]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/mm/slice.c
Merge branch 'for-upstream/mali-dp' of git://linux-arm.org/linux-ld into drm-fixes
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / mm / slice.c
1 /*
2 * address space "slices" (meta-segments) support
3 *
4 * Copyright (C) 2007 Benjamin Herrenschmidt, IBM Corporation.
5 *
6 * Based on hugetlb implementation
7 *
8 * Copyright (C) 2003 David Gibson, IBM Corporation.
9 *
10 * This program is free software; you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation; either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 */
24
25 #undef DEBUG
26
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/pagemap.h>
30 #include <linux/err.h>
31 #include <linux/spinlock.h>
32 #include <linux/export.h>
33 #include <linux/hugetlb.h>
34 #include <asm/mman.h>
35 #include <asm/mmu.h>
36 #include <asm/copro.h>
37 #include <asm/hugetlb.h>
38
39 static DEFINE_SPINLOCK(slice_convert_lock);
40 /*
41 * One bit per slice. We have lower slices which cover 256MB segments
42 * upto 4G range. That gets us 16 low slices. For the rest we track slices
43 * in 1TB size.
44 */
45 struct slice_mask {
46 u64 low_slices;
47 DECLARE_BITMAP(high_slices, SLICE_NUM_HIGH);
48 };
49
50 #ifdef DEBUG
51 int _slice_debug = 1;
52
53 static void slice_print_mask(const char *label, struct slice_mask mask)
54 {
55 if (!_slice_debug)
56 return;
57 pr_devel("%s low_slice: %*pbl\n", label, (int)SLICE_NUM_LOW, &mask.low_slices);
58 pr_devel("%s high_slice: %*pbl\n", label, (int)SLICE_NUM_HIGH, mask.high_slices);
59 }
60
61 #define slice_dbg(fmt...) do { if (_slice_debug) pr_devel(fmt); } while (0)
62
63 #else
64
65 static void slice_print_mask(const char *label, struct slice_mask mask) {}
66 #define slice_dbg(fmt...)
67
68 #endif
69
70 static void slice_range_to_mask(unsigned long start, unsigned long len,
71 struct slice_mask *ret)
72 {
73 unsigned long end = start + len - 1;
74
75 ret->low_slices = 0;
76 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
77
78 if (start < SLICE_LOW_TOP) {
79 unsigned long mend = min(end, (SLICE_LOW_TOP - 1));
80
81 ret->low_slices = (1u << (GET_LOW_SLICE_INDEX(mend) + 1))
82 - (1u << GET_LOW_SLICE_INDEX(start));
83 }
84
85 if ((start + len) > SLICE_LOW_TOP) {
86 unsigned long start_index = GET_HIGH_SLICE_INDEX(start);
87 unsigned long align_end = ALIGN(end, (1UL << SLICE_HIGH_SHIFT));
88 unsigned long count = GET_HIGH_SLICE_INDEX(align_end) - start_index;
89
90 bitmap_set(ret->high_slices, start_index, count);
91 }
92 }
93
94 static int slice_area_is_free(struct mm_struct *mm, unsigned long addr,
95 unsigned long len)
96 {
97 struct vm_area_struct *vma;
98
99 if ((mm->context.slb_addr_limit - len) < addr)
100 return 0;
101 vma = find_vma(mm, addr);
102 return (!vma || (addr + len) <= vm_start_gap(vma));
103 }
104
105 static int slice_low_has_vma(struct mm_struct *mm, unsigned long slice)
106 {
107 return !slice_area_is_free(mm, slice << SLICE_LOW_SHIFT,
108 1ul << SLICE_LOW_SHIFT);
109 }
110
111 static int slice_high_has_vma(struct mm_struct *mm, unsigned long slice)
112 {
113 unsigned long start = slice << SLICE_HIGH_SHIFT;
114 unsigned long end = start + (1ul << SLICE_HIGH_SHIFT);
115
116 /* Hack, so that each addresses is controlled by exactly one
117 * of the high or low area bitmaps, the first high area starts
118 * at 4GB, not 0 */
119 if (start == 0)
120 start = SLICE_LOW_TOP;
121
122 return !slice_area_is_free(mm, start, end - start);
123 }
124
125 static void slice_mask_for_free(struct mm_struct *mm, struct slice_mask *ret,
126 unsigned long high_limit)
127 {
128 unsigned long i;
129
130 ret->low_slices = 0;
131 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
132
133 for (i = 0; i < SLICE_NUM_LOW; i++)
134 if (!slice_low_has_vma(mm, i))
135 ret->low_slices |= 1u << i;
136
137 if (high_limit <= SLICE_LOW_TOP)
138 return;
139
140 for (i = 0; i < GET_HIGH_SLICE_INDEX(high_limit); i++)
141 if (!slice_high_has_vma(mm, i))
142 __set_bit(i, ret->high_slices);
143 }
144
145 static void slice_mask_for_size(struct mm_struct *mm, int psize, struct slice_mask *ret,
146 unsigned long high_limit)
147 {
148 unsigned char *hpsizes;
149 int index, mask_index;
150 unsigned long i;
151 u64 lpsizes;
152
153 ret->low_slices = 0;
154 bitmap_zero(ret->high_slices, SLICE_NUM_HIGH);
155
156 lpsizes = mm->context.low_slices_psize;
157 for (i = 0; i < SLICE_NUM_LOW; i++)
158 if (((lpsizes >> (i * 4)) & 0xf) == psize)
159 ret->low_slices |= 1u << i;
160
161 if (high_limit <= SLICE_LOW_TOP)
162 return;
163
164 hpsizes = mm->context.high_slices_psize;
165 for (i = 0; i < GET_HIGH_SLICE_INDEX(high_limit); i++) {
166 mask_index = i & 0x1;
167 index = i >> 1;
168 if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == psize)
169 __set_bit(i, ret->high_slices);
170 }
171 }
172
173 static int slice_check_fit(struct mm_struct *mm,
174 struct slice_mask mask, struct slice_mask available)
175 {
176 DECLARE_BITMAP(result, SLICE_NUM_HIGH);
177 /*
178 * Make sure we just do bit compare only to the max
179 * addr limit and not the full bit map size.
180 */
181 unsigned long slice_count = GET_HIGH_SLICE_INDEX(mm->context.slb_addr_limit);
182
183 bitmap_and(result, mask.high_slices,
184 available.high_slices, slice_count);
185
186 return (mask.low_slices & available.low_slices) == mask.low_slices &&
187 bitmap_equal(result, mask.high_slices, slice_count);
188 }
189
190 static void slice_flush_segments(void *parm)
191 {
192 struct mm_struct *mm = parm;
193 unsigned long flags;
194
195 if (mm != current->active_mm)
196 return;
197
198 copy_mm_to_paca(current->active_mm);
199
200 local_irq_save(flags);
201 slb_flush_and_rebolt();
202 local_irq_restore(flags);
203 }
204
205 static void slice_convert(struct mm_struct *mm, struct slice_mask mask, int psize)
206 {
207 int index, mask_index;
208 /* Write the new slice psize bits */
209 unsigned char *hpsizes;
210 u64 lpsizes;
211 unsigned long i, flags;
212
213 slice_dbg("slice_convert(mm=%p, psize=%d)\n", mm, psize);
214 slice_print_mask(" mask", mask);
215
216 /* We need to use a spinlock here to protect against
217 * concurrent 64k -> 4k demotion ...
218 */
219 spin_lock_irqsave(&slice_convert_lock, flags);
220
221 lpsizes = mm->context.low_slices_psize;
222 for (i = 0; i < SLICE_NUM_LOW; i++)
223 if (mask.low_slices & (1u << i))
224 lpsizes = (lpsizes & ~(0xful << (i * 4))) |
225 (((unsigned long)psize) << (i * 4));
226
227 /* Assign the value back */
228 mm->context.low_slices_psize = lpsizes;
229
230 hpsizes = mm->context.high_slices_psize;
231 for (i = 0; i < GET_HIGH_SLICE_INDEX(mm->context.slb_addr_limit); i++) {
232 mask_index = i & 0x1;
233 index = i >> 1;
234 if (test_bit(i, mask.high_slices))
235 hpsizes[index] = (hpsizes[index] &
236 ~(0xf << (mask_index * 4))) |
237 (((unsigned long)psize) << (mask_index * 4));
238 }
239
240 slice_dbg(" lsps=%lx, hsps=%lx\n",
241 (unsigned long)mm->context.low_slices_psize,
242 (unsigned long)mm->context.high_slices_psize);
243
244 spin_unlock_irqrestore(&slice_convert_lock, flags);
245
246 copro_flush_all_slbs(mm);
247 }
248
249 /*
250 * Compute which slice addr is part of;
251 * set *boundary_addr to the start or end boundary of that slice
252 * (depending on 'end' parameter);
253 * return boolean indicating if the slice is marked as available in the
254 * 'available' slice_mark.
255 */
256 static bool slice_scan_available(unsigned long addr,
257 struct slice_mask available,
258 int end,
259 unsigned long *boundary_addr)
260 {
261 unsigned long slice;
262 if (addr < SLICE_LOW_TOP) {
263 slice = GET_LOW_SLICE_INDEX(addr);
264 *boundary_addr = (slice + end) << SLICE_LOW_SHIFT;
265 return !!(available.low_slices & (1u << slice));
266 } else {
267 slice = GET_HIGH_SLICE_INDEX(addr);
268 *boundary_addr = (slice + end) ?
269 ((slice + end) << SLICE_HIGH_SHIFT) : SLICE_LOW_TOP;
270 return !!test_bit(slice, available.high_slices);
271 }
272 }
273
274 static unsigned long slice_find_area_bottomup(struct mm_struct *mm,
275 unsigned long len,
276 struct slice_mask available,
277 int psize, unsigned long high_limit)
278 {
279 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
280 unsigned long addr, found, next_end;
281 struct vm_unmapped_area_info info;
282
283 info.flags = 0;
284 info.length = len;
285 info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
286 info.align_offset = 0;
287
288 addr = TASK_UNMAPPED_BASE;
289 /*
290 * Check till the allow max value for this mmap request
291 */
292 while (addr < high_limit) {
293 info.low_limit = addr;
294 if (!slice_scan_available(addr, available, 1, &addr))
295 continue;
296
297 next_slice:
298 /*
299 * At this point [info.low_limit; addr) covers
300 * available slices only and ends at a slice boundary.
301 * Check if we need to reduce the range, or if we can
302 * extend it to cover the next available slice.
303 */
304 if (addr >= high_limit)
305 addr = high_limit;
306 else if (slice_scan_available(addr, available, 1, &next_end)) {
307 addr = next_end;
308 goto next_slice;
309 }
310 info.high_limit = addr;
311
312 found = vm_unmapped_area(&info);
313 if (!(found & ~PAGE_MASK))
314 return found;
315 }
316
317 return -ENOMEM;
318 }
319
320 static unsigned long slice_find_area_topdown(struct mm_struct *mm,
321 unsigned long len,
322 struct slice_mask available,
323 int psize, unsigned long high_limit)
324 {
325 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
326 unsigned long addr, found, prev;
327 struct vm_unmapped_area_info info;
328
329 info.flags = VM_UNMAPPED_AREA_TOPDOWN;
330 info.length = len;
331 info.align_mask = PAGE_MASK & ((1ul << pshift) - 1);
332 info.align_offset = 0;
333
334 addr = mm->mmap_base;
335 /*
336 * If we are trying to allocate above DEFAULT_MAP_WINDOW
337 * Add the different to the mmap_base.
338 * Only for that request for which high_limit is above
339 * DEFAULT_MAP_WINDOW we should apply this.
340 */
341 if (high_limit > DEFAULT_MAP_WINDOW)
342 addr += mm->context.slb_addr_limit - DEFAULT_MAP_WINDOW;
343
344 while (addr > PAGE_SIZE) {
345 info.high_limit = addr;
346 if (!slice_scan_available(addr - 1, available, 0, &addr))
347 continue;
348
349 prev_slice:
350 /*
351 * At this point [addr; info.high_limit) covers
352 * available slices only and starts at a slice boundary.
353 * Check if we need to reduce the range, or if we can
354 * extend it to cover the previous available slice.
355 */
356 if (addr < PAGE_SIZE)
357 addr = PAGE_SIZE;
358 else if (slice_scan_available(addr - 1, available, 0, &prev)) {
359 addr = prev;
360 goto prev_slice;
361 }
362 info.low_limit = addr;
363
364 found = vm_unmapped_area(&info);
365 if (!(found & ~PAGE_MASK))
366 return found;
367 }
368
369 /*
370 * A failed mmap() very likely causes application failure,
371 * so fall back to the bottom-up function here. This scenario
372 * can happen with large stack limits and large mmap()
373 * allocations.
374 */
375 return slice_find_area_bottomup(mm, len, available, psize, high_limit);
376 }
377
378
379 static unsigned long slice_find_area(struct mm_struct *mm, unsigned long len,
380 struct slice_mask mask, int psize,
381 int topdown, unsigned long high_limit)
382 {
383 if (topdown)
384 return slice_find_area_topdown(mm, len, mask, psize, high_limit);
385 else
386 return slice_find_area_bottomup(mm, len, mask, psize, high_limit);
387 }
388
389 static inline void slice_or_mask(struct slice_mask *dst, struct slice_mask *src)
390 {
391 DECLARE_BITMAP(result, SLICE_NUM_HIGH);
392
393 dst->low_slices |= src->low_slices;
394 bitmap_or(result, dst->high_slices, src->high_slices, SLICE_NUM_HIGH);
395 bitmap_copy(dst->high_slices, result, SLICE_NUM_HIGH);
396 }
397
398 static inline void slice_andnot_mask(struct slice_mask *dst, struct slice_mask *src)
399 {
400 DECLARE_BITMAP(result, SLICE_NUM_HIGH);
401
402 dst->low_slices &= ~src->low_slices;
403
404 bitmap_andnot(result, dst->high_slices, src->high_slices, SLICE_NUM_HIGH);
405 bitmap_copy(dst->high_slices, result, SLICE_NUM_HIGH);
406 }
407
408 #ifdef CONFIG_PPC_64K_PAGES
409 #define MMU_PAGE_BASE MMU_PAGE_64K
410 #else
411 #define MMU_PAGE_BASE MMU_PAGE_4K
412 #endif
413
414 unsigned long slice_get_unmapped_area(unsigned long addr, unsigned long len,
415 unsigned long flags, unsigned int psize,
416 int topdown)
417 {
418 struct slice_mask mask;
419 struct slice_mask good_mask;
420 struct slice_mask potential_mask;
421 struct slice_mask compat_mask;
422 int fixed = (flags & MAP_FIXED);
423 int pshift = max_t(int, mmu_psize_defs[psize].shift, PAGE_SHIFT);
424 unsigned long page_size = 1UL << pshift;
425 struct mm_struct *mm = current->mm;
426 unsigned long newaddr;
427 unsigned long high_limit;
428
429 high_limit = DEFAULT_MAP_WINDOW;
430 if (addr >= high_limit || (fixed && (addr + len > high_limit)))
431 high_limit = TASK_SIZE;
432
433 if (len > high_limit)
434 return -ENOMEM;
435 if (len & (page_size - 1))
436 return -EINVAL;
437 if (fixed) {
438 if (addr & (page_size - 1))
439 return -EINVAL;
440 if (addr > high_limit - len)
441 return -ENOMEM;
442 }
443
444 if (high_limit > mm->context.slb_addr_limit) {
445 mm->context.slb_addr_limit = high_limit;
446 on_each_cpu(slice_flush_segments, mm, 1);
447 }
448
449 /*
450 * init different masks
451 */
452 mask.low_slices = 0;
453 bitmap_zero(mask.high_slices, SLICE_NUM_HIGH);
454
455 /* silence stupid warning */;
456 potential_mask.low_slices = 0;
457 bitmap_zero(potential_mask.high_slices, SLICE_NUM_HIGH);
458
459 compat_mask.low_slices = 0;
460 bitmap_zero(compat_mask.high_slices, SLICE_NUM_HIGH);
461
462 /* Sanity checks */
463 BUG_ON(mm->task_size == 0);
464 BUG_ON(mm->context.slb_addr_limit == 0);
465 VM_BUG_ON(radix_enabled());
466
467 slice_dbg("slice_get_unmapped_area(mm=%p, psize=%d...\n", mm, psize);
468 slice_dbg(" addr=%lx, len=%lx, flags=%lx, topdown=%d\n",
469 addr, len, flags, topdown);
470
471 /* If hint, make sure it matches our alignment restrictions */
472 if (!fixed && addr) {
473 addr = _ALIGN_UP(addr, page_size);
474 slice_dbg(" aligned addr=%lx\n", addr);
475 /* Ignore hint if it's too large or overlaps a VMA */
476 if (addr > high_limit - len ||
477 !slice_area_is_free(mm, addr, len))
478 addr = 0;
479 }
480
481 /* First make up a "good" mask of slices that have the right size
482 * already
483 */
484 slice_mask_for_size(mm, psize, &good_mask, high_limit);
485 slice_print_mask(" good_mask", good_mask);
486
487 /*
488 * Here "good" means slices that are already the right page size,
489 * "compat" means slices that have a compatible page size (i.e.
490 * 4k in a 64k pagesize kernel), and "free" means slices without
491 * any VMAs.
492 *
493 * If MAP_FIXED:
494 * check if fits in good | compat => OK
495 * check if fits in good | compat | free => convert free
496 * else bad
497 * If have hint:
498 * check if hint fits in good => OK
499 * check if hint fits in good | free => convert free
500 * Otherwise:
501 * search in good, found => OK
502 * search in good | free, found => convert free
503 * search in good | compat | free, found => convert free.
504 */
505
506 #ifdef CONFIG_PPC_64K_PAGES
507 /* If we support combo pages, we can allow 64k pages in 4k slices */
508 if (psize == MMU_PAGE_64K) {
509 slice_mask_for_size(mm, MMU_PAGE_4K, &compat_mask, high_limit);
510 if (fixed)
511 slice_or_mask(&good_mask, &compat_mask);
512 }
513 #endif
514
515 /* First check hint if it's valid or if we have MAP_FIXED */
516 if (addr != 0 || fixed) {
517 /* Build a mask for the requested range */
518 slice_range_to_mask(addr, len, &mask);
519 slice_print_mask(" mask", mask);
520
521 /* Check if we fit in the good mask. If we do, we just return,
522 * nothing else to do
523 */
524 if (slice_check_fit(mm, mask, good_mask)) {
525 slice_dbg(" fits good !\n");
526 return addr;
527 }
528 } else {
529 /* Now let's see if we can find something in the existing
530 * slices for that size
531 */
532 newaddr = slice_find_area(mm, len, good_mask,
533 psize, topdown, high_limit);
534 if (newaddr != -ENOMEM) {
535 /* Found within the good mask, we don't have to setup,
536 * we thus return directly
537 */
538 slice_dbg(" found area at 0x%lx\n", newaddr);
539 return newaddr;
540 }
541 }
542 /*
543 * We don't fit in the good mask, check what other slices are
544 * empty and thus can be converted
545 */
546 slice_mask_for_free(mm, &potential_mask, high_limit);
547 slice_or_mask(&potential_mask, &good_mask);
548 slice_print_mask(" potential", potential_mask);
549
550 if ((addr != 0 || fixed) && slice_check_fit(mm, mask, potential_mask)) {
551 slice_dbg(" fits potential !\n");
552 goto convert;
553 }
554
555 /* If we have MAP_FIXED and failed the above steps, then error out */
556 if (fixed)
557 return -EBUSY;
558
559 slice_dbg(" search...\n");
560
561 /* If we had a hint that didn't work out, see if we can fit
562 * anywhere in the good area.
563 */
564 if (addr) {
565 addr = slice_find_area(mm, len, good_mask,
566 psize, topdown, high_limit);
567 if (addr != -ENOMEM) {
568 slice_dbg(" found area at 0x%lx\n", addr);
569 return addr;
570 }
571 }
572
573 /* Now let's see if we can find something in the existing slices
574 * for that size plus free slices
575 */
576 addr = slice_find_area(mm, len, potential_mask,
577 psize, topdown, high_limit);
578
579 #ifdef CONFIG_PPC_64K_PAGES
580 if (addr == -ENOMEM && psize == MMU_PAGE_64K) {
581 /* retry the search with 4k-page slices included */
582 slice_or_mask(&potential_mask, &compat_mask);
583 addr = slice_find_area(mm, len, potential_mask,
584 psize, topdown, high_limit);
585 }
586 #endif
587
588 if (addr == -ENOMEM)
589 return -ENOMEM;
590
591 slice_range_to_mask(addr, len, &mask);
592 slice_dbg(" found potential area at 0x%lx\n", addr);
593 slice_print_mask(" mask", mask);
594
595 convert:
596 slice_andnot_mask(&mask, &good_mask);
597 slice_andnot_mask(&mask, &compat_mask);
598 if (mask.low_slices || !bitmap_empty(mask.high_slices, SLICE_NUM_HIGH)) {
599 slice_convert(mm, mask, psize);
600 if (psize > MMU_PAGE_BASE)
601 on_each_cpu(slice_flush_segments, mm, 1);
602 }
603 return addr;
604
605 }
606 EXPORT_SYMBOL_GPL(slice_get_unmapped_area);
607
608 unsigned long arch_get_unmapped_area(struct file *filp,
609 unsigned long addr,
610 unsigned long len,
611 unsigned long pgoff,
612 unsigned long flags)
613 {
614 return slice_get_unmapped_area(addr, len, flags,
615 current->mm->context.user_psize, 0);
616 }
617
618 unsigned long arch_get_unmapped_area_topdown(struct file *filp,
619 const unsigned long addr0,
620 const unsigned long len,
621 const unsigned long pgoff,
622 const unsigned long flags)
623 {
624 return slice_get_unmapped_area(addr0, len, flags,
625 current->mm->context.user_psize, 1);
626 }
627
628 unsigned int get_slice_psize(struct mm_struct *mm, unsigned long addr)
629 {
630 unsigned char *hpsizes;
631 int index, mask_index;
632
633 /*
634 * Radix doesn't use slice, but can get enabled along with MMU_SLICE
635 */
636 if (radix_enabled()) {
637 #ifdef CONFIG_PPC_64K_PAGES
638 return MMU_PAGE_64K;
639 #else
640 return MMU_PAGE_4K;
641 #endif
642 }
643 if (addr < SLICE_LOW_TOP) {
644 u64 lpsizes;
645 lpsizes = mm->context.low_slices_psize;
646 index = GET_LOW_SLICE_INDEX(addr);
647 return (lpsizes >> (index * 4)) & 0xf;
648 }
649 hpsizes = mm->context.high_slices_psize;
650 index = GET_HIGH_SLICE_INDEX(addr);
651 mask_index = index & 0x1;
652 return (hpsizes[index >> 1] >> (mask_index * 4)) & 0xf;
653 }
654 EXPORT_SYMBOL_GPL(get_slice_psize);
655
656 /*
657 * This is called by hash_page when it needs to do a lazy conversion of
658 * an address space from real 64K pages to combo 4K pages (typically
659 * when hitting a non cacheable mapping on a processor or hypervisor
660 * that won't allow them for 64K pages).
661 *
662 * This is also called in init_new_context() to change back the user
663 * psize from whatever the parent context had it set to
664 * N.B. This may be called before mm->context.id has been set.
665 *
666 * This function will only change the content of the {low,high)_slice_psize
667 * masks, it will not flush SLBs as this shall be handled lazily by the
668 * caller.
669 */
670 void slice_set_user_psize(struct mm_struct *mm, unsigned int psize)
671 {
672 int index, mask_index;
673 unsigned char *hpsizes;
674 unsigned long flags, lpsizes;
675 unsigned int old_psize;
676 int i;
677
678 slice_dbg("slice_set_user_psize(mm=%p, psize=%d)\n", mm, psize);
679
680 VM_BUG_ON(radix_enabled());
681 spin_lock_irqsave(&slice_convert_lock, flags);
682
683 old_psize = mm->context.user_psize;
684 slice_dbg(" old_psize=%d\n", old_psize);
685 if (old_psize == psize)
686 goto bail;
687
688 mm->context.user_psize = psize;
689 wmb();
690
691 lpsizes = mm->context.low_slices_psize;
692 for (i = 0; i < SLICE_NUM_LOW; i++)
693 if (((lpsizes >> (i * 4)) & 0xf) == old_psize)
694 lpsizes = (lpsizes & ~(0xful << (i * 4))) |
695 (((unsigned long)psize) << (i * 4));
696 /* Assign the value back */
697 mm->context.low_slices_psize = lpsizes;
698
699 hpsizes = mm->context.high_slices_psize;
700 for (i = 0; i < SLICE_NUM_HIGH; i++) {
701 mask_index = i & 0x1;
702 index = i >> 1;
703 if (((hpsizes[index] >> (mask_index * 4)) & 0xf) == old_psize)
704 hpsizes[index] = (hpsizes[index] &
705 ~(0xf << (mask_index * 4))) |
706 (((unsigned long)psize) << (mask_index * 4));
707 }
708
709
710
711
712 slice_dbg(" lsps=%lx, hsps=%lx\n",
713 (unsigned long)mm->context.low_slices_psize,
714 (unsigned long)mm->context.high_slices_psize);
715
716 bail:
717 spin_unlock_irqrestore(&slice_convert_lock, flags);
718 }
719
720 void slice_set_range_psize(struct mm_struct *mm, unsigned long start,
721 unsigned long len, unsigned int psize)
722 {
723 struct slice_mask mask;
724
725 VM_BUG_ON(radix_enabled());
726
727 slice_range_to_mask(start, len, &mask);
728 slice_convert(mm, mask, psize);
729 }
730
731 #ifdef CONFIG_HUGETLB_PAGE
732 /*
733 * is_hugepage_only_range() is used by generic code to verify whether
734 * a normal mmap mapping (non hugetlbfs) is valid on a given area.
735 *
736 * until the generic code provides a more generic hook and/or starts
737 * calling arch get_unmapped_area for MAP_FIXED (which our implementation
738 * here knows how to deal with), we hijack it to keep standard mappings
739 * away from us.
740 *
741 * because of that generic code limitation, MAP_FIXED mapping cannot
742 * "convert" back a slice with no VMAs to the standard page size, only
743 * get_unmapped_area() can. It would be possible to fix it here but I
744 * prefer working on fixing the generic code instead.
745 *
746 * WARNING: This will not work if hugetlbfs isn't enabled since the
747 * generic code will redefine that function as 0 in that. This is ok
748 * for now as we only use slices with hugetlbfs enabled. This should
749 * be fixed as the generic code gets fixed.
750 */
751 int is_hugepage_only_range(struct mm_struct *mm, unsigned long addr,
752 unsigned long len)
753 {
754 struct slice_mask mask, available;
755 unsigned int psize = mm->context.user_psize;
756 unsigned long high_limit = mm->context.slb_addr_limit;
757
758 if (radix_enabled())
759 return 0;
760
761 slice_range_to_mask(addr, len, &mask);
762 slice_mask_for_size(mm, psize, &available, high_limit);
763 #ifdef CONFIG_PPC_64K_PAGES
764 /* We need to account for 4k slices too */
765 if (psize == MMU_PAGE_64K) {
766 struct slice_mask compat_mask;
767 slice_mask_for_size(mm, MMU_PAGE_4K, &compat_mask, high_limit);
768 slice_or_mask(&available, &compat_mask);
769 }
770 #endif
771
772 #if 0 /* too verbose */
773 slice_dbg("is_hugepage_only_range(mm=%p, addr=%lx, len=%lx)\n",
774 mm, addr, len);
775 slice_print_mask(" mask", mask);
776 slice_print_mask(" available", available);
777 #endif
778 return !slice_check_fit(mm, mask, available);
779 }
780 #endif