]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/mm/pgtable_64.c
powerpc/mm/hash: Add support for Power9 Hash
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / mm / pgtable_64.c
1 /*
2 * This file contains ioremap and related functions for 64-bit machines.
3 *
4 * Derived from arch/ppc64/mm/init.c
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 *
7 * Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
8 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
9 * Copyright (C) 1996 Paul Mackerras
10 *
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 *
14 * Dave Engebretsen <engebret@us.ibm.com>
15 * Rework for PPC64 port.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License
19 * as published by the Free Software Foundation; either version
20 * 2 of the License, or (at your option) any later version.
21 *
22 */
23
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/export.h>
30 #include <linux/types.h>
31 #include <linux/mman.h>
32 #include <linux/mm.h>
33 #include <linux/swap.h>
34 #include <linux/stddef.h>
35 #include <linux/vmalloc.h>
36 #include <linux/memblock.h>
37 #include <linux/slab.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/pgalloc.h>
41 #include <asm/page.h>
42 #include <asm/prom.h>
43 #include <asm/io.h>
44 #include <asm/mmu_context.h>
45 #include <asm/pgtable.h>
46 #include <asm/mmu.h>
47 #include <asm/smp.h>
48 #include <asm/machdep.h>
49 #include <asm/tlb.h>
50 #include <asm/processor.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/firmware.h>
54 #include <asm/dma.h>
55
56 #include "mmu_decl.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/thp.h>
60
61 /* Some sanity checking */
62 #if TASK_SIZE_USER64 > PGTABLE_RANGE
63 #error TASK_SIZE_USER64 exceeds pagetable range
64 #endif
65
66 #ifdef CONFIG_PPC_STD_MMU_64
67 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
68 #error TASK_SIZE_USER64 exceeds user VSID range
69 #endif
70 #endif
71
72 #ifdef CONFIG_PPC_BOOK3S_64
73 /*
74 * partition table and process table for ISA 3.0
75 */
76 struct prtb_entry *process_tb;
77 struct patb_entry *partition_tb;
78 #endif
79 unsigned long ioremap_bot = IOREMAP_BASE;
80
81 #ifdef CONFIG_PPC_MMU_NOHASH
82 static __ref void *early_alloc_pgtable(unsigned long size)
83 {
84 void *pt;
85
86 pt = __va(memblock_alloc_base(size, size, __pa(MAX_DMA_ADDRESS)));
87 memset(pt, 0, size);
88
89 return pt;
90 }
91 #endif /* CONFIG_PPC_MMU_NOHASH */
92
93 /*
94 * map_kernel_page currently only called by __ioremap
95 * map_kernel_page adds an entry to the ioremap page table
96 * and adds an entry to the HPT, possibly bolting it
97 */
98 int map_kernel_page(unsigned long ea, unsigned long pa, unsigned long flags)
99 {
100 pgd_t *pgdp;
101 pud_t *pudp;
102 pmd_t *pmdp;
103 pte_t *ptep;
104
105 if (slab_is_available()) {
106 pgdp = pgd_offset_k(ea);
107 pudp = pud_alloc(&init_mm, pgdp, ea);
108 if (!pudp)
109 return -ENOMEM;
110 pmdp = pmd_alloc(&init_mm, pudp, ea);
111 if (!pmdp)
112 return -ENOMEM;
113 ptep = pte_alloc_kernel(pmdp, ea);
114 if (!ptep)
115 return -ENOMEM;
116 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
117 __pgprot(flags)));
118 } else {
119 #ifdef CONFIG_PPC_MMU_NOHASH
120 pgdp = pgd_offset_k(ea);
121 #ifdef PUD_TABLE_SIZE
122 if (pgd_none(*pgdp)) {
123 pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
124 BUG_ON(pudp == NULL);
125 pgd_populate(&init_mm, pgdp, pudp);
126 }
127 #endif /* PUD_TABLE_SIZE */
128 pudp = pud_offset(pgdp, ea);
129 if (pud_none(*pudp)) {
130 pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
131 BUG_ON(pmdp == NULL);
132 pud_populate(&init_mm, pudp, pmdp);
133 }
134 pmdp = pmd_offset(pudp, ea);
135 if (!pmd_present(*pmdp)) {
136 ptep = early_alloc_pgtable(PAGE_SIZE);
137 BUG_ON(ptep == NULL);
138 pmd_populate_kernel(&init_mm, pmdp, ptep);
139 }
140 ptep = pte_offset_kernel(pmdp, ea);
141 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
142 __pgprot(flags)));
143 #else /* CONFIG_PPC_MMU_NOHASH */
144 /*
145 * If the mm subsystem is not fully up, we cannot create a
146 * linux page table entry for this mapping. Simply bolt an
147 * entry in the hardware page table.
148 *
149 */
150 if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
151 mmu_io_psize, mmu_kernel_ssize)) {
152 printk(KERN_ERR "Failed to do bolted mapping IO "
153 "memory at %016lx !\n", pa);
154 return -ENOMEM;
155 }
156 #endif /* !CONFIG_PPC_MMU_NOHASH */
157 }
158
159 smp_wmb();
160 return 0;
161 }
162
163
164 /**
165 * __ioremap_at - Low level function to establish the page tables
166 * for an IO mapping
167 */
168 void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
169 unsigned long flags)
170 {
171 unsigned long i;
172
173 /* Make sure we have the base flags */
174 if ((flags & _PAGE_PRESENT) == 0)
175 flags |= pgprot_val(PAGE_KERNEL);
176
177 /* We don't support the 4K PFN hack with ioremap */
178 if (flags & _PAGE_4K_PFN)
179 return NULL;
180
181 WARN_ON(pa & ~PAGE_MASK);
182 WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
183 WARN_ON(size & ~PAGE_MASK);
184
185 for (i = 0; i < size; i += PAGE_SIZE)
186 if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
187 return NULL;
188
189 return (void __iomem *)ea;
190 }
191
192 /**
193 * __iounmap_from - Low level function to tear down the page tables
194 * for an IO mapping. This is used for mappings that
195 * are manipulated manually, like partial unmapping of
196 * PCI IOs or ISA space.
197 */
198 void __iounmap_at(void *ea, unsigned long size)
199 {
200 WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
201 WARN_ON(size & ~PAGE_MASK);
202
203 unmap_kernel_range((unsigned long)ea, size);
204 }
205
206 void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
207 unsigned long flags, void *caller)
208 {
209 phys_addr_t paligned;
210 void __iomem *ret;
211
212 /*
213 * Choose an address to map it to.
214 * Once the imalloc system is running, we use it.
215 * Before that, we map using addresses going
216 * up from ioremap_bot. imalloc will use
217 * the addresses from ioremap_bot through
218 * IMALLOC_END
219 *
220 */
221 paligned = addr & PAGE_MASK;
222 size = PAGE_ALIGN(addr + size) - paligned;
223
224 if ((size == 0) || (paligned == 0))
225 return NULL;
226
227 if (slab_is_available()) {
228 struct vm_struct *area;
229
230 area = __get_vm_area_caller(size, VM_IOREMAP,
231 ioremap_bot, IOREMAP_END,
232 caller);
233 if (area == NULL)
234 return NULL;
235
236 area->phys_addr = paligned;
237 ret = __ioremap_at(paligned, area->addr, size, flags);
238 if (!ret)
239 vunmap(area->addr);
240 } else {
241 ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
242 if (ret)
243 ioremap_bot += size;
244 }
245
246 if (ret)
247 ret += addr & ~PAGE_MASK;
248 return ret;
249 }
250
251 void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
252 unsigned long flags)
253 {
254 return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
255 }
256
257 void __iomem * ioremap(phys_addr_t addr, unsigned long size)
258 {
259 unsigned long flags = pgprot_val(pgprot_noncached(__pgprot(0)));
260 void *caller = __builtin_return_address(0);
261
262 if (ppc_md.ioremap)
263 return ppc_md.ioremap(addr, size, flags, caller);
264 return __ioremap_caller(addr, size, flags, caller);
265 }
266
267 void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
268 {
269 unsigned long flags = pgprot_val(pgprot_noncached_wc(__pgprot(0)));
270 void *caller = __builtin_return_address(0);
271
272 if (ppc_md.ioremap)
273 return ppc_md.ioremap(addr, size, flags, caller);
274 return __ioremap_caller(addr, size, flags, caller);
275 }
276
277 void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
278 unsigned long flags)
279 {
280 void *caller = __builtin_return_address(0);
281
282 /* writeable implies dirty for kernel addresses */
283 if (flags & _PAGE_WRITE)
284 flags |= _PAGE_DIRTY;
285
286 /* we don't want to let _PAGE_EXEC leak out */
287 flags &= ~_PAGE_EXEC;
288 /*
289 * Force kernel mapping.
