]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/mm/pgtable_64.c
powerpc/mm: Rename function to indicate we are allocating fragments
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / mm / pgtable_64.c
1 /*
2 * This file contains ioremap and related functions for 64-bit machines.
3 *
4 * Derived from arch/ppc64/mm/init.c
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 *
7 * Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
8 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
9 * Copyright (C) 1996 Paul Mackerras
10 *
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 *
14 * Dave Engebretsen <engebret@us.ibm.com>
15 * Rework for PPC64 port.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License
19 * as published by the Free Software Foundation; either version
20 * 2 of the License, or (at your option) any later version.
21 *
22 */
23
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/export.h>
30 #include <linux/types.h>
31 #include <linux/mman.h>
32 #include <linux/mm.h>
33 #include <linux/swap.h>
34 #include <linux/stddef.h>
35 #include <linux/vmalloc.h>
36 #include <linux/memblock.h>
37 #include <linux/slab.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/pgalloc.h>
41 #include <asm/page.h>
42 #include <asm/prom.h>
43 #include <asm/io.h>
44 #include <asm/mmu_context.h>
45 #include <asm/pgtable.h>
46 #include <asm/mmu.h>
47 #include <asm/smp.h>
48 #include <asm/machdep.h>
49 #include <asm/tlb.h>
50 #include <asm/processor.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/firmware.h>
54 #include <asm/dma.h>
55
56 #include "mmu_decl.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/thp.h>
60
61 #ifdef CONFIG_PPC_STD_MMU_64
62 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
63 #error TASK_SIZE_USER64 exceeds user VSID range
64 #endif
65 #endif
66
67 #ifdef CONFIG_PPC_BOOK3S_64
68 /*
69 * partition table and process table for ISA 3.0
70 */
71 struct prtb_entry *process_tb;
72 struct patb_entry *partition_tb;
73 /*
74 * page table size
75 */
76 unsigned long __pte_index_size;
77 EXPORT_SYMBOL(__pte_index_size);
78 unsigned long __pmd_index_size;
79 EXPORT_SYMBOL(__pmd_index_size);
80 unsigned long __pud_index_size;
81 EXPORT_SYMBOL(__pud_index_size);
82 unsigned long __pgd_index_size;
83 EXPORT_SYMBOL(__pgd_index_size);
84 unsigned long __pmd_cache_index;
85 EXPORT_SYMBOL(__pmd_cache_index);
86 unsigned long __pte_table_size;
87 EXPORT_SYMBOL(__pte_table_size);
88 unsigned long __pmd_table_size;
89 EXPORT_SYMBOL(__pmd_table_size);
90 unsigned long __pud_table_size;
91 EXPORT_SYMBOL(__pud_table_size);
92 unsigned long __pgd_table_size;
93 EXPORT_SYMBOL(__pgd_table_size);
94
95 #endif
96 unsigned long ioremap_bot = IOREMAP_BASE;
97
98 /**
99 * __ioremap_at - Low level function to establish the page tables
100 * for an IO mapping
101 */
102 void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
103 unsigned long flags)
104 {
105 unsigned long i;
106
107 /* Make sure we have the base flags */
108 if ((flags & _PAGE_PRESENT) == 0)
109 flags |= pgprot_val(PAGE_KERNEL);
110
111 /* We don't support the 4K PFN hack with ioremap */
112 if (flags & H_PAGE_4K_PFN)
113 return NULL;
114
115 WARN_ON(pa & ~PAGE_MASK);
116 WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
117 WARN_ON(size & ~PAGE_MASK);
118
119 for (i = 0; i < size; i += PAGE_SIZE)
120 if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
121 return NULL;
122
123 return (void __iomem *)ea;
124 }
125
126 /**
127 * __iounmap_from - Low level function to tear down the page tables
128 * for an IO mapping. This is used for mappings that
129 * are manipulated manually, like partial unmapping of
130 * PCI IOs or ISA space.
131 */
132 void __iounmap_at(void *ea, unsigned long size)
133 {
134 WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
135 WARN_ON(size & ~PAGE_MASK);
136
137 unmap_kernel_range((unsigned long)ea, size);
138 }
139
140 void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
141 unsigned long flags, void *caller)
142 {
143 phys_addr_t paligned;
144 void __iomem *ret;
145
146 /*
147 * Choose an address to map it to.
148 * Once the imalloc system is running, we use it.
149 * Before that, we map using addresses going
150 * up from ioremap_bot. imalloc will use
151 * the addresses from ioremap_bot through
152 * IMALLOC_END
153 *
154 */
155 paligned = addr & PAGE_MASK;
156 size = PAGE_ALIGN(addr + size) - paligned;
157
158 if ((size == 0) || (paligned == 0))
159 return NULL;
160
161 if (slab_is_available()) {
162 struct vm_struct *area;
163
164 area = __get_vm_area_caller(size, VM_IOREMAP,
165 ioremap_bot, IOREMAP_END,
166 caller);
167 if (area == NULL)
168 return NULL;
169
170 area->phys_addr = paligned;
171 ret = __ioremap_at(paligned, area->addr, size, flags);
172 if (!ret)
173 vunmap(area->addr);
174 } else {
175 ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
176 if (ret)
177 ioremap_bot += size;
178 }
179
180 if (ret)
181 ret += addr & ~PAGE_MASK;
182 return ret;
183 }
184
185 void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
186 unsigned long flags)
187 {
188 return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
189 }
190
191 void __iomem * ioremap(phys_addr_t addr, unsigned long size)
192 {
193 unsigned long flags = pgprot_val(pgprot_noncached(__pgprot(0)));
194 void *caller = __builtin_return_address(0);
195
196 if (ppc_md.ioremap)
197 return ppc_md.ioremap(addr, size, flags, caller);
198 return __ioremap_caller(addr, size, flags, caller);
199 }
200
201 void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
202 {
203 unsigned long flags = pgprot_val(pgprot_noncached_wc(__pgprot(0)));
204 void *caller = __builtin_return_address(0);
205
206 if (ppc_md.ioremap)
207 return ppc_md.ioremap(addr, size, flags, caller);
208 return __ioremap_caller(addr, size, flags, caller);
209 }
210
211 void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
212 unsigned long flags)
213 {
214 void *caller = __builtin_return_address(0);
215
216 /* writeable implies dirty for kernel addresses */
217 if (flags & _PAGE_WRITE)
218 flags |= _PAGE_DIRTY;
219
220 /* we don't want to let _PAGE_EXEC leak out */
221 flags &= ~_PAGE_EXEC;
222 /*
223 * Force kernel mapping.
224 */
225 #if defined(CONFIG_PPC_BOOK3S_64)
226 flags |= _PAGE_PRIVILEGED;
227 #else
228 flags &= ~_PAGE_USER;
229 #endif
230
231
232 #ifdef _PAGE_BAP_SR
233 /* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
234 * which means that we just cleared supervisor access... oops ;-) This
235 * restores it
236 */
237 flags |= _PAGE_BAP_SR;
238 #endif
239
240 if (ppc_md.ioremap)
241 return ppc_md.ioremap(addr, size, flags, caller);
242 return __ioremap_caller(addr, size, flags, caller);
243 }
244
245
246 /*
247 * Unmap an IO region and remove it from imalloc'd list.
248 * Access to IO memory should be serialized by driver.
249 */
250 void __iounmap(volatile void __iomem *token)
251 {
252 void *addr;
253
254 if (!slab_is_available())
255 return;
256
257 addr = (void *) ((unsigned long __force)
258 PCI_FIX_ADDR(token) & PAGE_MASK);
259 if ((unsigned long)addr < ioremap_bot) {
260 printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
261 " at 0x%p\n", addr);
262 return;
263 }
264 vunmap(addr);
265 }
266
267 void iounmap(volatile void __iomem *token)
268 {
269 if (ppc_md.iounmap)
270 ppc_md.iounmap(token);
271 else
272 __iounmap(token);
273 }
274
275 EXPORT_SYMBOL(ioremap);
276 EXPORT_SYMBOL(ioremap_wc);
277 EXPORT_SYMBOL(ioremap_prot);
278 EXPORT_SYMBOL(__ioremap);
279 EXPORT_SYMBOL(__ioremap_at);
280 EXPORT_SYMBOL(iounmap);
281 EXPORT_SYMBOL(__iounmap);
282 EXPORT_SYMBOL(__iounmap_at);
283
284 #ifndef __PAGETABLE_PUD_FOLDED
285 /* 4 level page table */
286 struct page *pgd_page(pgd_t pgd)
287 {
288 if (pgd_huge(pgd))
289 return pte_page(pgd_pte(pgd));
290 return virt_to_page(pgd_page_vaddr(pgd));
291 }
292 #endif
293
294 struct page *pud_page(pud_t pud)
295 {
296 if (pud_huge(pud))
297 return pte_page(pud_pte(pud));
298 return virt_to_page(pud_page_vaddr(pud));
299 }
300
301 /*
302 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
303 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
304 */
305 struct page *pmd_page(pmd_t pmd)
306 {
307 if (pmd_trans_huge(pmd) || pmd_huge(pmd))
308 return pte_page(pmd_pte(pmd));
309 return virt_to_page(pmd_page_vaddr(pmd));
310 }
311
312 #ifdef CONFIG_PPC_64K_PAGES
313 static pte_t *get_from_cache(struct mm_struct *mm)
314 {
315 void *pte_frag, *ret;
316
317 spin_lock(&mm->page_table_lock);
318 ret = mm->context.pte_frag;
319 if (ret) {
320 pte_frag = ret + PTE_FRAG_SIZE;
321 /*
322 * If we have taken up all the fragments mark PTE page NULL
323 */
324 if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
325 pte_frag = NULL;
326 mm->context.pte_frag = pte_frag;
327 }
328 spin_unlock(&mm->page_table_lock);
329 return (pte_t *)ret;
330 }
331
332 static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
333 {
334 void *ret = NULL;
335 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
336 __GFP_REPEAT | __GFP_ZERO);
337 if (!page)
338 return NULL;
339 if (!kernel && !pgtable_page_ctor(page)) {
340 __free_page(page);
341 return NULL;
342 }
343
344 ret = page_address(page);
345 spin_lock(&mm->page_table_lock);
346 /*
347 * If we find pgtable_page set, we return
348 * the allocated page with single fragement
349 * count.
350 */
351 if (likely(!mm->context.pte_frag)) {
352 set_page_count(page, PTE_FRAG_NR);
353 mm->context.pte_frag = ret + PTE_FRAG_SIZE;
354 }
355 spin_unlock(&mm->page_table_lock);
356
357 return (pte_t *)ret;
358 }
359
360 pte_t *pte_fragment_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
361 {
362 pte_t *pte;
363
364 pte = get_from_cache(mm);
365 if (pte)
366 return pte;
367
368 return __alloc_for_cache(mm, kernel);
369 }
370
371 void pte_fragment_free(unsigned long *table, int kernel)
372 {
373 struct page *page = virt_to_page(table);
374 if (put_page_testzero(page)) {
375 if (!kernel)
376 pgtable_page_dtor(page);
377 free_hot_cold_page(page, 0);
378 }
379 }
380
381 #ifdef CONFIG_SMP
382 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
383 {
384 unsigned long pgf = (unsigned long)table;
385
386 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
387 pgf |= shift;
388 tlb_remove_table(tlb, (void *)pgf);
389 }
390
391 void __tlb_remove_table(void *_table)
392 {
393 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
394 unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
395
396 if (!shift)
397 /* PTE page needs special handling */
398 pte_fragment_free(table, 0);
399 else {
400 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
401 kmem_cache_free(PGT_CACHE(shift), table);
402 }
403 }
404 #else
405 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
406 {
407 if (!shift) {
408 /* PTE page needs special handling */
409 pte_fragment_free(table, 0);
410 } else {
411 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
412 kmem_cache_free(PGT_CACHE(shift), table);
413 }
414 }
415 #endif
416 #endif /* CONFIG_PPC_64K_PAGES */
417
418 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
419
420 /*
421 * This is called when relaxing access to a hugepage. It's also called in the page
422 * fault path when we don't hit any of the major fault cases, ie, a minor
423 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
424 * handled those two for us, we additionally deal with missing execute
425 * permission here on some processors
426 */
427 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
428 pmd_t *pmdp, pmd_t entry, int dirty)
429 {
430 int changed;
431 #ifdef CONFIG_DEBUG_VM
432 WARN_ON(!pmd_trans_huge(*pmdp));
433 assert_spin_locked(&vma->vm_mm->page_table_lock);
434 #endif
435 changed = !pmd_same(*(pmdp), entry);
436 if (changed) {
437 __ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
438 /*
439 * Since we are not supporting SW TLB systems, we don't
440 * have any thing similar to flush_tlb_page_nohash()
441 */
442 }
443 return changed;
444 }
445
446 unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
447 pmd_t *pmdp, unsigned long clr,
448 unsigned long set)
449 {
450
451 __be64 old_be, tmp;
452 unsigned long old;
453
454 #ifdef CONFIG_DEBUG_VM
455 WARN_ON(!pmd_trans_huge(*pmdp));
456 assert_spin_locked(&mm->page_table_lock);
457 #endif
458
459 __asm__ __volatile__(
460 "1: ldarx %0,0,%3\n\
461 and. %1,%0,%6\n\
462 bne- 1b \n\
463 andc %1,%0,%4 \n\
464 or %1,%1,%7\n\
465 stdcx. %1,0,%3 \n\
466 bne- 1b"
467 : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
468 : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
469 "r" (cpu_to_be64(H_PAGE_BUSY)), "r" (cpu_to_be64(set))
470 : "cc" );
471
472 old = be64_to_cpu(old_be);
473
474 trace_hugepage_update(addr, old, clr, set);
475 if (old & H_PAGE_HASHPTE)
476 hpte_do_hugepage_flush(mm, addr, pmdp, old);
477 return old;
478 }
479
480 pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
481 pmd_t *pmdp)
482 {
483 pmd_t pmd;
484
485 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
486 VM_BUG_ON(pmd_trans_huge(*pmdp));
487
488 pmd = *pmdp;
489 pmd_clear(pmdp);
490 /*
491 * Wait for all pending hash_page to finish. This is needed
492 * in case of subpage collapse. When we collapse normal pages
493 * to hugepage, we first clear the pmd, then invalidate all
494 * the PTE entries. The assumption here is that any low level
495 * page fault will see a none pmd and take the slow path that
496 * will wait on mmap_sem. But we could very well be in a
497 * hash_page with local ptep pointer value. Such a hash page
498 * can result in adding new HPTE entries for normal subpages.
499 * That means we could be modifying the page content as we
500 * copy them to a huge page. So wait for parallel hash_page
501 * to finish before invalidating HPTE entries. We can do this
502 * by sending an IPI to all the cpus and executing a dummy
503 * function there.
504 */
505 kick_all_cpus_sync();
506 /*
507 * Now invalidate the hpte entries in the range
508 * covered by pmd. This make sure we take a
509 * fault and will find the pmd as none, which will
510 * result in a major fault which takes mmap_sem and
511 * hence wait for collapse to complete. Without this
512 * the __collapse_huge_page_copy can result in copying
513 * the old content.
514 */
515 flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
516 return pmd;
517 }
518
519 /*
520 * We currently remove entries from the hashtable regardless of whether
521 * the entry was young or dirty.
522 *
523 * We should be more intelligent about this but for the moment we override
524 * these functions and force a tlb flush unconditionally
525 */
526 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
527 unsigned long address, pmd_t *pmdp)
528 {
529 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
530 }
531
532 /*
533 * We want to put the pgtable in pmd and use pgtable for tracking
534 * the base page size hptes
535 */
536 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
537 pgtable_t pgtable)
538 {
539 pgtable_t *pgtable_slot;
540 assert_spin_locked(&mm->page_table_lock);
541 /*
542 * we store the pgtable in the second half of PMD
543 */
544 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
545 *pgtable_slot = pgtable;
546 /*
547 * expose the deposited pgtable to other cpus.
548 * before we set the hugepage PTE at pmd level
549 * hash fault code looks at the deposted pgtable
550 * to store hash index values.
551 */
552 smp_wmb();
553 }
554
555 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
556 {
557 pgtable_t pgtable;
558 pgtable_t *pgtable_slot;
559
560 assert_spin_locked(&mm->page_table_lock);
561 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
562 pgtable = *pgtable_slot;
563 /*
564 * Once we withdraw, mark the entry NULL.
565 */
566 *pgtable_slot = NULL;
567 /*
568 * We store HPTE information in the deposited PTE fragment.
569 * zero out the content on withdraw.
570 */
571 memset(pgtable, 0, PTE_FRAG_SIZE);
572 return pgtable;
573 }
574
575 void pmdp_huge_split_prepare(struct vm_area_struct *vma,
576 unsigned long address, pmd_t *pmdp)
577 {
578 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
579 VM_BUG_ON(REGION_ID(address) != USER_REGION_ID);
580
581 /*
582 * We can't mark the pmd none here, because that will cause a race
583 * against exit_mmap. We need to continue mark pmd TRANS HUGE, while
584 * we spilt, but at the same time we wan't rest of the ppc64 code
585 * not to insert hash pte on this, because we will be modifying
586 * the deposited pgtable in the caller of this function. Hence
587 * clear the _PAGE_USER so that we move the fault handling to
588 * higher level function and that will serialize against ptl.
589 * We need to flush existing hash pte entries here even though,
590 * the translation is still valid, because we will withdraw
591 * pgtable_t after this.
592 */
593 pmd_hugepage_update(vma->vm_mm, address, pmdp, 0, _PAGE_PRIVILEGED);
594 }
595
596
597 /*
598 * set a new huge pmd. We should not be called for updating
599 * an existing pmd entry. That should go via pmd_hugepage_update.
600 */
601 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
602 pmd_t *pmdp, pmd_t pmd)
603 {
604 #ifdef CONFIG_DEBUG_VM
605 WARN_ON(pte_present(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
606 assert_spin_locked(&mm->page_table_lock);
607 WARN_ON(!pmd_trans_huge(pmd));
608 #endif
609 trace_hugepage_set_pmd(addr, pmd_val(pmd));
610 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
611 }
612
613 /*
614 * We use this to invalidate a pmdp entry before switching from a
615 * hugepte to regular pmd entry.
616 */
617 void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
618 pmd_t *pmdp)
619 {
620 pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0);
621
622 /*
623 * This ensures that generic code that rely on IRQ disabling
624 * to prevent a parallel THP split work as expected.
625 */
626 kick_all_cpus_sync();
627 }
628
629 /*
630 * A linux hugepage PMD was changed and the corresponding hash table entries
631 * neesd to be flushed.
632 */
633 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
634 pmd_t *pmdp, unsigned long old_pmd)
635 {
636 int ssize;
637 unsigned int psize;
638 unsigned long vsid;
639 unsigned long flags = 0;
640 const struct cpumask *tmp;
641
642 /* get the base page size,vsid and segment size */
643 #ifdef CONFIG_DEBUG_VM
644 psize = get_slice_psize(mm, addr);
645 BUG_ON(psize == MMU_PAGE_16M);
646 #endif
647 if (old_pmd & H_PAGE_COMBO)
648 psize = MMU_PAGE_4K;
649 else
650 psize = MMU_PAGE_64K;
651
652 if (!is_kernel_addr(addr)) {
653 ssize = user_segment_size(addr);
654 vsid = get_vsid(mm->context.id, addr, ssize);
655 WARN_ON(vsid == 0);
656 } else {
657 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
658 ssize = mmu_kernel_ssize;
659 }
660
661 tmp = cpumask_of(smp_processor_id());
662 if (cpumask_equal(mm_cpumask(mm), tmp))
663 flags |= HPTE_LOCAL_UPDATE;
664
665 return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
666 }
667
668 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
669 {
670 return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
671 }
672
673 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
674 {
675 unsigned long pmdv;
676
677 pmdv = (pfn << PAGE_SHIFT) & PTE_RPN_MASK;
678 return pmd_set_protbits(__pmd(pmdv), pgprot);
679 }
680
681 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
682 {
683 return pfn_pmd(page_to_pfn(page), pgprot);
684 }
685
686 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
687 {
688 unsigned long pmdv;
689
690 pmdv = pmd_val(pmd);
691 pmdv &= _HPAGE_CHG_MASK;
692 return pmd_set_protbits(__pmd(pmdv), newprot);
693 }
694
695 /*
696 * This is called at the end of handling a user page fault, when the
697 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
698 * We use it to preload an HPTE into the hash table corresponding to
699 * the updated linux HUGE PMD entry.
700 */
701 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
702 pmd_t *pmd)
703 {
704 return;
705 }
706
707 pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
708 unsigned long addr, pmd_t *pmdp)
709 {
710 pmd_t old_pmd;
711 pgtable_t pgtable;
712 unsigned long old;
713 pgtable_t *pgtable_slot;
714
715 old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
716 old_pmd = __pmd(old);
717 /*
718 * We have pmd == none and we are holding page_table_lock.
719 * So we can safely go and clear the pgtable hash
720 * index info.
721 */
722 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
723 pgtable = *pgtable_slot;
724 /*
725 * Let's zero out old valid and hash index details
726 * hash fault look at them.
727 */
728 memset(pgtable, 0, PTE_FRAG_SIZE);
729 /*
730 * Serialize against find_linux_pte_or_hugepte which does lock-less
731 * lookup in page tables with local interrupts disabled. For huge pages
732 * it casts pmd_t to pte_t. Since format of pte_t is different from
733 * pmd_t we want to prevent transit from pmd pointing to page table
734 * to pmd pointing to huge page (and back) while interrupts are disabled.
735 * We clear pmd to possibly replace it with page table pointer in
736 * different code paths. So make sure we wait for the parallel
737 * find_linux_pte_or_hugepage to finish.
738 */
739 kick_all_cpus_sync();
740 return old_pmd;
741 }
742
743 int has_transparent_hugepage(void)
744 {
745
746 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
747 return 0;
748 /*
749 * We support THP only if PMD_SIZE is 16MB.
750 */
751 if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
752 return 0;
753 /*
754 * We need to make sure that we support 16MB hugepage in a segement
755 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
756 * of 64K.
757 */
758 /*
759 * If we have 64K HPTE, we will be using that by default
760 */
761 if (mmu_psize_defs[MMU_PAGE_64K].shift &&
762 (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
763 return 0;
764 /*
765 * Ok we only have 4K HPTE
766 */
767 if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
768 return 0;
769
770 return 1;
771 }
772 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */