]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/mm/slb.c
sched/headers: Prepare to remove the <linux/mm_types.h> dependency from <linux/sched.h>
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / mm / slb.c
1 /*
2 * PowerPC64 SLB support.
3 *
4 * Copyright (C) 2004 David Gibson <dwg@au.ibm.com>, IBM
5 * Based on earlier code written by:
6 * Dave Engebretsen and Mike Corrigan {engebret|mikejc}@us.ibm.com
7 * Copyright (c) 2001 Dave Engebretsen
8 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
9 *
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #include <asm/pgtable.h>
18 #include <asm/mmu.h>
19 #include <asm/mmu_context.h>
20 #include <asm/paca.h>
21 #include <asm/cputable.h>
22 #include <asm/cacheflush.h>
23 #include <asm/smp.h>
24 #include <linux/compiler.h>
25 #include <linux/mm_types.h>
26
27 #include <asm/udbg.h>
28 #include <asm/code-patching.h>
29
30 enum slb_index {
31 LINEAR_INDEX = 0, /* Kernel linear map (0xc000000000000000) */
32 VMALLOC_INDEX = 1, /* Kernel virtual map (0xd000000000000000) */
33 KSTACK_INDEX = 2, /* Kernel stack map */
34 };
35
36 extern void slb_allocate_realmode(unsigned long ea);
37
38 static void slb_allocate(unsigned long ea)
39 {
40 /* Currently, we do real mode for all SLBs including user, but
41 * that will change if we bring back dynamic VSIDs
42 */
43 slb_allocate_realmode(ea);
44 }
45
46 #define slb_esid_mask(ssize) \
47 (((ssize) == MMU_SEGSIZE_256M)? ESID_MASK: ESID_MASK_1T)
48
49 static inline unsigned long mk_esid_data(unsigned long ea, int ssize,
50 enum slb_index index)
51 {
52 return (ea & slb_esid_mask(ssize)) | SLB_ESID_V | index;
53 }
54
55 static inline unsigned long mk_vsid_data(unsigned long ea, int ssize,
56 unsigned long flags)
57 {
58 return (get_kernel_vsid(ea, ssize) << slb_vsid_shift(ssize)) | flags |
59 ((unsigned long) ssize << SLB_VSID_SSIZE_SHIFT);
60 }
61
62 static inline void slb_shadow_update(unsigned long ea, int ssize,
63 unsigned long flags,
64 enum slb_index index)
65 {
66 struct slb_shadow *p = get_slb_shadow();
67
68 /*
69 * Clear the ESID first so the entry is not valid while we are
70 * updating it. No write barriers are needed here, provided
71 * we only update the current CPU's SLB shadow buffer.
72 */
73 p->save_area[index].esid = 0;
74 p->save_area[index].vsid = cpu_to_be64(mk_vsid_data(ea, ssize, flags));
75 p->save_area[index].esid = cpu_to_be64(mk_esid_data(ea, ssize, index));
76 }
77
78 static inline void slb_shadow_clear(enum slb_index index)
79 {
80 get_slb_shadow()->save_area[index].esid = 0;
81 }
82
83 static inline void create_shadowed_slbe(unsigned long ea, int ssize,
84 unsigned long flags,
85 enum slb_index index)
86 {
87 /*
88 * Updating the shadow buffer before writing the SLB ensures
89 * we don't get a stale entry here if we get preempted by PHYP
90 * between these two statements.
91 */
92 slb_shadow_update(ea, ssize, flags, index);
93
94 asm volatile("slbmte %0,%1" :
95 : "r" (mk_vsid_data(ea, ssize, flags)),
96 "r" (mk_esid_data(ea, ssize, index))
97 : "memory" );
98 }
99
100 static void __slb_flush_and_rebolt(void)
101 {
102 /* If you change this make sure you change SLB_NUM_BOLTED
103 * and PR KVM appropriately too. */
104 unsigned long linear_llp, vmalloc_llp, lflags, vflags;
105 unsigned long ksp_esid_data, ksp_vsid_data;
106
107 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
108 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
109 lflags = SLB_VSID_KERNEL | linear_llp;
110 vflags = SLB_VSID_KERNEL | vmalloc_llp;
111
112 ksp_esid_data = mk_esid_data(get_paca()->kstack, mmu_kernel_ssize, KSTACK_INDEX);
113 if ((ksp_esid_data & ~0xfffffffUL) <= PAGE_OFFSET) {
114 ksp_esid_data &= ~SLB_ESID_V;
115 ksp_vsid_data = 0;
116 slb_shadow_clear(KSTACK_INDEX);
117 } else {
118 /* Update stack entry; others don't change */
119 slb_shadow_update(get_paca()->kstack, mmu_kernel_ssize, lflags, KSTACK_INDEX);
120 ksp_vsid_data =
121 be64_to_cpu(get_slb_shadow()->save_area[KSTACK_INDEX].vsid);
122 }
123
124 /* We need to do this all in asm, so we're sure we don't touch
125 * the stack between the slbia and rebolting it. */
126 asm volatile("isync\n"
127 "slbia\n"
128 /* Slot 1 - first VMALLOC segment */
129 "slbmte %0,%1\n"
130 /* Slot 2 - kernel stack */
131 "slbmte %2,%3\n"
132 "isync"
133 :: "r"(mk_vsid_data(VMALLOC_START, mmu_kernel_ssize, vflags)),
134 "r"(mk_esid_data(VMALLOC_START, mmu_kernel_ssize, 1)),
135 "r"(ksp_vsid_data),
136 "r"(ksp_esid_data)
137 : "memory");
138 }
139
140 void slb_flush_and_rebolt(void)
141 {
142
143 WARN_ON(!irqs_disabled());
144
145 /*
146 * We can't take a PMU exception in the following code, so hard
147 * disable interrupts.
148 */
149 hard_irq_disable();
150
151 __slb_flush_and_rebolt();
152 get_paca()->slb_cache_ptr = 0;
153 }
154
155 void slb_vmalloc_update(void)
156 {
157 unsigned long vflags;
158
159 vflags = SLB_VSID_KERNEL | mmu_psize_defs[mmu_vmalloc_psize].sllp;
160 slb_shadow_update(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
161 slb_flush_and_rebolt();
162 }
163
164 /* Helper function to compare esids. There are four cases to handle.
165 * 1. The system is not 1T segment size capable. Use the GET_ESID compare.
166 * 2. The system is 1T capable, both addresses are < 1T, use the GET_ESID compare.
167 * 3. The system is 1T capable, only one of the two addresses is > 1T. This is not a match.
168 * 4. The system is 1T capable, both addresses are > 1T, use the GET_ESID_1T macro to compare.
169 */
170 static inline int esids_match(unsigned long addr1, unsigned long addr2)
171 {
172 int esid_1t_count;
173
174 /* System is not 1T segment size capable. */
175 if (!mmu_has_feature(MMU_FTR_1T_SEGMENT))
176 return (GET_ESID(addr1) == GET_ESID(addr2));
177
178 esid_1t_count = (((addr1 >> SID_SHIFT_1T) != 0) +
179 ((addr2 >> SID_SHIFT_1T) != 0));
180
181 /* both addresses are < 1T */
182 if (esid_1t_count == 0)
183 return (GET_ESID(addr1) == GET_ESID(addr2));
184
185 /* One address < 1T, the other > 1T. Not a match */
186 if (esid_1t_count == 1)
187 return 0;
188
189 /* Both addresses are > 1T. */
190 return (GET_ESID_1T(addr1) == GET_ESID_1T(addr2));
191 }
192
193 /* Flush all user entries from the segment table of the current processor. */
194 void switch_slb(struct task_struct *tsk, struct mm_struct *mm)
195 {
196 unsigned long offset;
197 unsigned long slbie_data = 0;
198 unsigned long pc = KSTK_EIP(tsk);
199 unsigned long stack = KSTK_ESP(tsk);
200 unsigned long exec_base;
201
202 /*
203 * We need interrupts hard-disabled here, not just soft-disabled,
204 * so that a PMU interrupt can't occur, which might try to access
205 * user memory (to get a stack trace) and possible cause an SLB miss
206 * which would update the slb_cache/slb_cache_ptr fields in the PACA.
207 */
208 hard_irq_disable();
209 offset = get_paca()->slb_cache_ptr;
210 if (!mmu_has_feature(MMU_FTR_NO_SLBIE_B) &&
211 offset <= SLB_CACHE_ENTRIES) {
212 int i;
213 asm volatile("isync" : : : "memory");
214 for (i = 0; i < offset; i++) {
215 slbie_data = (unsigned long)get_paca()->slb_cache[i]
216 << SID_SHIFT; /* EA */
217 slbie_data |= user_segment_size(slbie_data)
218 << SLBIE_SSIZE_SHIFT;
219 slbie_data |= SLBIE_C; /* C set for user addresses */
220 asm volatile("slbie %0" : : "r" (slbie_data));
221 }
222 asm volatile("isync" : : : "memory");
223 } else {
224 __slb_flush_and_rebolt();
225 }
226
227 /* Workaround POWER5 < DD2.1 issue */
228 if (offset == 1 || offset > SLB_CACHE_ENTRIES)
229 asm volatile("slbie %0" : : "r" (slbie_data));
230
231 get_paca()->slb_cache_ptr = 0;
232 copy_mm_to_paca(&mm->context);
233
234 /*
235 * preload some userspace segments into the SLB.
236 * Almost all 32 and 64bit PowerPC executables are linked at
237 * 0x10000000 so it makes sense to preload this segment.
238 */
239 exec_base = 0x10000000;
240
241 if (is_kernel_addr(pc) || is_kernel_addr(stack) ||
242 is_kernel_addr(exec_base))
243 return;
244
245 slb_allocate(pc);
246
247 if (!esids_match(pc, stack))
248 slb_allocate(stack);
249
250 if (!esids_match(pc, exec_base) &&
251 !esids_match(stack, exec_base))
252 slb_allocate(exec_base);
253 }
254
255 static inline void patch_slb_encoding(unsigned int *insn_addr,
256 unsigned int immed)
257 {
258
259 /*
260 * This function patches either an li or a cmpldi instruction with
261 * a new immediate value. This relies on the fact that both li
262 * (which is actually addi) and cmpldi both take a 16-bit immediate
263 * value, and it is situated in the same location in the instruction,
264 * ie. bits 16-31 (Big endian bit order) or the lower 16 bits.
265 * The signedness of the immediate operand differs between the two
266 * instructions however this code is only ever patching a small value,
267 * much less than 1 << 15, so we can get away with it.
268 * To patch the value we read the existing instruction, clear the
269 * immediate value, and or in our new value, then write the instruction
270 * back.
271 */
272 unsigned int insn = (*insn_addr & 0xffff0000) | immed;
273 patch_instruction(insn_addr, insn);
274 }
275
276 extern u32 slb_miss_kernel_load_linear[];
277 extern u32 slb_miss_kernel_load_io[];
278 extern u32 slb_compare_rr_to_size[];
279 extern u32 slb_miss_kernel_load_vmemmap[];
280
281 void slb_set_size(u16 size)
282 {
283 if (mmu_slb_size == size)
284 return;
285
286 mmu_slb_size = size;
287 patch_slb_encoding(slb_compare_rr_to_size, mmu_slb_size);
288 }
289
290 void slb_initialize(void)
291 {
292 unsigned long linear_llp, vmalloc_llp, io_llp;
293 unsigned long lflags, vflags;
294 static int slb_encoding_inited;
295 #ifdef CONFIG_SPARSEMEM_VMEMMAP
296 unsigned long vmemmap_llp;
297 #endif
298
299 /* Prepare our SLB miss handler based on our page size */
300 linear_llp = mmu_psize_defs[mmu_linear_psize].sllp;
301 io_llp = mmu_psize_defs[mmu_io_psize].sllp;
302 vmalloc_llp = mmu_psize_defs[mmu_vmalloc_psize].sllp;
303 get_paca()->vmalloc_sllp = SLB_VSID_KERNEL | vmalloc_llp;
304 #ifdef CONFIG_SPARSEMEM_VMEMMAP
305 vmemmap_llp = mmu_psize_defs[mmu_vmemmap_psize].sllp;
306 #endif
307 if (!slb_encoding_inited) {
308 slb_encoding_inited = 1;
309 patch_slb_encoding(slb_miss_kernel_load_linear,
310 SLB_VSID_KERNEL | linear_llp);
311 patch_slb_encoding(slb_miss_kernel_load_io,
312 SLB_VSID_KERNEL | io_llp);
313 patch_slb_encoding(slb_compare_rr_to_size,
314 mmu_slb_size);
315
316 pr_devel("SLB: linear LLP = %04lx\n", linear_llp);
317 pr_devel("SLB: io LLP = %04lx\n", io_llp);
318
319 #ifdef CONFIG_SPARSEMEM_VMEMMAP
320 patch_slb_encoding(slb_miss_kernel_load_vmemmap,
321 SLB_VSID_KERNEL | vmemmap_llp);
322 pr_devel("SLB: vmemmap LLP = %04lx\n", vmemmap_llp);
323 #endif
324 }
325
326 get_paca()->stab_rr = SLB_NUM_BOLTED;
327
328 lflags = SLB_VSID_KERNEL | linear_llp;
329 vflags = SLB_VSID_KERNEL | vmalloc_llp;
330
331 /* Invalidate the entire SLB (even entry 0) & all the ERATS */
332 asm volatile("isync":::"memory");
333 asm volatile("slbmte %0,%0"::"r" (0) : "memory");
334 asm volatile("isync; slbia; isync":::"memory");
335 create_shadowed_slbe(PAGE_OFFSET, mmu_kernel_ssize, lflags, LINEAR_INDEX);
336 create_shadowed_slbe(VMALLOC_START, mmu_kernel_ssize, vflags, VMALLOC_INDEX);
337
338 /* For the boot cpu, we're running on the stack in init_thread_union,
339 * which is in the first segment of the linear mapping, and also
340 * get_paca()->kstack hasn't been initialized yet.
341 * For secondary cpus, we need to bolt the kernel stack entry now.
342 */
343 slb_shadow_clear(KSTACK_INDEX);
344 if (raw_smp_processor_id() != boot_cpuid &&
345 (get_paca()->kstack & slb_esid_mask(mmu_kernel_ssize)) > PAGE_OFFSET)
346 create_shadowed_slbe(get_paca()->kstack,
347 mmu_kernel_ssize, lflags, KSTACK_INDEX);
348
349 asm volatile("isync":::"memory");
350 }