]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/powerpc/mm/tlb_nohash.c
4f79639e432f332b7319ff12bde9ae83aa6c8eed
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / mm / tlb_nohash.c
1 /*
2 * This file contains the routines for TLB flushing.
3 * On machines where the MMU does not use a hash table to store virtual to
4 * physical translations (ie, SW loaded TLBs or Book3E compilant processors,
5 * this does -not- include 603 however which shares the implementation with
6 * hash based processors)
7 *
8 * -- BenH
9 *
10 * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org>
11 * IBM Corp.
12 *
13 * Derived from arch/ppc/mm/init.c:
14 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
15 *
16 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
17 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
18 * Copyright (C) 1996 Paul Mackerras
19 *
20 * Derived from "arch/i386/mm/init.c"
21 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
22 *
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
27 *
28 */
29
30 #include <linux/kernel.h>
31 #include <linux/export.h>
32 #include <linux/mm.h>
33 #include <linux/init.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/preempt.h>
37 #include <linux/spinlock.h>
38 #include <linux/memblock.h>
39 #include <linux/of_fdt.h>
40 #include <linux/hugetlb.h>
41
42 #include <asm/tlbflush.h>
43 #include <asm/tlb.h>
44 #include <asm/code-patching.h>
45 #include <asm/cputhreads.h>
46 #include <asm/hugetlb.h>
47 #include <asm/paca.h>
48
49 #include "mmu_decl.h"
50
51 /*
52 * This struct lists the sw-supported page sizes. The hardawre MMU may support
53 * other sizes not listed here. The .ind field is only used on MMUs that have
54 * indirect page table entries.
55 */
56 #if defined(CONFIG_PPC_BOOK3E_MMU) || defined(CONFIG_PPC_8xx)
57 #ifdef CONFIG_PPC_FSL_BOOK3E
58 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
59 [MMU_PAGE_4K] = {
60 .shift = 12,
61 .enc = BOOK3E_PAGESZ_4K,
62 },
63 [MMU_PAGE_2M] = {
64 .shift = 21,
65 .enc = BOOK3E_PAGESZ_2M,
66 },
67 [MMU_PAGE_4M] = {
68 .shift = 22,
69 .enc = BOOK3E_PAGESZ_4M,
70 },
71 [MMU_PAGE_16M] = {
72 .shift = 24,
73 .enc = BOOK3E_PAGESZ_16M,
74 },
75 [MMU_PAGE_64M] = {
76 .shift = 26,
77 .enc = BOOK3E_PAGESZ_64M,
78 },
79 [MMU_PAGE_256M] = {
80 .shift = 28,
81 .enc = BOOK3E_PAGESZ_256M,
82 },
83 [MMU_PAGE_1G] = {
84 .shift = 30,
85 .enc = BOOK3E_PAGESZ_1GB,
86 },
87 };
88 #elif defined(CONFIG_PPC_8xx)
89 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
90 /* we only manage 4k and 16k pages as normal pages */
91 #ifdef CONFIG_PPC_4K_PAGES
92 [MMU_PAGE_4K] = {
93 .shift = 12,
94 },
95 #else
96 [MMU_PAGE_16K] = {
97 .shift = 14,
98 },
99 #endif
100 };
101 #else
102 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
103 [MMU_PAGE_4K] = {
104 .shift = 12,
105 .ind = 20,
106 .enc = BOOK3E_PAGESZ_4K,
107 },
108 [MMU_PAGE_16K] = {
109 .shift = 14,
110 .enc = BOOK3E_PAGESZ_16K,
111 },
112 [MMU_PAGE_64K] = {
113 .shift = 16,
114 .ind = 28,
115 .enc = BOOK3E_PAGESZ_64K,
116 },
117 [MMU_PAGE_1M] = {
118 .shift = 20,
119 .enc = BOOK3E_PAGESZ_1M,
120 },
121 [MMU_PAGE_16M] = {
122 .shift = 24,
123 .ind = 36,
124 .enc = BOOK3E_PAGESZ_16M,
125 },
126 [MMU_PAGE_256M] = {
127 .shift = 28,
128 .enc = BOOK3E_PAGESZ_256M,
129 },
130 [MMU_PAGE_1G] = {
131 .shift = 30,
132 .enc = BOOK3E_PAGESZ_1GB,
133 },
134 };
135 #endif /* CONFIG_FSL_BOOKE */
136
137 static inline int mmu_get_tsize(int psize)
138 {
139 return mmu_psize_defs[psize].enc;
140 }
141 #else
142 static inline int mmu_get_tsize(int psize)
143 {
144 /* This isn't used on !Book3E for now */
145 return 0;
146 }
147 #endif /* CONFIG_PPC_BOOK3E_MMU */
148
149 /* The variables below are currently only used on 64-bit Book3E
150 * though this will probably be made common with other nohash
151 * implementations at some point
152 */
153 #ifdef CONFIG_PPC64
154
155 int mmu_linear_psize; /* Page size used for the linear mapping */
156 int mmu_pte_psize; /* Page size used for PTE pages */
157 int mmu_vmemmap_psize; /* Page size used for the virtual mem map */
158 int book3e_htw_mode; /* HW tablewalk? Value is PPC_HTW_* */
159 unsigned long linear_map_top; /* Top of linear mapping */
160
161
162 /*
163 * Number of bytes to add to SPRN_SPRG_TLB_EXFRAME on crit/mcheck/debug
164 * exceptions. This is used for bolted and e6500 TLB miss handlers which
165 * do not modify this SPRG in the TLB miss code; for other TLB miss handlers,
166 * this is set to zero.
167 */
168 int extlb_level_exc;
169
170 #endif /* CONFIG_PPC64 */
171
172 #ifdef CONFIG_PPC_FSL_BOOK3E
173 /* next_tlbcam_idx is used to round-robin tlbcam entry assignment */
174 DEFINE_PER_CPU(int, next_tlbcam_idx);
175 EXPORT_PER_CPU_SYMBOL(next_tlbcam_idx);
176 #endif
177
178 /*
179 * Base TLB flushing operations:
180 *
181 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
182 * - flush_tlb_page(vma, vmaddr) flushes one page
183 * - flush_tlb_range(vma, start, end) flushes a range of pages
184 * - flush_tlb_kernel_range(start, end) flushes kernel pages
185 *
186 * - local_* variants of page and mm only apply to the current
187 * processor
188 */
189
190 /*
191 * These are the base non-SMP variants of page and mm flushing
192 */
193 void local_flush_tlb_mm(struct mm_struct *mm)
194 {
195 unsigned int pid;
196
197 preempt_disable();
198 pid = mm->context.id;
199 if (pid != MMU_NO_CONTEXT)
200 _tlbil_pid(pid);
201 preempt_enable();
202 }
203 EXPORT_SYMBOL(local_flush_tlb_mm);
204
205 void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
206 int tsize, int ind)
207 {
208 unsigned int pid;
209
210 preempt_disable();
211 pid = mm ? mm->context.id : 0;
212 if (pid != MMU_NO_CONTEXT)
213 _tlbil_va(vmaddr, pid, tsize, ind);
214 preempt_enable();
215 }
216
217 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
218 {
219 __local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
220 mmu_get_tsize(mmu_virtual_psize), 0);
221 }
222 EXPORT_SYMBOL(local_flush_tlb_page);
223
224 /*
225 * And here are the SMP non-local implementations
226 */
227 #ifdef CONFIG_SMP
228
229 static DEFINE_RAW_SPINLOCK(tlbivax_lock);
230
231 struct tlb_flush_param {
232 unsigned long addr;
233 unsigned int pid;
234 unsigned int tsize;
235 unsigned int ind;
236 };
237
238 static void do_flush_tlb_mm_ipi(void *param)
239 {
240 struct tlb_flush_param *p = param;
241
242 _tlbil_pid(p ? p->pid : 0);
243 }
244
245 static void do_flush_tlb_page_ipi(void *param)
246 {
247 struct tlb_flush_param *p = param;
248
249 _tlbil_va(p->addr, p->pid, p->tsize, p->ind);
250 }
251
252
253 /* Note on invalidations and PID:
254 *
255 * We snapshot the PID with preempt disabled. At this point, it can still
256 * change either because:
257 * - our context is being stolen (PID -> NO_CONTEXT) on another CPU
258 * - we are invaliating some target that isn't currently running here
259 * and is concurrently acquiring a new PID on another CPU
260 * - some other CPU is re-acquiring a lost PID for this mm
261 * etc...
262 *
263 * However, this shouldn't be a problem as we only guarantee
264 * invalidation of TLB entries present prior to this call, so we
265 * don't care about the PID changing, and invalidating a stale PID
266 * is generally harmless.
267 */
268
269 void flush_tlb_mm(struct mm_struct *mm)
270 {
271 unsigned int pid;
272
273 preempt_disable();
274 pid = mm->context.id;
275 if (unlikely(pid == MMU_NO_CONTEXT))
276 goto no_context;
277 if (!mm_is_core_local(mm)) {
278 struct tlb_flush_param p = { .pid = pid };
279 /* Ignores smp_processor_id() even if set. */
280 smp_call_function_many(mm_cpumask(mm),
281 do_flush_tlb_mm_ipi, &p, 1);
282 }
283 _tlbil_pid(pid);
284 no_context:
285 preempt_enable();
286 }
287 EXPORT_SYMBOL(flush_tlb_mm);
288
289 void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
290 int tsize, int ind)
291 {
292 struct cpumask *cpu_mask;
293 unsigned int pid;
294
295 /*
296 * This function as well as __local_flush_tlb_page() must only be called
297 * for user contexts.
298 */
299 if (unlikely(WARN_ON(!mm)))
300 return;
301
302 preempt_disable();
303 pid = mm->context.id;
304 if (unlikely(pid == MMU_NO_CONTEXT))
305 goto bail;
306 cpu_mask = mm_cpumask(mm);
307 if (!mm_is_core_local(mm)) {
308 /* If broadcast tlbivax is supported, use it */
309 if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) {
310 int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL);
311 if (lock)
312 raw_spin_lock(&tlbivax_lock);
313 _tlbivax_bcast(vmaddr, pid, tsize, ind);
314 if (lock)
315 raw_spin_unlock(&tlbivax_lock);
316 goto bail;
317 } else {
318 struct tlb_flush_param p = {
319 .pid = pid,
320 .addr = vmaddr,
321 .tsize = tsize,
322 .ind = ind,
323 };
324 /* Ignores smp_processor_id() even if set in cpu_mask */
325 smp_call_function_many(cpu_mask,
326 do_flush_tlb_page_ipi, &p, 1);
327 }
328 }
329 _tlbil_va(vmaddr, pid, tsize, ind);
330 bail:
331 preempt_enable();
332 }
333
334 void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
335 {
336 #ifdef CONFIG_HUGETLB_PAGE
337 if (vma && is_vm_hugetlb_page(vma))
338 flush_hugetlb_page(vma, vmaddr);
339 #endif
340
341 __flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
342 mmu_get_tsize(mmu_virtual_psize), 0);
343 }
344 EXPORT_SYMBOL(flush_tlb_page);
345
346 #endif /* CONFIG_SMP */
347
348 #ifdef CONFIG_PPC_47x
349 void __init early_init_mmu_47x(void)
350 {
351 #ifdef CONFIG_SMP
352 unsigned long root = of_get_flat_dt_root();
353 if (of_get_flat_dt_prop(root, "cooperative-partition", NULL))
354 mmu_clear_feature(MMU_FTR_USE_TLBIVAX_BCAST);
355 #endif /* CONFIG_SMP */
356 }
357 #endif /* CONFIG_PPC_47x */
358
359 /*
360 * Flush kernel TLB entries in the given range
361 */
362 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
363 {
364 #ifdef CONFIG_SMP
365 preempt_disable();
366 smp_call_function(do_flush_tlb_mm_ipi, NULL, 1);
367 _tlbil_pid(0);
368 preempt_enable();
369 #else
370 _tlbil_pid(0);
371 #endif
372 }
373 EXPORT_SYMBOL(flush_tlb_kernel_range);
374
375 /*
376 * Currently, for range flushing, we just do a full mm flush. This should
377 * be optimized based on a threshold on the size of the range, since
378 * some implementation can stack multiple tlbivax before a tlbsync but
379 * for now, we keep it that way
380 */
381 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
382 unsigned long end)
383
384 {
385 if (end - start == PAGE_SIZE && !(start & ~PAGE_MASK))
386 flush_tlb_page(vma, start);
387 else
388 flush_tlb_mm(vma->vm_mm);
389 }
390 EXPORT_SYMBOL(flush_tlb_range);
391
392 void tlb_flush(struct mmu_gather *tlb)
393 {
394 flush_tlb_mm(tlb->mm);
395 }
396
397 /*
398 * Below are functions specific to the 64-bit variant of Book3E though that
399 * may change in the future
400 */
401
402 #ifdef CONFIG_PPC64
403
404 /*
405 * Handling of virtual linear page tables or indirect TLB entries
406 * flushing when PTE pages are freed
407 */
408 void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address)
409 {
410 int tsize = mmu_psize_defs[mmu_pte_psize].enc;
411
412 if (book3e_htw_mode != PPC_HTW_NONE) {
413 unsigned long start = address & PMD_MASK;
414 unsigned long end = address + PMD_SIZE;
415 unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift;
416
417 /* This isn't the most optimal, ideally we would factor out the
418 * while preempt & CPU mask mucking around, or even the IPI but
419 * it will do for now
420 */
421 while (start < end) {
422 __flush_tlb_page(tlb->mm, start, tsize, 1);
423 start += size;
424 }
425 } else {
426 unsigned long rmask = 0xf000000000000000ul;
427 unsigned long rid = (address & rmask) | 0x1000000000000000ul;
428 unsigned long vpte = address & ~rmask;
429
430 #ifdef CONFIG_PPC_64K_PAGES
431 vpte = (vpte >> (PAGE_SHIFT - 4)) & ~0xfffful;
432 #else
433 vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful;
434 #endif
435 vpte |= rid;
436 __flush_tlb_page(tlb->mm, vpte, tsize, 0);
437 }
438 }
439
440 static void setup_page_sizes(void)
441 {
442 unsigned int tlb0cfg;
443 unsigned int tlb0ps;
444 unsigned int eptcfg;
445 int i, psize;
446
447 #ifdef CONFIG_PPC_FSL_BOOK3E
448 unsigned int mmucfg = mfspr(SPRN_MMUCFG);
449 int fsl_mmu = mmu_has_feature(MMU_FTR_TYPE_FSL_E);
450
451 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) {
452 unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG);
453 unsigned int min_pg, max_pg;
454
455 min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT;
456 max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT;
457
458 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
459 struct mmu_psize_def *def;
460 unsigned int shift;
461
462 def = &mmu_psize_defs[psize];
463 shift = def->shift;
464
465 if (shift == 0 || shift & 1)
466 continue;
467
468 /* adjust to be in terms of 4^shift Kb */
469 shift = (shift - 10) >> 1;
470
471 if ((shift >= min_pg) && (shift <= max_pg))
472 def->flags |= MMU_PAGE_SIZE_DIRECT;
473 }
474
475 goto out;
476 }
477
478 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V2) {
479 u32 tlb1cfg, tlb1ps;
480
481 tlb0cfg = mfspr(SPRN_TLB0CFG);
482 tlb1cfg = mfspr(SPRN_TLB1CFG);
483 tlb1ps = mfspr(SPRN_TLB1PS);
484 eptcfg = mfspr(SPRN_EPTCFG);
485
486 if ((tlb1cfg & TLBnCFG_IND) && (tlb0cfg & TLBnCFG_PT))
487 book3e_htw_mode = PPC_HTW_E6500;
488
489 /*
490 * We expect 4K subpage size and unrestricted indirect size.
491 * The lack of a restriction on indirect size is a Freescale
492 * extension, indicated by PSn = 0 but SPSn != 0.
493 */
494 if (eptcfg != 2)
495 book3e_htw_mode = PPC_HTW_NONE;
496
497 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
498 struct mmu_psize_def *def = &mmu_psize_defs[psize];
499
500 if (!def->shift)
501 continue;
502
503 if (tlb1ps & (1U << (def->shift - 10))) {
504 def->flags |= MMU_PAGE_SIZE_DIRECT;
505
506 if (book3e_htw_mode && psize == MMU_PAGE_2M)
507 def->flags |= MMU_PAGE_SIZE_INDIRECT;
508 }
509 }
510
511 goto out;
512 }
513 #endif
514
515 tlb0cfg = mfspr(SPRN_TLB0CFG);
516 tlb0ps = mfspr(SPRN_TLB0PS);
517 eptcfg = mfspr(SPRN_EPTCFG);
518
519 /* Look for supported direct sizes */
520 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
521 struct mmu_psize_def *def = &mmu_psize_defs[psize];
522
523 if (tlb0ps & (1U << (def->shift - 10)))
524 def->flags |= MMU_PAGE_SIZE_DIRECT;
525 }
526
527 /* Indirect page sizes supported ? */
528 if ((tlb0cfg & TLBnCFG_IND) == 0 ||
529 (tlb0cfg & TLBnCFG_PT) == 0)
530 goto out;
531
532 book3e_htw_mode = PPC_HTW_IBM;
533
534 /* Now, we only deal with one IND page size for each
535 * direct size. Hopefully all implementations today are
536 * unambiguous, but we might want to be careful in the
537 * future.
538 */
539 for (i = 0; i < 3; i++) {
540 unsigned int ps, sps;
541
542 sps = eptcfg & 0x1f;
543 eptcfg >>= 5;
544 ps = eptcfg & 0x1f;
545 eptcfg >>= 5;
546 if (!ps || !sps)
547 continue;
548 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
549 struct mmu_psize_def *def = &mmu_psize_defs[psize];
550
551 if (ps == (def->shift - 10))
552 def->flags |= MMU_PAGE_SIZE_INDIRECT;
553 if (sps == (def->shift - 10))
554 def->ind = ps + 10;
555 }
556 }
557
558 out:
559 /* Cleanup array and print summary */
560 pr_info("MMU: Supported page sizes\n");
561 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
562 struct mmu_psize_def *def = &mmu_psize_defs[psize];
563 const char *__page_type_names[] = {
564 "unsupported",
565 "direct",
566 "indirect",
567 "direct & indirect"
568 };
569 if (def->flags == 0) {
570 def->shift = 0;
571 continue;
572 }
573 pr_info(" %8ld KB as %s\n", 1ul << (def->shift - 10),
574 __page_type_names[def->flags & 0x3]);
575 }
576 }
577
578 static void setup_mmu_htw(void)
579 {
580 /*
581 * If we want to use HW tablewalk, enable it by patching the TLB miss
582 * handlers to branch to the one dedicated to it.
583 */
584
585 switch (book3e_htw_mode) {
586 case PPC_HTW_IBM:
587 patch_exception(0x1c0, exc_data_tlb_miss_htw_book3e);
588 patch_exception(0x1e0, exc_instruction_tlb_miss_htw_book3e);
589 break;
590 #ifdef CONFIG_PPC_FSL_BOOK3E
591 case PPC_HTW_E6500:
592 extlb_level_exc = EX_TLB_SIZE;
593 patch_exception(0x1c0, exc_data_tlb_miss_e6500_book3e);
594 patch_exception(0x1e0, exc_instruction_tlb_miss_e6500_book3e);
595 break;
596 #endif
597 }
598 pr_info("MMU: Book3E HW tablewalk %s\n",
599 book3e_htw_mode != PPC_HTW_NONE ? "enabled" : "not supported");
600 }
601
602 /*
603 * Early initialization of the MMU TLB code
604 */
605 static void early_init_this_mmu(void)
606 {
607 unsigned int mas4;
608
609 /* Set MAS4 based on page table setting */
610
611 mas4 = 0x4 << MAS4_WIMGED_SHIFT;
612 switch (book3e_htw_mode) {
613 case PPC_HTW_E6500:
614 mas4 |= MAS4_INDD;
615 mas4 |= BOOK3E_PAGESZ_2M << MAS4_TSIZED_SHIFT;
616 mas4 |= MAS4_TLBSELD(1);
617 mmu_pte_psize = MMU_PAGE_2M;
618 break;
619
620 case PPC_HTW_IBM:
621 mas4 |= MAS4_INDD;
622 #ifdef CONFIG_PPC_64K_PAGES
623 mas4 |= BOOK3E_PAGESZ_256M << MAS4_TSIZED_SHIFT;
624 mmu_pte_psize = MMU_PAGE_256M;
625 #else
626 mas4 |= BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT;
627 mmu_pte_psize = MMU_PAGE_1M;
628 #endif
629 break;
630
631 case PPC_HTW_NONE:
632 #ifdef CONFIG_PPC_64K_PAGES
633 mas4 |= BOOK3E_PAGESZ_64K << MAS4_TSIZED_SHIFT;
634 #else
635 mas4 |= BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT;
636 #endif
637 mmu_pte_psize = mmu_virtual_psize;
638 break;
639 }
640 mtspr(SPRN_MAS4, mas4);
641
642 #ifdef CONFIG_PPC_FSL_BOOK3E
643 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
644 unsigned int num_cams;
645 int __maybe_unused cpu = smp_processor_id();
646 bool map = true;
647
648 /* use a quarter of the TLBCAM for bolted linear map */
649 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
650
651 /*
652 * Only do the mapping once per core, or else the
653 * transient mapping would cause problems.
654 */
655 #ifdef CONFIG_SMP
656 if (hweight32(get_tensr()) > 1)
657 map = false;
658 #endif
659
660 if (map)
661 linear_map_top = map_mem_in_cams(linear_map_top,
662 num_cams, false);
663 }
664 #endif
665
666 /* A sync won't hurt us after mucking around with
667 * the MMU configuration
668 */
669 mb();
670 }
671
672 static void __init early_init_mmu_global(void)
673 {
674 /* XXX This will have to be decided at runtime, but right
675 * now our boot and TLB miss code hard wires it. Ideally
676 * we should find out a suitable page size and patch the
677 * TLB miss code (either that or use the PACA to store
678 * the value we want)
679 */
680 mmu_linear_psize = MMU_PAGE_1G;
681
682 /* XXX This should be decided at runtime based on supported
683 * page sizes in the TLB, but for now let's assume 16M is
684 * always there and a good fit (which it probably is)
685 *
686 * Freescale booke only supports 4K pages in TLB0, so use that.
687 */
688 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
689 mmu_vmemmap_psize = MMU_PAGE_4K;
690 else
691 mmu_vmemmap_psize = MMU_PAGE_16M;
692
693 /* XXX This code only checks for TLB 0 capabilities and doesn't
694 * check what page size combos are supported by the HW. It
695 * also doesn't handle the case where a separate array holds
696 * the IND entries from the array loaded by the PT.
697 */
698 /* Look for supported page sizes */
699 setup_page_sizes();
700
701 /* Look for HW tablewalk support */
702 setup_mmu_htw();
703
704 #ifdef CONFIG_PPC_FSL_BOOK3E
705 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
706 if (book3e_htw_mode == PPC_HTW_NONE) {
707 extlb_level_exc = EX_TLB_SIZE;
708 patch_exception(0x1c0, exc_data_tlb_miss_bolted_book3e);
709 patch_exception(0x1e0,
710 exc_instruction_tlb_miss_bolted_book3e);
711 }
712 }
713 #endif
714
715 /* Set the global containing the top of the linear mapping
716 * for use by the TLB miss code
717 */
718 linear_map_top = memblock_end_of_DRAM();
719 }
720
721 static void __init early_mmu_set_memory_limit(void)
722 {
723 #ifdef CONFIG_PPC_FSL_BOOK3E
724 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
725 /*
726 * Limit memory so we dont have linear faults.
727 * Unlike memblock_set_current_limit, which limits
728 * memory available during early boot, this permanently
729 * reduces the memory available to Linux. We need to
730 * do this because highmem is not supported on 64-bit.
731 */
732 memblock_enforce_memory_limit(linear_map_top);
733 }
734 #endif
735
736 memblock_set_current_limit(linear_map_top);
737 }
738
739 /* boot cpu only */
740 void __init early_init_mmu(void)
741 {
742 early_init_mmu_global();
743 early_init_this_mmu();
744 early_mmu_set_memory_limit();
745 }
746
747 void early_init_mmu_secondary(void)
748 {
749 early_init_this_mmu();
750 }
751
752 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
753 phys_addr_t first_memblock_size)
754 {
755 /* On non-FSL Embedded 64-bit, we adjust the RMA size to match
756 * the bolted TLB entry. We know for now that only 1G
757 * entries are supported though that may eventually
758 * change.
759 *
760 * on FSL Embedded 64-bit, usually all RAM is bolted, but with
761 * unusual memory sizes it's possible for some RAM to not be mapped
762 * (such RAM is not used at all by Linux, since we don't support
763 * highmem on 64-bit). We limit ppc64_rma_size to what would be
764 * mappable if this memblock is the only one. Additional memblocks
765 * can only increase, not decrease, the amount that ends up getting
766 * mapped. We still limit max to 1G even if we'll eventually map
767 * more. This is due to what the early init code is set up to do.
768 *
769 * We crop it to the size of the first MEMBLOCK to
770 * avoid going over total available memory just in case...
771 */
772 #ifdef CONFIG_PPC_FSL_BOOK3E
773 if (early_mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
774 unsigned long linear_sz;
775 unsigned int num_cams;
776
777 /* use a quarter of the TLBCAM for bolted linear map */
778 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
779
780 linear_sz = map_mem_in_cams(first_memblock_size, num_cams,
781 true);
782
783 ppc64_rma_size = min_t(u64, linear_sz, 0x40000000);
784 } else
785 #endif
786 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
787
788 /* Finally limit subsequent allocations */
789 memblock_set_current_limit(first_memblock_base + ppc64_rma_size);
790 }
791 #else /* ! CONFIG_PPC64 */
792 void __init early_init_mmu(void)
793 {
794 #ifdef CONFIG_PPC_47x
795 early_init_mmu_47x();
796 #endif
797 }
798 #endif /* CONFIG_PPC64 */