290 */
291 #if defined(CONFIG_PPC_BOOK3S_64)
292 flags |= _PAGE_PRIVILEGED;
293 #else
294 flags &= ~_PAGE_USER;
295 #endif
296
297
298 #ifdef _PAGE_BAP_SR
299 /* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
300 * which means that we just cleared supervisor access... oops ;-) This
301 * restores it
302 */
303 flags |= _PAGE_BAP_SR;
304 #endif
305
306 if (ppc_md.ioremap)
307 return ppc_md.ioremap(addr, size, flags, caller);
308 return __ioremap_caller(addr, size, flags, caller);
309 }
310
311
312 /*
313 * Unmap an IO region and remove it from imalloc'd list.
314 * Access to IO memory should be serialized by driver.
315 */
316 void __iounmap(volatile void __iomem *token)
317 {
318 void *addr;
319
320 if (!slab_is_available())
321 return;
322
323 addr = (void *) ((unsigned long __force)
324 PCI_FIX_ADDR(token) & PAGE_MASK);
325 if ((unsigned long)addr < ioremap_bot) {
326 printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
327 " at 0x%p\n", addr);
328 return;
329 }
330 vunmap(addr);
331 }
332
333 void iounmap(volatile void __iomem *token)
334 {
335 if (ppc_md.iounmap)
336 ppc_md.iounmap(token);
337 else
338 __iounmap(token);
339 }
340
341 EXPORT_SYMBOL(ioremap);
342 EXPORT_SYMBOL(ioremap_wc);
343 EXPORT_SYMBOL(ioremap_prot);
344 EXPORT_SYMBOL(__ioremap);
345 EXPORT_SYMBOL(__ioremap_at);
346 EXPORT_SYMBOL(iounmap);
347 EXPORT_SYMBOL(__iounmap);
348 EXPORT_SYMBOL(__iounmap_at);
349
350 #ifndef __PAGETABLE_PUD_FOLDED
351 /* 4 level page table */
352 struct page *pgd_page(pgd_t pgd)
353 {
354 if (pgd_huge(pgd))
355 return pte_page(pgd_pte(pgd));
356 return virt_to_page(pgd_page_vaddr(pgd));
357 }
358 #endif
359
360 struct page *pud_page(pud_t pud)
361 {
362 if (pud_huge(pud))
363 return pte_page(pud_pte(pud));
364 return virt_to_page(pud_page_vaddr(pud));
365 }
366
367 /*
368 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
369 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
370 */
371 struct page *pmd_page(pmd_t pmd)
372 {
373 if (pmd_trans_huge(pmd) || pmd_huge(pmd))
374 return pte_page(pmd_pte(pmd));
375 return virt_to_page(pmd_page_vaddr(pmd));
376 }
377
378 #ifdef CONFIG_PPC_64K_PAGES
379 static pte_t *get_from_cache(struct mm_struct *mm)
380 {
381 void *pte_frag, *ret;
382
383 spin_lock(&mm->page_table_lock);
384 ret = mm->context.pte_frag;
385 if (ret) {
386 pte_frag = ret + PTE_FRAG_SIZE;
387 /*
388 * If we have taken up all the fragments mark PTE page NULL
389 */
390 if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
391 pte_frag = NULL;
392 mm->context.pte_frag = pte_frag;
393 }
394 spin_unlock(&mm->page_table_lock);
395 return (pte_t *)ret;
396 }
397
398 static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
399 {
400 void *ret = NULL;
401 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
402 __GFP_REPEAT | __GFP_ZERO);
403 if (!page)
404 return NULL;
405 if (!kernel && !pgtable_page_ctor(page)) {
406 __free_page(page);
407 return NULL;
408 }
409
410 ret = page_address(page);
411 spin_lock(&mm->page_table_lock);
412 /*
413 * If we find pgtable_page set, we return
414 * the allocated page with single fragement
415 * count.
416 */
417 if (likely(!mm->context.pte_frag)) {
418 set_page_count(page, PTE_FRAG_NR);
419 mm->context.pte_frag = ret + PTE_FRAG_SIZE;
420 }
421 spin_unlock(&mm->page_table_lock);
422
423 return (pte_t *)ret;
424 }
425
426 pte_t *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
427 {
428 pte_t *pte;
429
430 pte = get_from_cache(mm);
431 if (pte)
432 return pte;
433
434 return __alloc_for_cache(mm, kernel);
435 }
436
437 void page_table_free(struct mm_struct *mm, unsigned long *table, int kernel)
438 {
439 struct page *page = virt_to_page(table);
440 if (put_page_testzero(page)) {
441 if (!kernel)
442 pgtable_page_dtor(page);
443 free_hot_cold_page(page, 0);
444 }
445 }
446
447 #ifdef CONFIG_SMP
448 static void page_table_free_rcu(void *table)
449 {
450 struct page *page = virt_to_page(table);
451 if (put_page_testzero(page)) {
452 pgtable_page_dtor(page);
453 free_hot_cold_page(page, 0);
454 }
455 }
456
457 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
458 {
459 unsigned long pgf = (unsigned long)table;
460
461 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
462 pgf |= shift;
463 tlb_remove_table(tlb, (void *)pgf);
464 }
465
466 void __tlb_remove_table(void *_table)
467 {
468 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
469 unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
470
471 if (!shift)
472 /* PTE page needs special handling */
473 page_table_free_rcu(table);
474 else {
475 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
476 kmem_cache_free(PGT_CACHE(shift), table);
477 }
478 }
479 #else
480 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
481 {
482 if (!shift) {
483 /* PTE page needs special handling */
484 struct page *page = virt_to_page(table);
485 if (put_page_testzero(page)) {
486 pgtable_page_dtor(page);
487 free_hot_cold_page(page, 0);
488 }
489 } else {
490 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
491 kmem_cache_free(PGT_CACHE(shift), table);
492 }
493 }
494 #endif
495 #endif /* CONFIG_PPC_64K_PAGES */
496
497 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
498
499 /*
500 * This is called when relaxing access to a hugepage. It's also called in the page
501 * fault path when we don't hit any of the major fault cases, ie, a minor
502 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
503 * handled those two for us, we additionally deal with missing execute
504 * permission here on some processors
505 */
506 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
507 pmd_t *pmdp, pmd_t entry, int dirty)
508 {
509 int changed;
510 #ifdef CONFIG_DEBUG_VM
511 WARN_ON(!pmd_trans_huge(*pmdp));
512 assert_spin_locked(&vma->vm_mm->page_table_lock);
513 #endif
514 changed = !pmd_same(*(pmdp), entry);
515 if (changed) {
516 __ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
517 /*
518 * Since we are not supporting SW TLB systems, we don't
519 * have any thing similar to flush_tlb_page_nohash()
520 */
521 }
522 return changed;
523 }
524
525 unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
526 pmd_t *pmdp, unsigned long clr,
527 unsigned long set)
528 {
529
530 __be64 old_be, tmp;
531 unsigned long old;
532
533 #ifdef CONFIG_DEBUG_VM
534 WARN_ON(!pmd_trans_huge(*pmdp));
535 assert_spin_locked(&mm->page_table_lock);
536 #endif
537
538 __asm__ __volatile__(
539 "1: ldarx %0,0,%3\n\
540 and. %1,%0,%6\n\
541 bne- 1b \n\
542 andc %1,%0,%4 \n\
543 or %1,%1,%7\n\
544 stdcx. %1,0,%3 \n\
545 bne- 1b"
546 : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
547 : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
548 "r" (cpu_to_be64(_PAGE_BUSY)), "r" (cpu_to_be64(set))
549 : "cc" );
550
551 old = be64_to_cpu(old_be);
552
553 trace_hugepage_update(addr, old, clr, set);
554 if (old & _PAGE_HASHPTE)
555 hpte_do_hugepage_flush(mm, addr, pmdp, old);
556 return old;
557 }
558
559 pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
560 pmd_t *pmdp)
561 {
562 pmd_t pmd;
563
564 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
565 VM_BUG_ON(pmd_trans_huge(*pmdp));
566
567 pmd = *pmdp;
568 pmd_clear(pmdp);
569 /*
570 * Wait for all pending hash_page to finish. This is needed
571 * in case of subpage collapse. When we collapse normal pages
572 * to hugepage, we first clear the pmd, then invalidate all
573 * the PTE entries. The assumption here is that any low level
574 * page fault will see a none pmd and take the slow path that
575 * will wait on mmap_sem. But we could very well be in a
576 * hash_page with local ptep pointer value. Such a hash page
577 * can result in adding new HPTE entries for normal subpages.
