]>
git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/mm/pgtable_64.c
2 * This file contains ioremap and related functions for 64-bit machines.
4 * Derived from arch/ppc64/mm/init.c
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
7 * Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
8 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
9 * Copyright (C) 1996 Paul Mackerras
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
14 * Dave Engebretsen <engebret@us.ibm.com>
15 * Rework for PPC64 port.
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License
19 * as published by the Free Software Foundation; either version
20 * 2 of the License, or (at your option) any later version.
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/export.h>
30 #include <linux/types.h>
31 #include <linux/mman.h>
33 #include <linux/swap.h>
34 #include <linux/stddef.h>
35 #include <linux/vmalloc.h>
36 #include <linux/memblock.h>
37 #include <linux/slab.h>
38 #include <linux/hugetlb.h>
40 #include <asm/pgalloc.h>
44 #include <asm/mmu_context.h>
45 #include <asm/pgtable.h>
48 #include <asm/machdep.h>
50 #include <asm/processor.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/firmware.h>
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/thp.h>
61 /* Some sanity checking */
62 #if TASK_SIZE_USER64 > PGTABLE_RANGE
63 #error TASK_SIZE_USER64 exceeds pagetable range
66 #ifdef CONFIG_PPC_STD_MMU_64
67 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
68 #error TASK_SIZE_USER64 exceeds user VSID range
72 unsigned long ioremap_bot
= IOREMAP_BASE
;
74 #ifdef CONFIG_PPC_MMU_NOHASH
75 static __ref
void *early_alloc_pgtable(unsigned long size
)
79 pt
= __va(memblock_alloc_base(size
, size
, __pa(MAX_DMA_ADDRESS
)));
84 #endif /* CONFIG_PPC_MMU_NOHASH */
87 * map_kernel_page currently only called by __ioremap
88 * map_kernel_page adds an entry to the ioremap page table
89 * and adds an entry to the HPT, possibly bolting it
91 int map_kernel_page(unsigned long ea
, unsigned long pa
, int flags
)
98 if (slab_is_available()) {
99 pgdp
= pgd_offset_k(ea
);
100 pudp
= pud_alloc(&init_mm
, pgdp
, ea
);
103 pmdp
= pmd_alloc(&init_mm
, pudp
, ea
);
106 ptep
= pte_alloc_kernel(pmdp
, ea
);
109 set_pte_at(&init_mm
, ea
, ptep
, pfn_pte(pa
>> PAGE_SHIFT
,
112 #ifdef CONFIG_PPC_MMU_NOHASH
113 pgdp
= pgd_offset_k(ea
);
114 #ifdef PUD_TABLE_SIZE
115 if (pgd_none(*pgdp
)) {
116 pudp
= early_alloc_pgtable(PUD_TABLE_SIZE
);
117 BUG_ON(pudp
== NULL
);
118 pgd_populate(&init_mm
, pgdp
, pudp
);
120 #endif /* PUD_TABLE_SIZE */
121 pudp
= pud_offset(pgdp
, ea
);
122 if (pud_none(*pudp
)) {
123 pmdp
= early_alloc_pgtable(PMD_TABLE_SIZE
);
124 BUG_ON(pmdp
== NULL
);
125 pud_populate(&init_mm
, pudp
, pmdp
);
127 pmdp
= pmd_offset(pudp
, ea
);
128 if (!pmd_present(*pmdp
)) {
129 ptep
= early_alloc_pgtable(PAGE_SIZE
);
130 BUG_ON(ptep
== NULL
);
131 pmd_populate_kernel(&init_mm
, pmdp
, ptep
);
133 ptep
= pte_offset_kernel(pmdp
, ea
);
134 set_pte_at(&init_mm
, ea
, ptep
, pfn_pte(pa
>> PAGE_SHIFT
,
136 #else /* CONFIG_PPC_MMU_NOHASH */
138 * If the mm subsystem is not fully up, we cannot create a
139 * linux page table entry for this mapping. Simply bolt an
140 * entry in the hardware page table.
143 if (htab_bolt_mapping(ea
, ea
+ PAGE_SIZE
, pa
, flags
,
144 mmu_io_psize
, mmu_kernel_ssize
)) {
145 printk(KERN_ERR
"Failed to do bolted mapping IO "
146 "memory at %016lx !\n", pa
);
149 #endif /* !CONFIG_PPC_MMU_NOHASH */
152 #ifdef CONFIG_PPC_BOOK3E_64
154 * With hardware tablewalk, a sync is needed to ensure that
155 * subsequent accesses see the PTE we just wrote. Unlike userspace
156 * mappings, we can't tolerate spurious faults, so make sure
157 * the new PTE will be seen the first time.
168 * __ioremap_at - Low level function to establish the page tables
171 void __iomem
* __ioremap_at(phys_addr_t pa
, void *ea
, unsigned long size
,
176 /* Make sure we have the base flags */
177 if ((flags
& _PAGE_PRESENT
) == 0)
178 flags
|= pgprot_val(PAGE_KERNEL
);
180 /* Non-cacheable page cannot be coherent */
181 if (flags
& _PAGE_NO_CACHE
)
182 flags
&= ~_PAGE_COHERENT
;
184 /* We don't support the 4K PFN hack with ioremap */
185 if (flags
& _PAGE_4K_PFN
)
188 WARN_ON(pa
& ~PAGE_MASK
);
189 WARN_ON(((unsigned long)ea
) & ~PAGE_MASK
);
190 WARN_ON(size
& ~PAGE_MASK
);
192 for (i
= 0; i
< size
; i
+= PAGE_SIZE
)
193 if (map_kernel_page((unsigned long)ea
+i
, pa
+i
, flags
))
196 return (void __iomem
*)ea
;
200 * __iounmap_from - Low level function to tear down the page tables
201 * for an IO mapping. This is used for mappings that
202 * are manipulated manually, like partial unmapping of
203 * PCI IOs or ISA space.
205 void __iounmap_at(void *ea
, unsigned long size
)
207 WARN_ON(((unsigned long)ea
) & ~PAGE_MASK
);
208 WARN_ON(size
& ~PAGE_MASK
);
210 unmap_kernel_range((unsigned long)ea
, size
);
213 void __iomem
* __ioremap_caller(phys_addr_t addr
, unsigned long size
,
214 unsigned long flags
, void *caller
)
216 phys_addr_t paligned
;
220 * Choose an address to map it to.
221 * Once the imalloc system is running, we use it.
222 * Before that, we map using addresses going
223 * up from ioremap_bot. imalloc will use
224 * the addresses from ioremap_bot through
228 paligned
= addr
& PAGE_MASK
;
229 size
= PAGE_ALIGN(addr
+ size
) - paligned
;
231 if ((size
== 0) || (paligned
== 0))
234 if (slab_is_available()) {
235 struct vm_struct
*area
;
237 area
= __get_vm_area_caller(size
, VM_IOREMAP
,
238 ioremap_bot
, IOREMAP_END
,
243 area
->phys_addr
= paligned
;
244 ret
= __ioremap_at(paligned
, area
->addr
, size
, flags
);
248 ret
= __ioremap_at(paligned
, (void *)ioremap_bot
, size
, flags
);
254 ret
+= addr
& ~PAGE_MASK
;
258 void __iomem
* __ioremap(phys_addr_t addr
, unsigned long size
,
261 return __ioremap_caller(addr
, size
, flags
, __builtin_return_address(0));
264 void __iomem
* ioremap(phys_addr_t addr
, unsigned long size
)
266 unsigned long flags
= _PAGE_NO_CACHE
| _PAGE_GUARDED
;
267 void *caller
= __builtin_return_address(0);
270 return ppc_md
.ioremap(addr
, size
, flags
, caller
);
271 return __ioremap_caller(addr
, size
, flags
, caller
);
274 void __iomem
* ioremap_wc(phys_addr_t addr
, unsigned long size
)
276 unsigned long flags
= _PAGE_NO_CACHE
;
277 void *caller
= __builtin_return_address(0);
280 return ppc_md
.ioremap(addr
, size
, flags
, caller
);
281 return __ioremap_caller(addr
, size
, flags
, caller
);
284 void __iomem
* ioremap_prot(phys_addr_t addr
, unsigned long size
,
287 void *caller
= __builtin_return_address(0);
289 /* writeable implies dirty for kernel addresses */
290 if (flags
& _PAGE_RW
)
291 flags
|= _PAGE_DIRTY
;
293 /* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
294 flags
&= ~(_PAGE_USER
| _PAGE_EXEC
);
297 /* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
298 * which means that we just cleared supervisor access... oops ;-) This
301 flags
|= _PAGE_BAP_SR
;
305 return ppc_md
.ioremap(addr
, size
, flags
, caller
);
306 return __ioremap_caller(addr
, size
, flags
, caller
);
311 * Unmap an IO region and remove it from imalloc'd list.
312 * Access to IO memory should be serialized by driver.
314 void __iounmap(volatile void __iomem
*token
)
318 if (!slab_is_available())
321 addr
= (void *) ((unsigned long __force
)
322 PCI_FIX_ADDR(token
) & PAGE_MASK
);
323 if ((unsigned long)addr
< ioremap_bot
) {
324 printk(KERN_WARNING
"Attempt to iounmap early bolted mapping"
331 void iounmap(volatile void __iomem
*token
)
334 ppc_md
.iounmap(token
);
339 EXPORT_SYMBOL(ioremap
);
340 EXPORT_SYMBOL(ioremap_wc
);
341 EXPORT_SYMBOL(ioremap_prot
);
342 EXPORT_SYMBOL(__ioremap
);
343 EXPORT_SYMBOL(__ioremap_at
);
344 EXPORT_SYMBOL(iounmap
);
345 EXPORT_SYMBOL(__iounmap
);
346 EXPORT_SYMBOL(__iounmap_at
);
348 #ifndef __PAGETABLE_PUD_FOLDED
349 /* 4 level page table */
350 struct page
*pgd_page(pgd_t pgd
)
353 return pte_page(pgd_pte(pgd
));
354 return virt_to_page(pgd_page_vaddr(pgd
));
358 struct page
*pud_page(pud_t pud
)
361 return pte_page(pud_pte(pud
));
362 return virt_to_page(pud_page_vaddr(pud
));
366 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
367 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
369 struct page
*pmd_page(pmd_t pmd
)
371 if (pmd_trans_huge(pmd
) || pmd_huge(pmd
))
372 return pfn_to_page(pmd_pfn(pmd
));
373 return virt_to_page(pmd_page_vaddr(pmd
));
376 #ifdef CONFIG_PPC_64K_PAGES
377 static pte_t
*get_from_cache(struct mm_struct
*mm
)
379 void *pte_frag
, *ret
;
381 spin_lock(&mm
->page_table_lock
);
382 ret
= mm
->context
.pte_frag
;
384 pte_frag
= ret
+ PTE_FRAG_SIZE
;
386 * If we have taken up all the fragments mark PTE page NULL
388 if (((unsigned long)pte_frag
& ~PAGE_MASK
) == 0)
390 mm
->context
.pte_frag
= pte_frag
;
392 spin_unlock(&mm
->page_table_lock
);
396 static pte_t
*__alloc_for_cache(struct mm_struct
*mm
, int kernel
)
399 struct page
*page
= alloc_page(GFP_KERNEL
| __GFP_NOTRACK
|
400 __GFP_REPEAT
| __GFP_ZERO
);
403 if (!kernel
&& !pgtable_page_ctor(page
)) {
408 ret
= page_address(page
);
409 spin_lock(&mm
->page_table_lock
);
411 * If we find pgtable_page set, we return
412 * the allocated page with single fragement
415 if (likely(!mm
->context
.pte_frag
)) {
416 atomic_set(&page
->_count
, PTE_FRAG_NR
);
417 mm
->context
.pte_frag
= ret
+ PTE_FRAG_SIZE
;
419 spin_unlock(&mm
->page_table_lock
);
424 pte_t
*page_table_alloc(struct mm_struct
*mm
, unsigned long vmaddr
, int kernel
)
428 pte
= get_from_cache(mm
);
432 return __alloc_for_cache(mm
, kernel
);
435 void page_table_free(struct mm_struct
*mm
, unsigned long *table
, int kernel
)
437 struct page
*page
= virt_to_page(table
);
438 if (put_page_testzero(page
)) {
440 pgtable_page_dtor(page
);
441 free_hot_cold_page(page
, 0);
446 static void page_table_free_rcu(void *table
)
448 struct page
*page
= virt_to_page(table
);
449 if (put_page_testzero(page
)) {
450 pgtable_page_dtor(page
);
451 free_hot_cold_page(page
, 0);
455 void pgtable_free_tlb(struct mmu_gather
*tlb
, void *table
, int shift
)
457 unsigned long pgf
= (unsigned long)table
;
459 BUG_ON(shift
> MAX_PGTABLE_INDEX_SIZE
);
461 tlb_remove_table(tlb
, (void *)pgf
);
464 void __tlb_remove_table(void *_table
)
466 void *table
= (void *)((unsigned long)_table
& ~MAX_PGTABLE_INDEX_SIZE
);
467 unsigned shift
= (unsigned long)_table
& MAX_PGTABLE_INDEX_SIZE
;
470 /* PTE page needs special handling */
471 page_table_free_rcu(table
);
473 BUG_ON(shift
> MAX_PGTABLE_INDEX_SIZE
);
474 kmem_cache_free(PGT_CACHE(shift
), table
);
478 void pgtable_free_tlb(struct mmu_gather
*tlb
, void *table
, int shift
)
481 /* PTE page needs special handling */
482 struct page
*page
= virt_to_page(table
);
483 if (put_page_testzero(page
)) {
484 pgtable_page_dtor(page
);
485 free_hot_cold_page(page
, 0);
488 BUG_ON(shift
> MAX_PGTABLE_INDEX_SIZE
);
489 kmem_cache_free(PGT_CACHE(shift
), table
);
493 #endif /* CONFIG_PPC_64K_PAGES */
495 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
498 * This is called when relaxing access to a hugepage. It's also called in the page
499 * fault path when we don't hit any of the major fault cases, ie, a minor
500 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
501 * handled those two for us, we additionally deal with missing execute
502 * permission here on some processors
504 int pmdp_set_access_flags(struct vm_area_struct
*vma
, unsigned long address
,
505 pmd_t
*pmdp
, pmd_t entry
, int dirty
)
508 #ifdef CONFIG_DEBUG_VM
509 WARN_ON(!pmd_trans_huge(*pmdp
));
510 assert_spin_locked(&vma
->vm_mm
->page_table_lock
);
512 changed
= !pmd_same(*(pmdp
), entry
);
514 __ptep_set_access_flags(pmdp_ptep(pmdp
), pmd_pte(entry
));
516 * Since we are not supporting SW TLB systems, we don't
517 * have any thing similar to flush_tlb_page_nohash()
523 unsigned long pmd_hugepage_update(struct mm_struct
*mm
, unsigned long addr
,
524 pmd_t
*pmdp
, unsigned long clr
,
528 unsigned long old
, tmp
;
530 #ifdef CONFIG_DEBUG_VM
531 WARN_ON(!pmd_trans_huge(*pmdp
));
532 assert_spin_locked(&mm
->page_table_lock
);
535 #ifdef PTE_ATOMIC_UPDATES
536 __asm__
__volatile__(
544 : "=&r" (old
), "=&r" (tmp
), "=m" (*pmdp
)
545 : "r" (pmdp
), "r" (clr
), "m" (*pmdp
), "i" (_PAGE_BUSY
), "r" (set
)
548 old
= pmd_val(*pmdp
);
549 *pmdp
= __pmd((old
& ~clr
) | set
);
551 trace_hugepage_update(addr
, old
, clr
, set
);
552 if (old
& _PAGE_HASHPTE
)
553 hpte_do_hugepage_flush(mm
, addr
, pmdp
, old
);
557 pmd_t
pmdp_clear_flush(struct vm_area_struct
*vma
, unsigned long address
,
562 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
563 if (pmd_trans_huge(*pmdp
)) {
564 pmd
= pmdp_get_and_clear(vma
->vm_mm
, address
, pmdp
);
567 * khugepaged calls this for normal pmd
572 * Wait for all pending hash_page to finish. This is needed
573 * in case of subpage collapse. When we collapse normal pages
574 * to hugepage, we first clear the pmd, then invalidate all
575 * the PTE entries. The assumption here is that any low level
576 * page fault will see a none pmd and take the slow path that
577 * will wait on mmap_sem. But we could very well be in a
578 * hash_page with local ptep pointer value. Such a hash page
579 * can result in adding new HPTE entries for normal subpages.
580 * That means we could be modifying the page content as we
581 * copy them to a huge page. So wait for parallel hash_page
582 * to finish before invalidating HPTE entries. We can do this
583 * by sending an IPI to all the cpus and executing a dummy
586 kick_all_cpus_sync();
588 * Now invalidate the hpte entries in the range
589 * covered by pmd. This make sure we take a
590 * fault and will find the pmd as none, which will
591 * result in a major fault which takes mmap_sem and
592 * hence wait for collapse to complete. Without this
593 * the __collapse_huge_page_copy can result in copying
596 flush_tlb_pmd_range(vma
->vm_mm
, &pmd
, address
);
601 int pmdp_test_and_clear_young(struct vm_area_struct
*vma
,
602 unsigned long address
, pmd_t
*pmdp
)
604 return __pmdp_test_and_clear_young(vma
->vm_mm
, address
, pmdp
);
608 * We currently remove entries from the hashtable regardless of whether
609 * the entry was young or dirty. The generic routines only flush if the
610 * entry was young or dirty which is not good enough.
612 * We should be more intelligent about this but for the moment we override
613 * these functions and force a tlb flush unconditionally
615 int pmdp_clear_flush_young(struct vm_area_struct
*vma
,
616 unsigned long address
, pmd_t
*pmdp
)
618 return __pmdp_test_and_clear_young(vma
->vm_mm
, address
, pmdp
);
622 * We mark the pmd splitting and invalidate all the hpte
623 * entries for this hugepage.
625 void pmdp_splitting_flush(struct vm_area_struct
*vma
,
626 unsigned long address
, pmd_t
*pmdp
)
628 unsigned long old
, tmp
;
630 VM_BUG_ON(address
& ~HPAGE_PMD_MASK
);
632 #ifdef CONFIG_DEBUG_VM
633 WARN_ON(!pmd_trans_huge(*pmdp
));
634 assert_spin_locked(&vma
->vm_mm
->page_table_lock
);
637 #ifdef PTE_ATOMIC_UPDATES
639 __asm__
__volatile__(
646 : "=&r" (old
), "=&r" (tmp
), "=m" (*pmdp
)
647 : "r" (pmdp
), "i" (_PAGE_SPLITTING
), "m" (*pmdp
), "i" (_PAGE_BUSY
)
650 old
= pmd_val(*pmdp
);
651 *pmdp
= __pmd(old
| _PAGE_SPLITTING
);
654 * If we didn't had the splitting flag set, go and flush the
657 trace_hugepage_splitting(address
, old
);
658 if (!(old
& _PAGE_SPLITTING
)) {
659 /* We need to flush the hpte */
660 if (old
& _PAGE_HASHPTE
)
661 hpte_do_hugepage_flush(vma
->vm_mm
, address
, pmdp
, old
);
664 * This ensures that generic code that rely on IRQ disabling
665 * to prevent a parallel THP split work as expected.
667 kick_all_cpus_sync();
671 * We want to put the pgtable in pmd and use pgtable for tracking
672 * the base page size hptes
674 void pgtable_trans_huge_deposit(struct mm_struct
*mm
, pmd_t
*pmdp
,
677 pgtable_t
*pgtable_slot
;
678 assert_spin_locked(&mm
->page_table_lock
);
680 * we store the pgtable in the second half of PMD
682 pgtable_slot
= (pgtable_t
*)pmdp
+ PTRS_PER_PMD
;
683 *pgtable_slot
= pgtable
;
685 * expose the deposited pgtable to other cpus.
686 * before we set the hugepage PTE at pmd level
687 * hash fault code looks at the deposted pgtable
688 * to store hash index values.
693 pgtable_t
pgtable_trans_huge_withdraw(struct mm_struct
*mm
, pmd_t
*pmdp
)
696 pgtable_t
*pgtable_slot
;
698 assert_spin_locked(&mm
->page_table_lock
);
699 pgtable_slot
= (pgtable_t
*)pmdp
+ PTRS_PER_PMD
;
700 pgtable
= *pgtable_slot
;
702 * Once we withdraw, mark the entry NULL.
704 *pgtable_slot
= NULL
;
706 * We store HPTE information in the deposited PTE fragment.
707 * zero out the content on withdraw.
709 memset(pgtable
, 0, PTE_FRAG_SIZE
);
714 * set a new huge pmd. We should not be called for updating
715 * an existing pmd entry. That should go via pmd_hugepage_update.
717 void set_pmd_at(struct mm_struct
*mm
, unsigned long addr
,
718 pmd_t
*pmdp
, pmd_t pmd
)
720 #ifdef CONFIG_DEBUG_VM
721 WARN_ON((pmd_val(*pmdp
) & (_PAGE_PRESENT
| _PAGE_USER
)) ==
722 (_PAGE_PRESENT
| _PAGE_USER
));
723 assert_spin_locked(&mm
->page_table_lock
);
724 WARN_ON(!pmd_trans_huge(pmd
));
726 trace_hugepage_set_pmd(addr
, pmd_val(pmd
));
727 return set_pte_at(mm
, addr
, pmdp_ptep(pmdp
), pmd_pte(pmd
));
730 void pmdp_invalidate(struct vm_area_struct
*vma
, unsigned long address
,
733 pmd_hugepage_update(vma
->vm_mm
, address
, pmdp
, _PAGE_PRESENT
, 0);
737 * A linux hugepage PMD was changed and the corresponding hash table entries
738 * neesd to be flushed.
740 void hpte_do_hugepage_flush(struct mm_struct
*mm
, unsigned long addr
,
741 pmd_t
*pmdp
, unsigned long old_pmd
)
746 unsigned long flags
= 0;
747 const struct cpumask
*tmp
;
749 /* get the base page size,vsid and segment size */
750 #ifdef CONFIG_DEBUG_VM
751 psize
= get_slice_psize(mm
, addr
);
752 BUG_ON(psize
== MMU_PAGE_16M
);
754 if (old_pmd
& _PAGE_COMBO
)
757 psize
= MMU_PAGE_64K
;
759 if (!is_kernel_addr(addr
)) {
760 ssize
= user_segment_size(addr
);
761 vsid
= get_vsid(mm
->context
.id
, addr
, ssize
);
764 vsid
= get_kernel_vsid(addr
, mmu_kernel_ssize
);
765 ssize
= mmu_kernel_ssize
;
768 tmp
= cpumask_of(smp_processor_id());
769 if (cpumask_equal(mm_cpumask(mm
), tmp
))
770 flags
|= HPTE_LOCAL_UPDATE
;
772 return flush_hash_hugepage(vsid
, addr
, pmdp
, psize
, ssize
, flags
);
775 static pmd_t
pmd_set_protbits(pmd_t pmd
, pgprot_t pgprot
)
777 pmd_val(pmd
) |= pgprot_val(pgprot
);
781 pmd_t
pfn_pmd(unsigned long pfn
, pgprot_t pgprot
)
785 * For a valid pte, we would have _PAGE_PRESENT always
786 * set. We use this to check THP page at pmd level.
787 * leaf pte for huge page, bottom two bits != 00
789 pmd_val(pmd
) = pfn
<< PTE_RPN_SHIFT
;
790 pmd_val(pmd
) |= _PAGE_THP_HUGE
;
791 pmd
= pmd_set_protbits(pmd
, pgprot
);
795 pmd_t
mk_pmd(struct page
*page
, pgprot_t pgprot
)
797 return pfn_pmd(page_to_pfn(page
), pgprot
);
800 pmd_t
pmd_modify(pmd_t pmd
, pgprot_t newprot
)
803 pmd_val(pmd
) &= _HPAGE_CHG_MASK
;
804 pmd
= pmd_set_protbits(pmd
, newprot
);
809 * This is called at the end of handling a user page fault, when the
810 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
811 * We use it to preload an HPTE into the hash table corresponding to
812 * the updated linux HUGE PMD entry.
814 void update_mmu_cache_pmd(struct vm_area_struct
*vma
, unsigned long addr
,
820 pmd_t
pmdp_get_and_clear(struct mm_struct
*mm
,
821 unsigned long addr
, pmd_t
*pmdp
)
826 pgtable_t
*pgtable_slot
;
828 old
= pmd_hugepage_update(mm
, addr
, pmdp
, ~0UL, 0);
829 old_pmd
= __pmd(old
);
831 * We have pmd == none and we are holding page_table_lock.
832 * So we can safely go and clear the pgtable hash
835 pgtable_slot
= (pgtable_t
*)pmdp
+ PTRS_PER_PMD
;
836 pgtable
= *pgtable_slot
;
838 * Let's zero out old valid and hash index details
839 * hash fault look at them.
841 memset(pgtable
, 0, PTE_FRAG_SIZE
);
843 * Serialize against find_linux_pte_or_hugepte which does lock-less
844 * lookup in page tables with local interrupts disabled. For huge pages
845 * it casts pmd_t to pte_t. Since format of pte_t is different from
846 * pmd_t we want to prevent transit from pmd pointing to page table
847 * to pmd pointing to huge page (and back) while interrupts are disabled.
848 * We clear pmd to possibly replace it with page table pointer in
849 * different code paths. So make sure we wait for the parallel
850 * find_linux_pte_or_hugepage to finish.
852 kick_all_cpus_sync();
856 int has_transparent_hugepage(void)
858 if (!mmu_has_feature(MMU_FTR_16M_PAGE
))
861 * We support THP only if PMD_SIZE is 16MB.
863 if (mmu_psize_defs
[MMU_PAGE_16M
].shift
!= PMD_SHIFT
)
866 * We need to make sure that we support 16MB hugepage in a segement
867 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
871 * If we have 64K HPTE, we will be using that by default
873 if (mmu_psize_defs
[MMU_PAGE_64K
].shift
&&
874 (mmu_psize_defs
[MMU_PAGE_64K
].penc
[MMU_PAGE_16M
] == -1))
877 * Ok we only have 4K HPTE
879 if (mmu_psize_defs
[MMU_PAGE_4K
].penc
[MMU_PAGE_16M
] == -1)
884 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */