;
274
275 mmu_psize_defs[MMU_PAGE_64K].shift = 16;
276 mmu_psize_defs[MMU_PAGE_64K].ap = 0x5;
277 found:
278 #ifdef CONFIG_SPARSEMEM_VMEMMAP
279 if (mmu_psize_defs[MMU_PAGE_2M].shift) {
280 /*
281 * map vmemmap using 2M if available
282 */
283 mmu_vmemmap_psize = MMU_PAGE_2M;
284 }
285 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
286 return;
287 }
288
289 static void update_hid_for_radix(void)
290 {
291 unsigned long hid0;
292 unsigned long rb = 3UL << PPC_BITLSHIFT(53); /* IS = 3 */
293
294 asm volatile("ptesync": : :"memory");
295 /* prs = 0, ric = 2, rs = 0, r = 1 is = 3 */
296 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
297 : : "r"(rb), "i"(1), "i"(0), "i"(2), "r"(0) : "memory");
298 /* prs = 1, ric = 2, rs = 0, r = 1 is = 3 */
299 asm volatile(PPC_TLBIE_5(%0, %4, %3, %2, %1)
300 : : "r"(rb), "i"(1), "i"(1), "i"(2), "r"(0) : "memory");
301 asm volatile("eieio; tlbsync; ptesync; isync; slbia": : :"memory");
302 /*
303 * now switch the HID
304 */
305 hid0 = mfspr(SPRN_HID0);
306 hid0 |= HID0_POWER9_RADIX;
307 mtspr(SPRN_HID0, hid0);
308 asm volatile("isync": : :"memory");
309
310 /* Wait for it to happen */
311 while (!(mfspr(SPRN_HID0) & HID0_POWER9_RADIX))
312 cpu_relax();
313 }
314
315 void __init radix__early_init_mmu(void)
316 {
317 unsigned long lpcr;
318
319 #ifdef CONFIG_PPC_64K_PAGES
320 /* PAGE_SIZE mappings */
321 mmu_virtual_psize = MMU_PAGE_64K;
322 #else
323 mmu_virtual_psize = MMU_PAGE_4K;
324 #endif
325
326 #ifdef CONFIG_SPARSEMEM_VMEMMAP
327 /* vmemmap mapping */
328 mmu_vmemmap_psize = mmu_virtual_psize;
329 #endif
330 /*
331 * initialize page table size
332 */
333 __pte_index_size = RADIX_PTE_INDEX_SIZE;
334 __pmd_index_size = RADIX_PMD_INDEX_SIZE;
335 __pud_index_size = RADIX_PUD_INDEX_SIZE;
336 __pgd_index_size = RADIX_PGD_INDEX_SIZE;
337 __pmd_cache_index = RADIX_PMD_INDEX_SIZE;
338 __pte_table_size = RADIX_PTE_TABLE_SIZE;
339 __pmd_table_size = RADIX_PMD_TABLE_SIZE;
340 __pud_table_size = RADIX_PUD_TABLE_SIZE;
341 __pgd_table_size = RADIX_PGD_TABLE_SIZE;
342
343 __pmd_val_bits = RADIX_PMD_VAL_BITS;
344 __pud_val_bits = RADIX_PUD_VAL_BITS;
345 __pgd_val_bits = RADIX_PGD_VAL_BITS;
346
347 __kernel_virt_start = RADIX_KERN_VIRT_START;
348 __kernel_virt_size = RADIX_KERN_VIRT_SIZE;
349 __vmalloc_start = RADIX_VMALLOC_START;
350 __vmalloc_end = RADIX_VMALLOC_END;
351 vmemmap = (struct page *)RADIX_VMEMMAP_BASE;
352 ioremap_bot = IOREMAP_BASE;
353
354 #ifdef CONFIG_PCI
355 pci_io_base = ISA_IO_BASE;
356 #endif
357
358 /*
359 * For now radix also use the same frag size
360 */
361 __pte_frag_nr = H_PTE_FRAG_NR;
362 __pte_frag_size_shift = H_PTE_FRAG_SIZE_SHIFT;
363
364 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
365 radix_init_native();
366 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
367 update_hid_for_radix();
368 lpcr = mfspr(SPRN_LPCR);
369 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
370 radix_init_partition_table();
371 }
372
373 memblock_set_current_limit(MEMBLOCK_ALLOC_ANYWHERE);
374
375 radix_init_pgtable();
376 }
377
378 void radix__early_init_mmu_secondary(void)
379 {
380 unsigned long lpcr;
381 /*
382 * update partition table control register and UPRT
383 */
384 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
385
386 if (cpu_has_feature(CPU_FTR_POWER9_DD1))
387 update_hid_for_radix();
388
389 lpcr = mfspr(SPRN_LPCR);
390 mtspr(SPRN_LPCR, lpcr | LPCR_UPRT | LPCR_HR);
391
392 mtspr(SPRN_PTCR,
393 __pa(partition_tb) | (PATB_SIZE_SHIFT - 12));
394 }
395 }
396
397 void radix__mmu_cleanup_all(void)
398 {
399 unsigned long lpcr;
400
401 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
402 lpcr = mfspr(SPRN_LPCR);
403 mtspr(SPRN_LPCR, lpcr & ~LPCR_UPRT);
404 mtspr(SPRN_PTCR, 0);
405 radix__flush_tlb_all();
406 }
407 }
408
409 void radix__setup_initial_memory_limit(phys_addr_t first_memblock_base,
410 phys_addr_t first_memblock_size)
411 {
412 /* We don't currently support the first MEMBLOCK not mapping 0
413 * physical on those processors
414 */
415 BUG_ON(first_memblock_base != 0);
416 /*
417 * We limit the allocation that depend on ppc64_rma_size
418 * to first_memblock_size. We also clamp it to 1GB to
419 * avoid some funky things such as RTAS bugs.
420 *
421 * On radix config we really don't have a limitation
422 * on real mode access. But keeping it as above works
423 * well enough.
424 */
425 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
426 /*
427 * Finally limit subsequent allocations. We really don't want
428 * to limit the memblock allocations to rma_size. FIXME!! should
429 * we even limit at all ?
430 */
431 memblock_set_current_limit(first_memblock_base + first_memblock_size);
432 }
433
434 #ifdef CONFIG_SPARSEMEM_VMEMMAP
435 int __meminit radix__vmemmap_create_mapping(unsigned long start,
436 unsigned long page_size,
437 unsigned long phys)
438 {
439 /* Create a PTE encoding */
440 unsigned long flags = _PAGE_PRESENT | _PAGE_ACCESSED | _PAGE_KERNEL_RW;
441
442 BUG_ON(radix__map_kernel_page(start, phys, __pgprot(flags), page_size));
443 return 0;
444 }
445
446 #ifdef CONFIG_MEMORY_HOTPLUG
447 void radix__vmemmap_remove_mapping(unsigned long start, unsigned long page_size)
448 {
449 /* FIXME!! intel does more. We should free page tables mapping vmemmap ? */
450 }
451 #endif
452 #endif
453
454 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
455
456 unsigned long radix__pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
457 pmd_t *pmdp, unsigned long clr,
458 unsigned long set)
459 {
460 unsigned long old;
461
462 #ifdef CONFIG_DEBUG_VM
463 WARN_ON(!radix__pmd_trans_huge(*pmdp));
464 assert_spin_locked(&mm->page_table_lock);
465 #endif
466
467 old = radix__pte_update(mm, addr, (pte_t *)pmdp, clr, set, 1);
468 trace_hugepage_update(addr, old, clr, set);
469
470 return old;
471 }
472
473 pmd_t radix__pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
474 pmd_t *pmdp)
475
476 {
477 pmd_t pmd;
478
479 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
480 VM_BUG_ON(radix__pmd_trans_huge(*pmdp));
481 /*
482 * khugepaged calls this for normal pmd
483 */
484 pmd = *pmdp;
485 pmd_clear(pmdp);
486 /*FIXME!! Verify whether we need this kick below */
487 kick_all_cpus_sync();
488 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
489 return pmd;
490 }
491
492 /*
493 * For us pgtable_t is pte_t *. Inorder to save the deposisted
494 * page table, we consider the allocated page table as a list
495 * head. On withdraw we need to make sure we zero out the used
496 * list_head memory area.
497 */
498 void radix__pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
499 pgtable_t pgtable)
500 {
501 struct list_head *lh = (struct list_head *) pgtable;
502
503 assert_spin_locked(pmd_lockptr(mm, pmdp));
504
505 /* FIFO */
506 if (!pmd_huge_pte(mm, pmdp))
507 INIT_LIST_HEAD(lh);
508 else
509 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
510 pmd_huge_pte(mm, pmdp) = pgtable;
511 }
512
513 pgtable_t radix__pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
514 {
515 pte_t *ptep;
516 pgtable_t pgtable;
517 struct list_head *lh;
518
519 assert_spin_locked(pmd_lockptr(mm, pmdp));
520
521 /* FIFO */
522 pgtable = pmd_huge_pte(mm, pmdp);
523 lh = (struct list_head *) pgtable;
524 if (list_empty(lh))
525 pmd_huge_pte(mm, pmdp) = NULL;
526 else {
527 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
528 list_del(lh);
529 }
530 ptep = (pte_t *) pgtable;
531 *ptep = __pte(0);
532 ptep++;
533 *ptep = __pte(0);
534 return pgtable;
535 }
536
537
538 pmd_t radix__pmdp_huge_get_and_clear(struct mm_struct *mm,
539 unsigned long addr, pmd_t *pmdp)
540 {
541 pmd_t old_pmd;
542 unsigned long old;
543
544 old = radix__pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
545 old_pmd = __pmd(old);
546 /*
547 * Serialize against find_linux_pte_or_hugepte which does lock-less
548 * lookup in page tables with local interrupts disabled. For huge pages
549 * it casts pmd_t to pte_t. Since format of pte_t is different from
550 * pmd_t we want to prevent transit from pmd pointing to page table
551 * to pmd pointing to huge page (and back) while interrupts are disabled.
552 * We clear pmd to possibly replace it with page table pointer in
553 * different code paths. So make sure we wait for the parallel
554 * find_linux_pte_or_hugepage to finish.
555 */
556 kick_all_cpus_sync();
557 return old_pmd;
558 }
559
560 int radix__has_transparent_hugepage(void)
561 {
562 /* For radix 2M at PMD level means thp */
563 if (mmu_psize_defs[MMU_PAGE_2M].shift == PMD_SHIFT)
564 return 1;
565 return 0;
566 }
567 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */