]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/mm/tlb_nohash.c
powerpc/mm: Drop multiple definition of mm_is_core_local
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / mm / tlb_nohash.c
1 /*
2 * This file contains the routines for TLB flushing.
3 * On machines where the MMU does not use a hash table to store virtual to
4 * physical translations (ie, SW loaded TLBs or Book3E compilant processors,
5 * this does -not- include 603 however which shares the implementation with
6 * hash based processors)
7 *
8 * -- BenH
9 *
10 * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org>
11 * IBM Corp.
12 *
13 * Derived from arch/ppc/mm/init.c:
14 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
15 *
16 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
17 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
18 * Copyright (C) 1996 Paul Mackerras
19 *
20 * Derived from "arch/i386/mm/init.c"
21 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
22 *
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
27 *
28 */
29
30 #include <linux/kernel.h>
31 #include <linux/export.h>
32 #include <linux/mm.h>
33 #include <linux/init.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/preempt.h>
37 #include <linux/spinlock.h>
38 #include <linux/memblock.h>
39 #include <linux/of_fdt.h>
40 #include <linux/hugetlb.h>
41
42 #include <asm/tlbflush.h>
43 #include <asm/tlb.h>
44 #include <asm/code-patching.h>
45 #include <asm/cputhreads.h>
46 #include <asm/hugetlb.h>
47 #include <asm/paca.h>
48
49 #include "mmu_decl.h"
50
51 /*
52 * This struct lists the sw-supported page sizes. The hardawre MMU may support
53 * other sizes not listed here. The .ind field is only used on MMUs that have
54 * indirect page table entries.
55 */
56 #ifdef CONFIG_PPC_BOOK3E_MMU
57 #ifdef CONFIG_PPC_FSL_BOOK3E
58 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
59 [MMU_PAGE_4K] = {
60 .shift = 12,
61 .enc = BOOK3E_PAGESZ_4K,
62 },
63 [MMU_PAGE_2M] = {
64 .shift = 21,
65 .enc = BOOK3E_PAGESZ_2M,
66 },
67 [MMU_PAGE_4M] = {
68 .shift = 22,
69 .enc = BOOK3E_PAGESZ_4M,
70 },
71 [MMU_PAGE_16M] = {
72 .shift = 24,
73 .enc = BOOK3E_PAGESZ_16M,
74 },
75 [MMU_PAGE_64M] = {
76 .shift = 26,
77 .enc = BOOK3E_PAGESZ_64M,
78 },
79 [MMU_PAGE_256M] = {
80 .shift = 28,
81 .enc = BOOK3E_PAGESZ_256M,
82 },
83 [MMU_PAGE_1G] = {
84 .shift = 30,
85 .enc = BOOK3E_PAGESZ_1GB,
86 },
87 };
88 #else
89 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
90 [MMU_PAGE_4K] = {
91 .shift = 12,
92 .ind = 20,
93 .enc = BOOK3E_PAGESZ_4K,
94 },
95 [MMU_PAGE_16K] = {
96 .shift = 14,
97 .enc = BOOK3E_PAGESZ_16K,
98 },
99 [MMU_PAGE_64K] = {
100 .shift = 16,
101 .ind = 28,
102 .enc = BOOK3E_PAGESZ_64K,
103 },
104 [MMU_PAGE_1M] = {
105 .shift = 20,
106 .enc = BOOK3E_PAGESZ_1M,
107 },
108 [MMU_PAGE_16M] = {
109 .shift = 24,
110 .ind = 36,
111 .enc = BOOK3E_PAGESZ_16M,
112 },
113 [MMU_PAGE_256M] = {
114 .shift = 28,
115 .enc = BOOK3E_PAGESZ_256M,
116 },
117 [MMU_PAGE_1G] = {
118 .shift = 30,
119 .enc = BOOK3E_PAGESZ_1GB,
120 },
121 };
122 #endif /* CONFIG_FSL_BOOKE */
123
124 static inline int mmu_get_tsize(int psize)
125 {
126 return mmu_psize_defs[psize].enc;
127 }
128 #else
129 static inline int mmu_get_tsize(int psize)
130 {
131 /* This isn't used on !Book3E for now */
132 return 0;
133 }
134 #endif /* CONFIG_PPC_BOOK3E_MMU */
135
136 /* The variables below are currently only used on 64-bit Book3E
137 * though this will probably be made common with other nohash
138 * implementations at some point
139 */
140 #ifdef CONFIG_PPC64
141
142 int mmu_linear_psize; /* Page size used for the linear mapping */
143 int mmu_pte_psize; /* Page size used for PTE pages */
144 int mmu_vmemmap_psize; /* Page size used for the virtual mem map */
145 int book3e_htw_mode; /* HW tablewalk? Value is PPC_HTW_* */
146 unsigned long linear_map_top; /* Top of linear mapping */
147
148
149 /*
150 * Number of bytes to add to SPRN_SPRG_TLB_EXFRAME on crit/mcheck/debug
151 * exceptions. This is used for bolted and e6500 TLB miss handlers which
152 * do not modify this SPRG in the TLB miss code; for other TLB miss handlers,
153 * this is set to zero.
154 */
155 int extlb_level_exc;
156
157 #endif /* CONFIG_PPC64 */
158
159 #ifdef CONFIG_PPC_FSL_BOOK3E
160 /* next_tlbcam_idx is used to round-robin tlbcam entry assignment */
161 DEFINE_PER_CPU(int, next_tlbcam_idx);
162 EXPORT_PER_CPU_SYMBOL(next_tlbcam_idx);
163 #endif
164
165 /*
166 * Base TLB flushing operations:
167 *
168 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
169 * - flush_tlb_page(vma, vmaddr) flushes one page
170 * - flush_tlb_range(vma, start, end) flushes a range of pages
171 * - flush_tlb_kernel_range(start, end) flushes kernel pages
172 *
173 * - local_* variants of page and mm only apply to the current
174 * processor
175 */
176
177 /*
178 * These are the base non-SMP variants of page and mm flushing
179 */
180 void local_flush_tlb_mm(struct mm_struct *mm)
181 {
182 unsigned int pid;
183
184 preempt_disable();
185 pid = mm->context.id;
186 if (pid != MMU_NO_CONTEXT)
187 _tlbil_pid(pid);
188 preempt_enable();
189 }
190 EXPORT_SYMBOL(local_flush_tlb_mm);
191
192 void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
193 int tsize, int ind)
194 {
195 unsigned int pid;
196
197 preempt_disable();
198 pid = mm ? mm->context.id : 0;
199 if (pid != MMU_NO_CONTEXT)
200 _tlbil_va(vmaddr, pid, tsize, ind);
201 preempt_enable();
202 }
203
204 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
205 {
206 __local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
207 mmu_get_tsize(mmu_virtual_psize), 0);
208 }
209 EXPORT_SYMBOL(local_flush_tlb_page);
210
211 /*
212 * And here are the SMP non-local implementations
213 */
214 #ifdef CONFIG_SMP
215
216 static DEFINE_RAW_SPINLOCK(tlbivax_lock);
217
218 struct tlb_flush_param {
219 unsigned long addr;
220 unsigned int pid;
221 unsigned int tsize;
222 unsigned int ind;
223 };
224
225 static void do_flush_tlb_mm_ipi(void *param)
226 {
227 struct tlb_flush_param *p = param;
228
229 _tlbil_pid(p ? p->pid : 0);
230 }
231
232 static void do_flush_tlb_page_ipi(void *param)
233 {
234 struct tlb_flush_param *p = param;
235
236 _tlbil_va(p->addr, p->pid, p->tsize, p->ind);
237 }
238
239
240 /* Note on invalidations and PID:
241 *
242 * We snapshot the PID with preempt disabled. At this point, it can still
243 * change either because:
244 * - our context is being stolen (PID -> NO_CONTEXT) on another CPU
245 * - we are invaliating some target that isn't currently running here
246 * and is concurrently acquiring a new PID on another CPU
247 * - some other CPU is re-acquiring a lost PID for this mm
248 * etc...
249 *
250 * However, this shouldn't be a problem as we only guarantee
251 * invalidation of TLB entries present prior to this call, so we
252 * don't care about the PID changing, and invalidating a stale PID
253 * is generally harmless.
254 */
255
256 void flush_tlb_mm(struct mm_struct *mm)
257 {
258 unsigned int pid;
259
260 preempt_disable();
261 pid = mm->context.id;
262 if (unlikely(pid == MMU_NO_CONTEXT))
263 goto no_context;
264 if (!mm_is_core_local(mm)) {
265 struct tlb_flush_param p = { .pid = pid };
266 /* Ignores smp_processor_id() even if set. */
267 smp_call_function_many(mm_cpumask(mm),
268 do_flush_tlb_mm_ipi, &p, 1);
269 }
270 _tlbil_pid(pid);
271 no_context:
272 preempt_enable();
273 }
274 EXPORT_SYMBOL(flush_tlb_mm);
275
276 void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
277 int tsize, int ind)
278 {
279 struct cpumask *cpu_mask;
280 unsigned int pid;
281
282 /*
283 * This function as well as __local_flush_tlb_page() must only be called
284 * for user contexts.
285 */
286 if (unlikely(WARN_ON(!mm)))
287 return;
288
289 preempt_disable();
290 pid = mm->context.id;
291 if (unlikely(pid == MMU_NO_CONTEXT))
292 goto bail;
293 cpu_mask = mm_cpumask(mm);
294 if (!mm_is_core_local(mm)) {
295 /* If broadcast tlbivax is supported, use it */
296 if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) {
297 int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL);
298 if (lock)
299 raw_spin_lock(&tlbivax_lock);
300 _tlbivax_bcast(vmaddr, pid, tsize, ind);
301 if (lock)
302 raw_spin_unlock(&tlbivax_lock);
303 goto bail;
304 } else {
305 struct tlb_flush_param p = {
306 .pid = pid,
307 .addr = vmaddr,
308 .tsize = tsize,
309 .ind = ind,
310 };
311 /* Ignores smp_processor_id() even if set in cpu_mask */
312 smp_call_function_many(cpu_mask,
313 do_flush_tlb_page_ipi, &p, 1);
314 }
315 }
316 _tlbil_va(vmaddr, pid, tsize, ind);
317 bail:
318 preempt_enable();
319 }
320
321 void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
322 {
323 #ifdef CONFIG_HUGETLB_PAGE
324 if (vma && is_vm_hugetlb_page(vma))
325 flush_hugetlb_page(vma, vmaddr);
326 #endif
327
328 __flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
329 mmu_get_tsize(mmu_virtual_psize), 0);
330 }
331 EXPORT_SYMBOL(flush_tlb_page);
332
333 #endif /* CONFIG_SMP */
334
335 #ifdef CONFIG_PPC_47x
336 void __init early_init_mmu_47x(void)
337 {
338 #ifdef CONFIG_SMP
339 unsigned long root = of_get_flat_dt_root();
340 if (of_get_flat_dt_prop(root, "cooperative-partition", NULL))
341 mmu_clear_feature(MMU_FTR_USE_TLBIVAX_BCAST);
342 #endif /* CONFIG_SMP */
343 }
344 #endif /* CONFIG_PPC_47x */
345
346 /*
347 * Flush kernel TLB entries in the given range
348 */
349 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
350 {
351 #ifdef CONFIG_SMP
352 preempt_disable();
353 smp_call_function(do_flush_tlb_mm_ipi, NULL, 1);
354 _tlbil_pid(0);
355 preempt_enable();
356 #else
357 _tlbil_pid(0);
358 #endif
359 }
360 EXPORT_SYMBOL(flush_tlb_kernel_range);
361
362 /*
363 * Currently, for range flushing, we just do a full mm flush. This should
364 * be optimized based on a threshold on the size of the range, since
365 * some implementation can stack multiple tlbivax before a tlbsync but
366 * for now, we keep it that way
367 */
368 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
369 unsigned long end)
370
371 {
372 flush_tlb_mm(vma->vm_mm);
373 }
374 EXPORT_SYMBOL(flush_tlb_range);
375
376 void tlb_flush(struct mmu_gather *tlb)
377 {
378 flush_tlb_mm(tlb->mm);
379 }
380
381 /*
382 * Below are functions specific to the 64-bit variant of Book3E though that
383 * may change in the future
384 */
385
386 #ifdef CONFIG_PPC64
387
388 /*
389 * Handling of virtual linear page tables or indirect TLB entries
390 * flushing when PTE pages are freed
391 */
392 void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address)
393 {
394 int tsize = mmu_psize_defs[mmu_pte_psize].enc;
395
396 if (book3e_htw_mode != PPC_HTW_NONE) {
397 unsigned long start = address & PMD_MASK;
398 unsigned long end = address + PMD_SIZE;
399 unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift;
400
401 /* This isn't the most optimal, ideally we would factor out the
402 * while preempt & CPU mask mucking around, or even the IPI but
403 * it will do for now
404 */
405 while (start < end) {
406 __flush_tlb_page(tlb->mm, start, tsize, 1);
407 start += size;
408 }
409 } else {
410 unsigned long rmask = 0xf000000000000000ul;
411 unsigned long rid = (address & rmask) | 0x1000000000000000ul;
412 unsigned long vpte = address & ~rmask;
413
414 #ifdef CONFIG_PPC_64K_PAGES
415 vpte = (vpte >> (PAGE_SHIFT - 4)) & ~0xfffful;
416 #else
417 vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful;
418 #endif
419 vpte |= rid;
420 __flush_tlb_page(tlb->mm, vpte, tsize, 0);
421 }
422 }
423
424 static void setup_page_sizes(void)
425 {
426 unsigned int tlb0cfg;
427 unsigned int tlb0ps;
428 unsigned int eptcfg;
429 int i, psize;
430
431 #ifdef CONFIG_PPC_FSL_BOOK3E
432 unsigned int mmucfg = mfspr(SPRN_MMUCFG);
433 int fsl_mmu = mmu_has_feature(MMU_FTR_TYPE_FSL_E);
434
435 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) {
436 unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG);
437 unsigned int min_pg, max_pg;
438
439 min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT;
440 max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT;
441
442 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
443 struct mmu_psize_def *def;
444 unsigned int shift;
445
446 def = &mmu_psize_defs[psize];
447 shift = def->shift;
448
449 if (shift == 0 || shift & 1)
450 continue;
451
452 /* adjust to be in terms of 4^shift Kb */
453 shift = (shift - 10) >> 1;
454
455 if ((shift >= min_pg) && (shift <= max_pg))
456 def->flags |= MMU_PAGE_SIZE_DIRECT;
457 }
458
459 goto out;
460 }
461
462 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V2) {
463 u32 tlb1cfg, tlb1ps;
464
465 tlb0cfg = mfspr(SPRN_TLB0CFG);
466 tlb1cfg = mfspr(SPRN_TLB1CFG);
467 tlb1ps = mfspr(SPRN_TLB1PS);
468 eptcfg = mfspr(SPRN_EPTCFG);
469
470 if ((tlb1cfg & TLBnCFG_IND) && (tlb0cfg & TLBnCFG_PT))
471 book3e_htw_mode = PPC_HTW_E6500;
472
473 /*
474 * We expect 4K subpage size and unrestricted indirect size.
475 * The lack of a restriction on indirect size is a Freescale
476 * extension, indicated by PSn = 0 but SPSn != 0.
477 */
478 if (eptcfg != 2)
479 book3e_htw_mode = PPC_HTW_NONE;
480
481 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
482 struct mmu_psize_def *def = &mmu_psize_defs[psize];
483
484 if (tlb1ps & (1U << (def->shift - 10))) {
485 def->flags |= MMU_PAGE_SIZE_DIRECT;
486
487 if (book3e_htw_mode && psize == MMU_PAGE_2M)
488 def->flags |= MMU_PAGE_SIZE_INDIRECT;
489 }
490 }
491
492 goto out;
493 }
494 #endif
495
496 tlb0cfg = mfspr(SPRN_TLB0CFG);
497 tlb0ps = mfspr(SPRN_TLB0PS);
498 eptcfg = mfspr(SPRN_EPTCFG);
499
500 /* Look for supported direct sizes */
501 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
502 struct mmu_psize_def *def = &mmu_psize_defs[psize];
503
504 if (tlb0ps & (1U << (def->shift - 10)))
505 def->flags |= MMU_PAGE_SIZE_DIRECT;
506 }
507
508 /* Indirect page sizes supported ? */
509 if ((tlb0cfg & TLBnCFG_IND) == 0 ||
510 (tlb0cfg & TLBnCFG_PT) == 0)
511 goto out;
512
513 book3e_htw_mode = PPC_HTW_IBM;
514
515 /* Now, we only deal with one IND page size for each
516 * direct size. Hopefully all implementations today are
517 * unambiguous, but we might want to be careful in the
518 * future.
519 */
520 for (i = 0; i < 3; i++) {
521 unsigned int ps, sps;
522
523 sps = eptcfg & 0x1f;
524 eptcfg >>= 5;
525 ps = eptcfg & 0x1f;
526 eptcfg >>= 5;
527 if (!ps || !sps)
528 continue;
529 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
530 struct mmu_psize_def *def = &mmu_psize_defs[psize];
531
532 if (ps == (def->shift - 10))
533 def->flags |= MMU_PAGE_SIZE_INDIRECT;
534 if (sps == (def->shift - 10))
535 def->ind = ps + 10;
536 }
537 }
538
539 out:
540 /* Cleanup array and print summary */
541 pr_info("MMU: Supported page sizes\n");
542 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
543 struct mmu_psize_def *def = &mmu_psize_defs[psize];
544 const char *__page_type_names[] = {
545 "unsupported",
546 "direct",
547 "indirect",
548 "direct & indirect"
549 };
550 if (def->flags == 0) {
551 def->shift = 0;
552 continue;
553 }
554 pr_info(" %8ld KB as %s\n", 1ul << (def->shift - 10),
555 __page_type_names[def->flags & 0x3]);
556 }
557 }
558
559 static void setup_mmu_htw(void)
560 {
561 /*
562 * If we want to use HW tablewalk, enable it by patching the TLB miss
563 * handlers to branch to the one dedicated to it.
564 */
565
566 switch (book3e_htw_mode) {
567 case PPC_HTW_IBM:
568 patch_exception(0x1c0, exc_data_tlb_miss_htw_book3e);
569 patch_exception(0x1e0, exc_instruction_tlb_miss_htw_book3e);
570 break;
571 #ifdef CONFIG_PPC_FSL_BOOK3E
572 case PPC_HTW_E6500:
573 extlb_level_exc = EX_TLB_SIZE;
574 patch_exception(0x1c0, exc_data_tlb_miss_e6500_book3e);
575 patch_exception(0x1e0, exc_instruction_tlb_miss_e6500_book3e);
576 break;
577 #endif
578 }
579 pr_info("MMU: Book3E HW tablewalk %s\n",
580 book3e_htw_mode != PPC_HTW_NONE ? "enabled" : "not supported");
581 }
582
583 /*
584 * Early initialization of the MMU TLB code
585 */
586 static void early_init_this_mmu(void)
587 {
588 unsigned int mas4;
589
590 /* Set MAS4 based on page table setting */
591
592 mas4 = 0x4 << MAS4_WIMGED_SHIFT;
593 switch (book3e_htw_mode) {
594 case PPC_HTW_E6500:
595 mas4 |= MAS4_INDD;
596 mas4 |= BOOK3E_PAGESZ_2M << MAS4_TSIZED_SHIFT;
597 mas4 |= MAS4_TLBSELD(1);
598 mmu_pte_psize = MMU_PAGE_2M;
599 break;
600
601 case PPC_HTW_IBM:
602 mas4 |= MAS4_INDD;
603 #ifdef CONFIG_PPC_64K_PAGES
604 mas4 |= BOOK3E_PAGESZ_256M << MAS4_TSIZED_SHIFT;
605 mmu_pte_psize = MMU_PAGE_256M;
606 #else
607 mas4 |= BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT;
608 mmu_pte_psize = MMU_PAGE_1M;
609 #endif
610 break;
611
612 case PPC_HTW_NONE:
613 #ifdef CONFIG_PPC_64K_PAGES
614 mas4 |= BOOK3E_PAGESZ_64K << MAS4_TSIZED_SHIFT;
615 #else
616 mas4 |= BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT;
617 #endif
618 mmu_pte_psize = mmu_virtual_psize;
619 break;
620 }
621 mtspr(SPRN_MAS4, mas4);
622
623 #ifdef CONFIG_PPC_FSL_BOOK3E
624 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
625 unsigned int num_cams;
626 int __maybe_unused cpu = smp_processor_id();
627 bool map = true;
628
629 /* use a quarter of the TLBCAM for bolted linear map */
630 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
631
632 /*
633 * Only do the mapping once per core, or else the
634 * transient mapping would cause problems.
635 */
636 #ifdef CONFIG_SMP
637 if (hweight32(get_tensr()) > 1)
638 map = false;
639 #endif
640
641 if (map)
642 linear_map_top = map_mem_in_cams(linear_map_top,
643 num_cams, false);
644 }
645 #endif
646
647 /* A sync won't hurt us after mucking around with
648 * the MMU configuration
649 */
650 mb();
651 }
652
653 static void __init early_init_mmu_global(void)
654 {
655 /* XXX This will have to be decided at runtime, but right
656 * now our boot and TLB miss code hard wires it. Ideally
657 * we should find out a suitable page size and patch the
658 * TLB miss code (either that or use the PACA to store
659 * the value we want)
660 */
661 mmu_linear_psize = MMU_PAGE_1G;
662
663 /* XXX This should be decided at runtime based on supported
664 * page sizes in the TLB, but for now let's assume 16M is
665 * always there and a good fit (which it probably is)
666 *
667 * Freescale booke only supports 4K pages in TLB0, so use that.
668 */
669 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
670 mmu_vmemmap_psize = MMU_PAGE_4K;
671 else
672 mmu_vmemmap_psize = MMU_PAGE_16M;
673
674 /* XXX This code only checks for TLB 0 capabilities and doesn't
675 * check what page size combos are supported by the HW. It
676 * also doesn't handle the case where a separate array holds
677 * the IND entries from the array loaded by the PT.
678 */
679 /* Look for supported page sizes */
680 setup_page_sizes();
681
682 /* Look for HW tablewalk support */
683 setup_mmu_htw();
684
685 #ifdef CONFIG_PPC_FSL_BOOK3E
686 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
687 if (book3e_htw_mode == PPC_HTW_NONE) {
688 extlb_level_exc = EX_TLB_SIZE;
689 patch_exception(0x1c0, exc_data_tlb_miss_bolted_book3e);
690 patch_exception(0x1e0,
691 exc_instruction_tlb_miss_bolted_book3e);
692 }
693 }
694 #endif
695
696 /* Set the global containing the top of the linear mapping
697 * for use by the TLB miss code
698 */
699 linear_map_top = memblock_end_of_DRAM();
700 }
701
702 static void __init early_mmu_set_memory_limit(void)
703 {
704 #ifdef CONFIG_PPC_FSL_BOOK3E
705 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
706 /*
707 * Limit memory so we dont have linear faults.
708 * Unlike memblock_set_current_limit, which limits
709 * memory available during early boot, this permanently
710 * reduces the memory available to Linux. We need to
711 * do this because highmem is not supported on 64-bit.
712 */
713 memblock_enforce_memory_limit(linear_map_top);
714 }
715 #endif
716
717 memblock_set_current_limit(linear_map_top);
718 }
719
720 /* boot cpu only */
721 void __init early_init_mmu(void)
722 {
723 early_init_mmu_global();
724 early_init_this_mmu();
725 early_mmu_set_memory_limit();
726 }
727
728 void early_init_mmu_secondary(void)
729 {
730 early_init_this_mmu();
731 }
732
733 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
734 phys_addr_t first_memblock_size)
735 {
736 /* On non-FSL Embedded 64-bit, we adjust the RMA size to match
737 * the bolted TLB entry. We know for now that only 1G
738 * entries are supported though that may eventually
739 * change.
740 *
741 * on FSL Embedded 64-bit, usually all RAM is bolted, but with
742 * unusual memory sizes it's possible for some RAM to not be mapped
743 * (such RAM is not used at all by Linux, since we don't support
744 * highmem on 64-bit). We limit ppc64_rma_size to what would be
745 * mappable if this memblock is the only one. Additional memblocks
746 * can only increase, not decrease, the amount that ends up getting
747 * mapped. We still limit max to 1G even if we'll eventually map
748 * more. This is due to what the early init code is set up to do.
749 *
750 * We crop it to the size of the first MEMBLOCK to
751 * avoid going over total available memory just in case...
752 */
753 #ifdef CONFIG_PPC_FSL_BOOK3E
754 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
755 unsigned long linear_sz;
756 unsigned int num_cams;
757
758 /* use a quarter of the TLBCAM for bolted linear map */
759 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
760
761 linear_sz = map_mem_in_cams(first_memblock_size, num_cams,
762 true);
763
764 ppc64_rma_size = min_t(u64, linear_sz, 0x40000000);
765 } else
766 #endif
767 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
768
769 /* Finally limit subsequent allocations */
770 memblock_set_current_limit(first_memblock_base + ppc64_rma_size);
771 }
772 #else /* ! CONFIG_PPC64 */
773 void __init early_init_mmu(void)
774 {
775 #ifdef CONFIG_PPC_47x
776 early_init_mmu_47x();
777 #endif
778 }
779 #endif /* CONFIG_PPC64 */