578 * That means we could be modifying the page content as we
579 * copy them to a huge page. So wait for parallel hash_page
580 * to finish before invalidating HPTE entries. We can do this
581 * by sending an IPI to all the cpus and executing a dummy
582 * function there.
583 */
584 kick_all_cpus_sync();
585 /*
586 * Now invalidate the hpte entries in the range
587 * covered by pmd. This make sure we take a
588 * fault and will find the pmd as none, which will
589 * result in a major fault which takes mmap_sem and
590 * hence wait for collapse to complete. Without this
591 * the __collapse_huge_page_copy can result in copying
592 * the old content.
593 */
594 flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
595 return pmd;
596 }
597
598 /*
599 * We currently remove entries from the hashtable regardless of whether
600 * the entry was young or dirty.
601 *
602 * We should be more intelligent about this but for the moment we override
603 * these functions and force a tlb flush unconditionally
604 */
605 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
606 unsigned long address, pmd_t *pmdp)
607 {
608 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
609 }
610
611 /*
612 * We want to put the pgtable in pmd and use pgtable for tracking
613 * the base page size hptes
614 */
615 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
616 pgtable_t pgtable)
617 {
618 pgtable_t *pgtable_slot;
619 assert_spin_locked(&mm->page_table_lock);
620 /*
621 * we store the pgtable in the second half of PMD
622 */
623 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
624 *pgtable_slot = pgtable;
625 /*
626 * expose the deposited pgtable to other cpus.
627 * before we set the hugepage PTE at pmd level
628 * hash fault code looks at the deposted pgtable
629 * to store hash index values.
630 */
631 smp_wmb();
632 }
633
634 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
635 {
636 pgtable_t pgtable;
637 pgtable_t *pgtable_slot;
638
639 assert_spin_locked(&mm->page_table_lock);
640 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
641 pgtable = *pgtable_slot;
642 /*
643 * Once we withdraw, mark the entry NULL.
644 */
645 *pgtable_slot = NULL;
646 /*
647 * We store HPTE information in the deposited PTE fragment.
648 * zero out the content on withdraw.
649 */
650 memset(pgtable, 0, PTE_FRAG_SIZE);
651 return pgtable;
652 }
653
654 void pmdp_huge_split_prepare(struct vm_area_struct *vma,
655 unsigned long address, pmd_t *pmdp)
656 {
657 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
658 VM_BUG_ON(REGION_ID(address) != USER_REGION_ID);
659
660 /*
661 * We can't mark the pmd none here, because that will cause a race
662 * against exit_mmap. We need to continue mark pmd TRANS HUGE, while
663 * we spilt, but at the same time we wan't rest of the ppc64 code
664 * not to insert hash pte on this, because we will be modifying
665 * the deposited pgtable in the caller of this function. Hence
666 * clear the _PAGE_USER so that we move the fault handling to
667 * higher level function and that will serialize against ptl.
668 * We need to flush existing hash pte entries here even though,
669 * the translation is still valid, because we will withdraw
670 * pgtable_t after this.
671 */
672 pmd_hugepage_update(vma->vm_mm, address, pmdp, 0, _PAGE_PRIVILEGED);
673 }
674
675
676 /*
677 * set a new huge pmd. We should not be called for updating
678 * an existing pmd entry. That should go via pmd_hugepage_update.
679 */
680 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
681 pmd_t *pmdp, pmd_t pmd)
682 {
683 #ifdef CONFIG_DEBUG_VM
684 WARN_ON(pte_present(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
685 assert_spin_locked(&mm->page_table_lock);
686 WARN_ON(!pmd_trans_huge(pmd));
687 #endif
688 trace_hugepage_set_pmd(addr, pmd_val(pmd));
689 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
690 }
691
692 /*
693 * We use this to invalidate a pmdp entry before switching from a
694 * hugepte to regular pmd entry.
695 */
696 void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
697 pmd_t *pmdp)
698 {
699 pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0);
700
701 /*
702 * This ensures that generic code that rely on IRQ disabling
703 * to prevent a parallel THP split work as expected.
704 */
705 kick_all_cpus_sync();
706 }
707
708 /*
709 * A linux hugepage PMD was changed and the corresponding hash table entries
710 * neesd to be flushed.
711 */
712 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
713 pmd_t *pmdp, unsigned long old_pmd)
714 {
715 int ssize;
716 unsigned int psize;
717 unsigned long vsid;
718 unsigned long flags = 0;
719 const struct cpumask *tmp;
720
721 /* get the base page size,vsid and segment size */
722 #ifdef CONFIG_DEBUG_VM
723 psize = get_slice_psize(mm, addr);
724 BUG_ON(psize == MMU_PAGE_16M);
725 #endif
726 if (old_pmd & _PAGE_COMBO)
727 psize = MMU_PAGE_4K;
728 else
729 psize = MMU_PAGE_64K;
730
731 if (!is_kernel_addr(addr)) {
732 ssize = user_segment_size(addr);
733 vsid = get_vsid(mm->context.id, addr, ssize);
734 WARN_ON(vsid == 0);
735 } else {
736 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
737 ssize = mmu_kernel_ssize;
738 }
739
740 tmp = cpumask_of(smp_processor_id());
741 if (cpumask_equal(mm_cpumask(mm), tmp))
742 flags |= HPTE_LOCAL_UPDATE;
743
744 return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
745 }
746
747 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
748 {
749 return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
750 }
751
752 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
753 {
754 unsigned long pmdv;
755
756 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
757 return pmd_set_protbits(__pmd(pmdv), pgprot);
758 }
759
760 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
761 {
762 return pfn_pmd(page_to_pfn(page), pgprot);
763 }
764
765 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
766 {
767 unsigned long pmdv;
768
769 pmdv = pmd_val(pmd);
770 pmdv &= _HPAGE_CHG_MASK;
771 return pmd_set_protbits(__pmd(pmdv), newprot);
772 }
773
774 /*
775 * This is called at the end of handling a user page fault, when the
776 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
777 * We use it to preload an HPTE into the hash table corresponding to
778 * the updated linux HUGE PMD entry.
779 */
780 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
781 pmd_t *pmd)
782 {
783 return;
784 }
785
786 pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
787 unsigned long addr, pmd_t *pmdp)
788 {
789 pmd_t old_pmd;
790 pgtable_t pgtable;
791 unsigned long old;
792 pgtable_t *pgtable_slot;
793
794 old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
795 old_pmd = __pmd(old);
796 /*
797 * We have pmd == none and we are holding page_table_lock.
798 * So we can safely go and clear the pgtable hash
799 * index info.
800 */
801 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
802 pgtable = *pgtable_slot;
803 /*
804 * Let's zero out old valid and hash index details
805 * hash fault look at them.
806 */
807 memset(pgtable, 0, PTE_FRAG_SIZE);
808 /*
809 * Serialize against find_linux_pte_or_hugepte which does lock-less
810 * lookup in page tables with local interrupts disabled. For huge pages
811 * it casts pmd_t to pte_t. Since format of pte_t is different from
812 * pmd_t we want to prevent transit from pmd pointing to page table
813 * to pmd pointing to huge page (and back) while interrupts are disabled.
814 * We clear pmd to possibly replace it with page table pointer in
815 * different code paths. So make sure we wait for the parallel
816 * find_linux_pte_or_hugepage to finish.
817 */
818 kick_all_cpus_sync();
819 return old_pmd;
820 }
821
822 int has_transparent_hugepage(void)
823 {
824
825 BUILD_BUG_ON_MSG((PMD_SHIFT - PAGE_SHIFT) >= MAX_ORDER,
826 "hugepages can't be allocated by the buddy allocator");
827
828 BUILD_BUG_ON_MSG((PMD_SHIFT - PAGE_SHIFT) < 2,
829 "We need more than 2 pages to do deferred thp split");
830
831 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
832 return 0;
833 /*
834 * We support THP only if PMD_SIZE is 16MB.
835 */
836 if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
837 return 0;
838 /*
839 * We need to make sure that we support 16MB hugepage in a segement
840 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
841 * of 64K.
842 */
843 /*
844 * If we have 64K HPTE, we will be using that by default
845 */
846 if (mmu_psize_defs[MMU_PAGE_64K].shift &&
847 (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
848 return 0;
849 /*
850 * Ok we only have 4K HPTE
851 */
852 if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
853 return 0;
854
855 return 1;
856 }
857 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */