]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/mm/pgtable_64.c
powerpc/mm: Use _PAGE_READ to indicate Read access
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / mm / pgtable_64.c
1 /*
2 * This file contains ioremap and related functions for 64-bit machines.
3 *
4 * Derived from arch/ppc64/mm/init.c
5 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
6 *
7 * Modifications by Paul Mackerras (PowerMac) (paulus@samba.org)
8 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
9 * Copyright (C) 1996 Paul Mackerras
10 *
11 * Derived from "arch/i386/mm/init.c"
12 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
13 *
14 * Dave Engebretsen <engebret@us.ibm.com>
15 * Rework for PPC64 port.
16 *
17 * This program is free software; you can redistribute it and/or
18 * modify it under the terms of the GNU General Public License
19 * as published by the Free Software Foundation; either version
20 * 2 of the License, or (at your option) any later version.
21 *
22 */
23
24 #include <linux/signal.h>
25 #include <linux/sched.h>
26 #include <linux/kernel.h>
27 #include <linux/errno.h>
28 #include <linux/string.h>
29 #include <linux/export.h>
30 #include <linux/types.h>
31 #include <linux/mman.h>
32 #include <linux/mm.h>
33 #include <linux/swap.h>
34 #include <linux/stddef.h>
35 #include <linux/vmalloc.h>
36 #include <linux/memblock.h>
37 #include <linux/slab.h>
38 #include <linux/hugetlb.h>
39
40 #include <asm/pgalloc.h>
41 #include <asm/page.h>
42 #include <asm/prom.h>
43 #include <asm/io.h>
44 #include <asm/mmu_context.h>
45 #include <asm/pgtable.h>
46 #include <asm/mmu.h>
47 #include <asm/smp.h>
48 #include <asm/machdep.h>
49 #include <asm/tlb.h>
50 #include <asm/processor.h>
51 #include <asm/cputable.h>
52 #include <asm/sections.h>
53 #include <asm/firmware.h>
54 #include <asm/dma.h>
55
56 #include "mmu_decl.h"
57
58 #define CREATE_TRACE_POINTS
59 #include <trace/events/thp.h>
60
61 /* Some sanity checking */
62 #if TASK_SIZE_USER64 > PGTABLE_RANGE
63 #error TASK_SIZE_USER64 exceeds pagetable range
64 #endif
65
66 #ifdef CONFIG_PPC_STD_MMU_64
67 #if TASK_SIZE_USER64 > (1UL << (ESID_BITS + SID_SHIFT))
68 #error TASK_SIZE_USER64 exceeds user VSID range
69 #endif
70 #endif
71
72 unsigned long ioremap_bot = IOREMAP_BASE;
73
74 #ifdef CONFIG_PPC_MMU_NOHASH
75 static __ref void *early_alloc_pgtable(unsigned long size)
76 {
77 void *pt;
78
79 pt = __va(memblock_alloc_base(size, size, __pa(MAX_DMA_ADDRESS)));
80 memset(pt, 0, size);
81
82 return pt;
83 }
84 #endif /* CONFIG_PPC_MMU_NOHASH */
85
86 /*
87 * map_kernel_page currently only called by __ioremap
88 * map_kernel_page adds an entry to the ioremap page table
89 * and adds an entry to the HPT, possibly bolting it
90 */
91 int map_kernel_page(unsigned long ea, unsigned long pa, unsigned long flags)
92 {
93 pgd_t *pgdp;
94 pud_t *pudp;
95 pmd_t *pmdp;
96 pte_t *ptep;
97
98 if (slab_is_available()) {
99 pgdp = pgd_offset_k(ea);
100 pudp = pud_alloc(&init_mm, pgdp, ea);
101 if (!pudp)
102 return -ENOMEM;
103 pmdp = pmd_alloc(&init_mm, pudp, ea);
104 if (!pmdp)
105 return -ENOMEM;
106 ptep = pte_alloc_kernel(pmdp, ea);
107 if (!ptep)
108 return -ENOMEM;
109 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
110 __pgprot(flags)));
111 } else {
112 #ifdef CONFIG_PPC_MMU_NOHASH
113 pgdp = pgd_offset_k(ea);
114 #ifdef PUD_TABLE_SIZE
115 if (pgd_none(*pgdp)) {
116 pudp = early_alloc_pgtable(PUD_TABLE_SIZE);
117 BUG_ON(pudp == NULL);
118 pgd_populate(&init_mm, pgdp, pudp);
119 }
120 #endif /* PUD_TABLE_SIZE */
121 pudp = pud_offset(pgdp, ea);
122 if (pud_none(*pudp)) {
123 pmdp = early_alloc_pgtable(PMD_TABLE_SIZE);
124 BUG_ON(pmdp == NULL);
125 pud_populate(&init_mm, pudp, pmdp);
126 }
127 pmdp = pmd_offset(pudp, ea);
128 if (!pmd_present(*pmdp)) {
129 ptep = early_alloc_pgtable(PAGE_SIZE);
130 BUG_ON(ptep == NULL);
131 pmd_populate_kernel(&init_mm, pmdp, ptep);
132 }
133 ptep = pte_offset_kernel(pmdp, ea);
134 set_pte_at(&init_mm, ea, ptep, pfn_pte(pa >> PAGE_SHIFT,
135 __pgprot(flags)));
136 #else /* CONFIG_PPC_MMU_NOHASH */
137 /*
138 * If the mm subsystem is not fully up, we cannot create a
139 * linux page table entry for this mapping. Simply bolt an
140 * entry in the hardware page table.
141 *
142 */
143 if (htab_bolt_mapping(ea, ea + PAGE_SIZE, pa, flags,
144 mmu_io_psize, mmu_kernel_ssize)) {
145 printk(KERN_ERR "Failed to do bolted mapping IO "
146 "memory at %016lx !\n", pa);
147 return -ENOMEM;
148 }
149 #endif /* !CONFIG_PPC_MMU_NOHASH */
150 }
151
152 smp_wmb();
153 return 0;
154 }
155
156
157 /**
158 * __ioremap_at - Low level function to establish the page tables
159 * for an IO mapping
160 */
161 void __iomem * __ioremap_at(phys_addr_t pa, void *ea, unsigned long size,
162 unsigned long flags)
163 {
164 unsigned long i;
165
166 /* Make sure we have the base flags */
167 if ((flags & _PAGE_PRESENT) == 0)
168 flags |= pgprot_val(PAGE_KERNEL);
169
170 /* Non-cacheable page cannot be coherent */
171 if (flags & _PAGE_NO_CACHE)
172 flags &= ~_PAGE_COHERENT;
173
174 /* We don't support the 4K PFN hack with ioremap */
175 if (flags & _PAGE_4K_PFN)
176 return NULL;
177
178 WARN_ON(pa & ~PAGE_MASK);
179 WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
180 WARN_ON(size & ~PAGE_MASK);
181
182 for (i = 0; i < size; i += PAGE_SIZE)
183 if (map_kernel_page((unsigned long)ea+i, pa+i, flags))
184 return NULL;
185
186 return (void __iomem *)ea;
187 }
188
189 /**
190 * __iounmap_from - Low level function to tear down the page tables
191 * for an IO mapping. This is used for mappings that
192 * are manipulated manually, like partial unmapping of
193 * PCI IOs or ISA space.
194 */
195 void __iounmap_at(void *ea, unsigned long size)
196 {
197 WARN_ON(((unsigned long)ea) & ~PAGE_MASK);
198 WARN_ON(size & ~PAGE_MASK);
199
200 unmap_kernel_range((unsigned long)ea, size);
201 }
202
203 void __iomem * __ioremap_caller(phys_addr_t addr, unsigned long size,
204 unsigned long flags, void *caller)
205 {
206 phys_addr_t paligned;
207 void __iomem *ret;
208
209 /*
210 * Choose an address to map it to.
211 * Once the imalloc system is running, we use it.
212 * Before that, we map using addresses going
213 * up from ioremap_bot. imalloc will use
214 * the addresses from ioremap_bot through
215 * IMALLOC_END
216 *
217 */
218 paligned = addr & PAGE_MASK;
219 size = PAGE_ALIGN(addr + size) - paligned;
220
221 if ((size == 0) || (paligned == 0))
222 return NULL;
223
224 if (slab_is_available()) {
225 struct vm_struct *area;
226
227 area = __get_vm_area_caller(size, VM_IOREMAP,
228 ioremap_bot, IOREMAP_END,
229 caller);
230 if (area == NULL)
231 return NULL;
232
233 area->phys_addr = paligned;
234 ret = __ioremap_at(paligned, area->addr, size, flags);
235 if (!ret)
236 vunmap(area->addr);
237 } else {
238 ret = __ioremap_at(paligned, (void *)ioremap_bot, size, flags);
239 if (ret)
240 ioremap_bot += size;
241 }
242
243 if (ret)
244 ret += addr & ~PAGE_MASK;
245 return ret;
246 }
247
248 void __iomem * __ioremap(phys_addr_t addr, unsigned long size,
249 unsigned long flags)
250 {
251 return __ioremap_caller(addr, size, flags, __builtin_return_address(0));
252 }
253
254 void __iomem * ioremap(phys_addr_t addr, unsigned long size)
255 {
256 unsigned long flags = _PAGE_NO_CACHE | _PAGE_GUARDED;
257 void *caller = __builtin_return_address(0);
258
259 if (ppc_md.ioremap)
260 return ppc_md.ioremap(addr, size, flags, caller);
261 return __ioremap_caller(addr, size, flags, caller);
262 }
263
264 void __iomem * ioremap_wc(phys_addr_t addr, unsigned long size)
265 {
266 unsigned long flags = _PAGE_NO_CACHE;
267 void *caller = __builtin_return_address(0);
268
269 if (ppc_md.ioremap)
270 return ppc_md.ioremap(addr, size, flags, caller);
271 return __ioremap_caller(addr, size, flags, caller);
272 }
273
274 void __iomem * ioremap_prot(phys_addr_t addr, unsigned long size,
275 unsigned long flags)
276 {
277 void *caller = __builtin_return_address(0);
278
279 /* writeable implies dirty for kernel addresses */
280 if (flags & _PAGE_WRITE)
281 flags |= _PAGE_DIRTY;
282
283 /* we don't want to let _PAGE_USER and _PAGE_EXEC leak out */
284 flags &= ~(_PAGE_USER | _PAGE_EXEC);
285
286 #ifdef _PAGE_BAP_SR
287 /* _PAGE_USER contains _PAGE_BAP_SR on BookE using the new PTE format
288 * which means that we just cleared supervisor access... oops ;-) This
289 * restores it
290 */
291 flags |= _PAGE_BAP_SR;
292 #endif
293
294 if (ppc_md.ioremap)
295 return ppc_md.ioremap(addr, size, flags, caller);
296 return __ioremap_caller(addr, size, flags, caller);
297 }
298
299
300 /*
301 * Unmap an IO region and remove it from imalloc'd list.
302 * Access to IO memory should be serialized by driver.
303 */
304 void __iounmap(volatile void __iomem *token)
305 {
306 void *addr;
307
308 if (!slab_is_available())
309 return;
310
311 addr = (void *) ((unsigned long __force)
312 PCI_FIX_ADDR(token) & PAGE_MASK);
313 if ((unsigned long)addr < ioremap_bot) {
314 printk(KERN_WARNING "Attempt to iounmap early bolted mapping"
315 " at 0x%p\n", addr);
316 return;
317 }
318 vunmap(addr);
319 }
320
321 void iounmap(volatile void __iomem *token)
322 {
323 if (ppc_md.iounmap)
324 ppc_md.iounmap(token);
325 else
326 __iounmap(token);
327 }
328
329 EXPORT_SYMBOL(ioremap);
330 EXPORT_SYMBOL(ioremap_wc);
331 EXPORT_SYMBOL(ioremap_prot);
332 EXPORT_SYMBOL(__ioremap);
333 EXPORT_SYMBOL(__ioremap_at);
334 EXPORT_SYMBOL(iounmap);
335 EXPORT_SYMBOL(__iounmap);
336 EXPORT_SYMBOL(__iounmap_at);
337
338 #ifndef __PAGETABLE_PUD_FOLDED
339 /* 4 level page table */
340 struct page *pgd_page(pgd_t pgd)
341 {
342 if (pgd_huge(pgd))
343 return pte_page(pgd_pte(pgd));
344 return virt_to_page(pgd_page_vaddr(pgd));
345 }
346 #endif
347
348 struct page *pud_page(pud_t pud)
349 {
350 if (pud_huge(pud))
351 return pte_page(pud_pte(pud));
352 return virt_to_page(pud_page_vaddr(pud));
353 }
354
355 /*
356 * For hugepage we have pfn in the pmd, we use PTE_RPN_SHIFT bits for flags
357 * For PTE page, we have a PTE_FRAG_SIZE (4K) aligned virtual address.
358 */
359 struct page *pmd_page(pmd_t pmd)
360 {
361 if (pmd_trans_huge(pmd) || pmd_huge(pmd))
362 return pte_page(pmd_pte(pmd));
363 return virt_to_page(pmd_page_vaddr(pmd));
364 }
365
366 #ifdef CONFIG_PPC_64K_PAGES
367 static pte_t *get_from_cache(struct mm_struct *mm)
368 {
369 void *pte_frag, *ret;
370
371 spin_lock(&mm->page_table_lock);
372 ret = mm->context.pte_frag;
373 if (ret) {
374 pte_frag = ret + PTE_FRAG_SIZE;
375 /*
376 * If we have taken up all the fragments mark PTE page NULL
377 */
378 if (((unsigned long)pte_frag & ~PAGE_MASK) == 0)
379 pte_frag = NULL;
380 mm->context.pte_frag = pte_frag;
381 }
382 spin_unlock(&mm->page_table_lock);
383 return (pte_t *)ret;
384 }
385
386 static pte_t *__alloc_for_cache(struct mm_struct *mm, int kernel)
387 {
388 void *ret = NULL;
389 struct page *page = alloc_page(GFP_KERNEL | __GFP_NOTRACK |
390 __GFP_REPEAT | __GFP_ZERO);
391 if (!page)
392 return NULL;
393 if (!kernel && !pgtable_page_ctor(page)) {
394 __free_page(page);
395 return NULL;
396 }
397
398 ret = page_address(page);
399 spin_lock(&mm->page_table_lock);
400 /*
401 * If we find pgtable_page set, we return
402 * the allocated page with single fragement
403 * count.
404 */
405 if (likely(!mm->context.pte_frag)) {
406 set_page_count(page, PTE_FRAG_NR);
407 mm->context.pte_frag = ret + PTE_FRAG_SIZE;
408 }
409 spin_unlock(&mm->page_table_lock);
410
411 return (pte_t *)ret;
412 }
413
414 pte_t *page_table_alloc(struct mm_struct *mm, unsigned long vmaddr, int kernel)
415 {
416 pte_t *pte;
417
418 pte = get_from_cache(mm);
419 if (pte)
420 return pte;
421
422 return __alloc_for_cache(mm, kernel);
423 }
424
425 void page_table_free(struct mm_struct *mm, unsigned long *table, int kernel)
426 {
427 struct page *page = virt_to_page(table);
428 if (put_page_testzero(page)) {
429 if (!kernel)
430 pgtable_page_dtor(page);
431 free_hot_cold_page(page, 0);
432 }
433 }
434
435 #ifdef CONFIG_SMP
436 static void page_table_free_rcu(void *table)
437 {
438 struct page *page = virt_to_page(table);
439 if (put_page_testzero(page)) {
440 pgtable_page_dtor(page);
441 free_hot_cold_page(page, 0);
442 }
443 }
444
445 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
446 {
447 unsigned long pgf = (unsigned long)table;
448
449 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
450 pgf |= shift;
451 tlb_remove_table(tlb, (void *)pgf);
452 }
453
454 void __tlb_remove_table(void *_table)
455 {
456 void *table = (void *)((unsigned long)_table & ~MAX_PGTABLE_INDEX_SIZE);
457 unsigned shift = (unsigned long)_table & MAX_PGTABLE_INDEX_SIZE;
458
459 if (!shift)
460 /* PTE page needs special handling */
461 page_table_free_rcu(table);
462 else {
463 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
464 kmem_cache_free(PGT_CACHE(shift), table);
465 }
466 }
467 #else
468 void pgtable_free_tlb(struct mmu_gather *tlb, void *table, int shift)
469 {
470 if (!shift) {
471 /* PTE page needs special handling */
472 struct page *page = virt_to_page(table);
473 if (put_page_testzero(page)) {
474 pgtable_page_dtor(page);
475 free_hot_cold_page(page, 0);
476 }
477 } else {
478 BUG_ON(shift > MAX_PGTABLE_INDEX_SIZE);
479 kmem_cache_free(PGT_CACHE(shift), table);
480 }
481 }
482 #endif
483 #endif /* CONFIG_PPC_64K_PAGES */
484
485 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
486
487 /*
488 * This is called when relaxing access to a hugepage. It's also called in the page
489 * fault path when we don't hit any of the major fault cases, ie, a minor
490 * update of _PAGE_ACCESSED, _PAGE_DIRTY, etc... The generic code will have
491 * handled those two for us, we additionally deal with missing execute
492 * permission here on some processors
493 */
494 int pmdp_set_access_flags(struct vm_area_struct *vma, unsigned long address,
495 pmd_t *pmdp, pmd_t entry, int dirty)
496 {
497 int changed;
498 #ifdef CONFIG_DEBUG_VM
499 WARN_ON(!pmd_trans_huge(*pmdp));
500 assert_spin_locked(&vma->vm_mm->page_table_lock);
501 #endif
502 changed = !pmd_same(*(pmdp), entry);
503 if (changed) {
504 __ptep_set_access_flags(pmdp_ptep(pmdp), pmd_pte(entry));
505 /*
506 * Since we are not supporting SW TLB systems, we don't
507 * have any thing similar to flush_tlb_page_nohash()
508 */
509 }
510 return changed;
511 }
512
513 unsigned long pmd_hugepage_update(struct mm_struct *mm, unsigned long addr,
514 pmd_t *pmdp, unsigned long clr,
515 unsigned long set)
516 {
517
518 __be64 old_be, tmp;
519 unsigned long old;
520
521 #ifdef CONFIG_DEBUG_VM
522 WARN_ON(!pmd_trans_huge(*pmdp));
523 assert_spin_locked(&mm->page_table_lock);
524 #endif
525
526 __asm__ __volatile__(
527 "1: ldarx %0,0,%3\n\
528 and. %1,%0,%6\n\
529 bne- 1b \n\
530 andc %1,%0,%4 \n\
531 or %1,%1,%7\n\
532 stdcx. %1,0,%3 \n\
533 bne- 1b"
534 : "=&r" (old_be), "=&r" (tmp), "=m" (*pmdp)
535 : "r" (pmdp), "r" (cpu_to_be64(clr)), "m" (*pmdp),
536 "r" (cpu_to_be64(_PAGE_BUSY)), "r" (cpu_to_be64(set))
537 : "cc" );
538
539 old = be64_to_cpu(old_be);
540
541 trace_hugepage_update(addr, old, clr, set);
542 if (old & _PAGE_HASHPTE)
543 hpte_do_hugepage_flush(mm, addr, pmdp, old);
544 return old;
545 }
546
547 pmd_t pmdp_collapse_flush(struct vm_area_struct *vma, unsigned long address,
548 pmd_t *pmdp)
549 {
550 pmd_t pmd;
551
552 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
553 VM_BUG_ON(pmd_trans_huge(*pmdp));
554
555 pmd = *pmdp;
556 pmd_clear(pmdp);
557 /*
558 * Wait for all pending hash_page to finish. This is needed
559 * in case of subpage collapse. When we collapse normal pages
560 * to hugepage, we first clear the pmd, then invalidate all
561 * the PTE entries. The assumption here is that any low level
562 * page fault will see a none pmd and take the slow path that
563 * will wait on mmap_sem. But we could very well be in a
564 * hash_page with local ptep pointer value. Such a hash page
565 * can result in adding new HPTE entries for normal subpages.
566 * That means we could be modifying the page content as we
567 * copy them to a huge page. So wait for parallel hash_page
568 * to finish before invalidating HPTE entries. We can do this
569 * by sending an IPI to all the cpus and executing a dummy
570 * function there.
571 */
572 kick_all_cpus_sync();
573 /*
574 * Now invalidate the hpte entries in the range
575 * covered by pmd. This make sure we take a
576 * fault and will find the pmd as none, which will
577 * result in a major fault which takes mmap_sem and
578 * hence wait for collapse to complete. Without this
579 * the __collapse_huge_page_copy can result in copying
580 * the old content.
581 */
582 flush_tlb_pmd_range(vma->vm_mm, &pmd, address);
583 return pmd;
584 }
585
586 int pmdp_test_and_clear_young(struct vm_area_struct *vma,
587 unsigned long address, pmd_t *pmdp)
588 {
589 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
590 }
591
592 /*
593 * We currently remove entries from the hashtable regardless of whether
594 * the entry was young or dirty. The generic routines only flush if the
595 * entry was young or dirty which is not good enough.
596 *
597 * We should be more intelligent about this but for the moment we override
598 * these functions and force a tlb flush unconditionally
599 */
600 int pmdp_clear_flush_young(struct vm_area_struct *vma,
601 unsigned long address, pmd_t *pmdp)
602 {
603 return __pmdp_test_and_clear_young(vma->vm_mm, address, pmdp);
604 }
605
606 /*
607 * We want to put the pgtable in pmd and use pgtable for tracking
608 * the base page size hptes
609 */
610 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
611 pgtable_t pgtable)
612 {
613 pgtable_t *pgtable_slot;
614 assert_spin_locked(&mm->page_table_lock);
615 /*
616 * we store the pgtable in the second half of PMD
617 */
618 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
619 *pgtable_slot = pgtable;
620 /*
621 * expose the deposited pgtable to other cpus.
622 * before we set the hugepage PTE at pmd level
623 * hash fault code looks at the deposted pgtable
624 * to store hash index values.
625 */
626 smp_wmb();
627 }
628
629 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
630 {
631 pgtable_t pgtable;
632 pgtable_t *pgtable_slot;
633
634 assert_spin_locked(&mm->page_table_lock);
635 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
636 pgtable = *pgtable_slot;
637 /*
638 * Once we withdraw, mark the entry NULL.
639 */
640 *pgtable_slot = NULL;
641 /*
642 * We store HPTE information in the deposited PTE fragment.
643 * zero out the content on withdraw.
644 */
645 memset(pgtable, 0, PTE_FRAG_SIZE);
646 return pgtable;
647 }
648
649 void pmdp_huge_split_prepare(struct vm_area_struct *vma,
650 unsigned long address, pmd_t *pmdp)
651 {
652 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
653 VM_BUG_ON(REGION_ID(address) != USER_REGION_ID);
654
655 /*
656 * We can't mark the pmd none here, because that will cause a race
657 * against exit_mmap. We need to continue mark pmd TRANS HUGE, while
658 * we spilt, but at the same time we wan't rest of the ppc64 code
659 * not to insert hash pte on this, because we will be modifying
660 * the deposited pgtable in the caller of this function. Hence
661 * clear the _PAGE_USER so that we move the fault handling to
662 * higher level function and that will serialize against ptl.
663 * We need to flush existing hash pte entries here even though,
664 * the translation is still valid, because we will withdraw
665 * pgtable_t after this.
666 */
667 pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_USER, 0);
668 }
669
670
671 /*
672 * set a new huge pmd. We should not be called for updating
673 * an existing pmd entry. That should go via pmd_hugepage_update.
674 */
675 void set_pmd_at(struct mm_struct *mm, unsigned long addr,
676 pmd_t *pmdp, pmd_t pmd)
677 {
678 #ifdef CONFIG_DEBUG_VM
679 WARN_ON(pte_present(pmd_pte(*pmdp)) && !pte_protnone(pmd_pte(*pmdp)));
680 assert_spin_locked(&mm->page_table_lock);
681 WARN_ON(!pmd_trans_huge(pmd));
682 #endif
683 trace_hugepage_set_pmd(addr, pmd_val(pmd));
684 return set_pte_at(mm, addr, pmdp_ptep(pmdp), pmd_pte(pmd));
685 }
686
687 /*
688 * We use this to invalidate a pmdp entry before switching from a
689 * hugepte to regular pmd entry.
690 */
691 void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
692 pmd_t *pmdp)
693 {
694 pmd_hugepage_update(vma->vm_mm, address, pmdp, _PAGE_PRESENT, 0);
695
696 /*
697 * This ensures that generic code that rely on IRQ disabling
698 * to prevent a parallel THP split work as expected.
699 */
700 kick_all_cpus_sync();
701 }
702
703 /*
704 * A linux hugepage PMD was changed and the corresponding hash table entries
705 * neesd to be flushed.
706 */
707 void hpte_do_hugepage_flush(struct mm_struct *mm, unsigned long addr,
708 pmd_t *pmdp, unsigned long old_pmd)
709 {
710 int ssize;
711 unsigned int psize;
712 unsigned long vsid;
713 unsigned long flags = 0;
714 const struct cpumask *tmp;
715
716 /* get the base page size,vsid and segment size */
717 #ifdef CONFIG_DEBUG_VM
718 psize = get_slice_psize(mm, addr);
719 BUG_ON(psize == MMU_PAGE_16M);
720 #endif
721 if (old_pmd & _PAGE_COMBO)
722 psize = MMU_PAGE_4K;
723 else
724 psize = MMU_PAGE_64K;
725
726 if (!is_kernel_addr(addr)) {
727 ssize = user_segment_size(addr);
728 vsid = get_vsid(mm->context.id, addr, ssize);
729 WARN_ON(vsid == 0);
730 } else {
731 vsid = get_kernel_vsid(addr, mmu_kernel_ssize);
732 ssize = mmu_kernel_ssize;
733 }
734
735 tmp = cpumask_of(smp_processor_id());
736 if (cpumask_equal(mm_cpumask(mm), tmp))
737 flags |= HPTE_LOCAL_UPDATE;
738
739 return flush_hash_hugepage(vsid, addr, pmdp, psize, ssize, flags);
740 }
741
742 static pmd_t pmd_set_protbits(pmd_t pmd, pgprot_t pgprot)
743 {
744 return __pmd(pmd_val(pmd) | pgprot_val(pgprot));
745 }
746
747 pmd_t pfn_pmd(unsigned long pfn, pgprot_t pgprot)
748 {
749 unsigned long pmdv;
750
751 pmdv = (pfn << PTE_RPN_SHIFT) & PTE_RPN_MASK;
752 return pmd_set_protbits(__pmd(pmdv), pgprot);
753 }
754
755 pmd_t mk_pmd(struct page *page, pgprot_t pgprot)
756 {
757 return pfn_pmd(page_to_pfn(page), pgprot);
758 }
759
760 pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
761 {
762 unsigned long pmdv;
763
764 pmdv = pmd_val(pmd);
765 pmdv &= _HPAGE_CHG_MASK;
766 return pmd_set_protbits(__pmd(pmdv), newprot);
767 }
768
769 /*
770 * This is called at the end of handling a user page fault, when the
771 * fault has been handled by updating a HUGE PMD entry in the linux page tables.
772 * We use it to preload an HPTE into the hash table corresponding to
773 * the updated linux HUGE PMD entry.
774 */
775 void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
776 pmd_t *pmd)
777 {
778 return;
779 }
780
781 pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
782 unsigned long addr, pmd_t *pmdp)
783 {
784 pmd_t old_pmd;
785 pgtable_t pgtable;
786 unsigned long old;
787 pgtable_t *pgtable_slot;
788
789 old = pmd_hugepage_update(mm, addr, pmdp, ~0UL, 0);
790 old_pmd = __pmd(old);
791 /*
792 * We have pmd == none and we are holding page_table_lock.
793 * So we can safely go and clear the pgtable hash
794 * index info.
795 */
796 pgtable_slot = (pgtable_t *)pmdp + PTRS_PER_PMD;
797 pgtable = *pgtable_slot;
798 /*
799 * Let's zero out old valid and hash index details
800 * hash fault look at them.
801 */
802 memset(pgtable, 0, PTE_FRAG_SIZE);
803 /*
804 * Serialize against find_linux_pte_or_hugepte which does lock-less
805 * lookup in page tables with local interrupts disabled. For huge pages
806 * it casts pmd_t to pte_t. Since format of pte_t is different from
807 * pmd_t we want to prevent transit from pmd pointing to page table
808 * to pmd pointing to huge page (and back) while interrupts are disabled.
809 * We clear pmd to possibly replace it with page table pointer in
810 * different code paths. So make sure we wait for the parallel
811 * find_linux_pte_or_hugepage to finish.
812 */
813 kick_all_cpus_sync();
814 return old_pmd;
815 }
816
817 int has_transparent_hugepage(void)
818 {
819
820 BUILD_BUG_ON_MSG((PMD_SHIFT - PAGE_SHIFT) >= MAX_ORDER,
821 "hugepages can't be allocated by the buddy allocator");
822
823 BUILD_BUG_ON_MSG((PMD_SHIFT - PAGE_SHIFT) < 2,
824 "We need more than 2 pages to do deferred thp split");
825
826 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
827 return 0;
828 /*
829 * We support THP only if PMD_SIZE is 16MB.
830 */
831 if (mmu_psize_defs[MMU_PAGE_16M].shift != PMD_SHIFT)
832 return 0;
833 /*
834 * We need to make sure that we support 16MB hugepage in a segement
835 * with base page size 64K or 4K. We only enable THP with a PAGE_SIZE
836 * of 64K.
837 */
838 /*
839 * If we have 64K HPTE, we will be using that by default
840 */
841 if (mmu_psize_defs[MMU_PAGE_64K].shift &&
842 (mmu_psize_defs[MMU_PAGE_64K].penc[MMU_PAGE_16M] == -1))
843 return 0;
844 /*
845 * Ok we only have 4K HPTE
846 */
847 if (mmu_psize_defs[MMU_PAGE_4K].penc[MMU_PAGE_16M] == -1)
848 return 0;
849
850 return 1;
851 }
852 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */