]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/mm/tlb_nohash.c
powerpc/mm: Use hugetlb flush functions
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / mm / tlb_nohash.c
1 /*
2 * This file contains the routines for TLB flushing.
3 * On machines where the MMU does not use a hash table to store virtual to
4 * physical translations (ie, SW loaded TLBs or Book3E compilant processors,
5 * this does -not- include 603 however which shares the implementation with
6 * hash based processors)
7 *
8 * -- BenH
9 *
10 * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org>
11 * IBM Corp.
12 *
13 * Derived from arch/ppc/mm/init.c:
14 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
15 *
16 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
17 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
18 * Copyright (C) 1996 Paul Mackerras
19 *
20 * Derived from "arch/i386/mm/init.c"
21 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
22 *
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
27 *
28 */
29
30 #include <linux/kernel.h>
31 #include <linux/export.h>
32 #include <linux/mm.h>
33 #include <linux/init.h>
34 #include <linux/highmem.h>
35 #include <linux/pagemap.h>
36 #include <linux/preempt.h>
37 #include <linux/spinlock.h>
38 #include <linux/memblock.h>
39 #include <linux/of_fdt.h>
40 #include <linux/hugetlb.h>
41
42 #include <asm/tlbflush.h>
43 #include <asm/tlb.h>
44 #include <asm/code-patching.h>
45 #include <asm/cputhreads.h>
46 #include <asm/hugetlb.h>
47 #include <asm/paca.h>
48
49 #include "mmu_decl.h"
50
51 /*
52 * This struct lists the sw-supported page sizes. The hardawre MMU may support
53 * other sizes not listed here. The .ind field is only used on MMUs that have
54 * indirect page table entries.
55 */
56 #ifdef CONFIG_PPC_BOOK3E_MMU
57 #ifdef CONFIG_PPC_FSL_BOOK3E
58 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
59 [MMU_PAGE_4K] = {
60 .shift = 12,
61 .enc = BOOK3E_PAGESZ_4K,
62 },
63 [MMU_PAGE_2M] = {
64 .shift = 21,
65 .enc = BOOK3E_PAGESZ_2M,
66 },
67 [MMU_PAGE_4M] = {
68 .shift = 22,
69 .enc = BOOK3E_PAGESZ_4M,
70 },
71 [MMU_PAGE_16M] = {
72 .shift = 24,
73 .enc = BOOK3E_PAGESZ_16M,
74 },
75 [MMU_PAGE_64M] = {
76 .shift = 26,
77 .enc = BOOK3E_PAGESZ_64M,
78 },
79 [MMU_PAGE_256M] = {
80 .shift = 28,
81 .enc = BOOK3E_PAGESZ_256M,
82 },
83 [MMU_PAGE_1G] = {
84 .shift = 30,
85 .enc = BOOK3E_PAGESZ_1GB,
86 },
87 };
88 #else
89 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
90 [MMU_PAGE_4K] = {
91 .shift = 12,
92 .ind = 20,
93 .enc = BOOK3E_PAGESZ_4K,
94 },
95 [MMU_PAGE_16K] = {
96 .shift = 14,
97 .enc = BOOK3E_PAGESZ_16K,
98 },
99 [MMU_PAGE_64K] = {
100 .shift = 16,
101 .ind = 28,
102 .enc = BOOK3E_PAGESZ_64K,
103 },
104 [MMU_PAGE_1M] = {
105 .shift = 20,
106 .enc = BOOK3E_PAGESZ_1M,
107 },
108 [MMU_PAGE_16M] = {
109 .shift = 24,
110 .ind = 36,
111 .enc = BOOK3E_PAGESZ_16M,
112 },
113 [MMU_PAGE_256M] = {
114 .shift = 28,
115 .enc = BOOK3E_PAGESZ_256M,
116 },
117 [MMU_PAGE_1G] = {
118 .shift = 30,
119 .enc = BOOK3E_PAGESZ_1GB,
120 },
121 };
122 #endif /* CONFIG_FSL_BOOKE */
123
124 static inline int mmu_get_tsize(int psize)
125 {
126 return mmu_psize_defs[psize].enc;
127 }
128 #else
129 static inline int mmu_get_tsize(int psize)
130 {
131 /* This isn't used on !Book3E for now */
132 return 0;
133 }
134 #endif /* CONFIG_PPC_BOOK3E_MMU */
135
136 /* The variables below are currently only used on 64-bit Book3E
137 * though this will probably be made common with other nohash
138 * implementations at some point
139 */
140 #ifdef CONFIG_PPC64
141
142 int mmu_linear_psize; /* Page size used for the linear mapping */
143 int mmu_pte_psize; /* Page size used for PTE pages */
144 int mmu_vmemmap_psize; /* Page size used for the virtual mem map */
145 int book3e_htw_mode; /* HW tablewalk? Value is PPC_HTW_* */
146 unsigned long linear_map_top; /* Top of linear mapping */
147
148
149 /*
150 * Number of bytes to add to SPRN_SPRG_TLB_EXFRAME on crit/mcheck/debug
151 * exceptions. This is used for bolted and e6500 TLB miss handlers which
152 * do not modify this SPRG in the TLB miss code; for other TLB miss handlers,
153 * this is set to zero.
154 */
155 int extlb_level_exc;
156
157 #endif /* CONFIG_PPC64 */
158
159 #ifdef CONFIG_PPC_FSL_BOOK3E
160 /* next_tlbcam_idx is used to round-robin tlbcam entry assignment */
161 DEFINE_PER_CPU(int, next_tlbcam_idx);
162 EXPORT_PER_CPU_SYMBOL(next_tlbcam_idx);
163 #endif
164
165 /*
166 * Base TLB flushing operations:
167 *
168 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
169 * - flush_tlb_page(vma, vmaddr) flushes one page
170 * - flush_tlb_range(vma, start, end) flushes a range of pages
171 * - flush_tlb_kernel_range(start, end) flushes kernel pages
172 *
173 * - local_* variants of page and mm only apply to the current
174 * processor
175 */
176
177 /*
178 * These are the base non-SMP variants of page and mm flushing
179 */
180 void local_flush_tlb_mm(struct mm_struct *mm)
181 {
182 unsigned int pid;
183
184 preempt_disable();
185 pid = mm->context.id;
186 if (pid != MMU_NO_CONTEXT)
187 _tlbil_pid(pid);
188 preempt_enable();
189 }
190 EXPORT_SYMBOL(local_flush_tlb_mm);
191
192 void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
193 int tsize, int ind)
194 {
195 unsigned int pid;
196
197 preempt_disable();
198 pid = mm ? mm->context.id : 0;
199 if (pid != MMU_NO_CONTEXT)
200 _tlbil_va(vmaddr, pid, tsize, ind);
201 preempt_enable();
202 }
203
204 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
205 {
206 __local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
207 mmu_get_tsize(mmu_virtual_psize), 0);
208 }
209 EXPORT_SYMBOL(local_flush_tlb_page);
210
211 /*
212 * And here are the SMP non-local implementations
213 */
214 #ifdef CONFIG_SMP
215
216 static DEFINE_RAW_SPINLOCK(tlbivax_lock);
217
218 static int mm_is_core_local(struct mm_struct *mm)
219 {
220 return cpumask_subset(mm_cpumask(mm),
221 topology_sibling_cpumask(smp_processor_id()));
222 }
223
224 struct tlb_flush_param {
225 unsigned long addr;
226 unsigned int pid;
227 unsigned int tsize;
228 unsigned int ind;
229 };
230
231 static void do_flush_tlb_mm_ipi(void *param)
232 {
233 struct tlb_flush_param *p = param;
234
235 _tlbil_pid(p ? p->pid : 0);
236 }
237
238 static void do_flush_tlb_page_ipi(void *param)
239 {
240 struct tlb_flush_param *p = param;
241
242 _tlbil_va(p->addr, p->pid, p->tsize, p->ind);
243 }
244
245
246 /* Note on invalidations and PID:
247 *
248 * We snapshot the PID with preempt disabled. At this point, it can still
249 * change either because:
250 * - our context is being stolen (PID -> NO_CONTEXT) on another CPU
251 * - we are invaliating some target that isn't currently running here
252 * and is concurrently acquiring a new PID on another CPU
253 * - some other CPU is re-acquiring a lost PID for this mm
254 * etc...
255 *
256 * However, this shouldn't be a problem as we only guarantee
257 * invalidation of TLB entries present prior to this call, so we
258 * don't care about the PID changing, and invalidating a stale PID
259 * is generally harmless.
260 */
261
262 void flush_tlb_mm(struct mm_struct *mm)
263 {
264 unsigned int pid;
265
266 preempt_disable();
267 pid = mm->context.id;
268 if (unlikely(pid == MMU_NO_CONTEXT))
269 goto no_context;
270 if (!mm_is_core_local(mm)) {
271 struct tlb_flush_param p = { .pid = pid };
272 /* Ignores smp_processor_id() even if set. */
273 smp_call_function_many(mm_cpumask(mm),
274 do_flush_tlb_mm_ipi, &p, 1);
275 }
276 _tlbil_pid(pid);
277 no_context:
278 preempt_enable();
279 }
280 EXPORT_SYMBOL(flush_tlb_mm);
281
282 void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
283 int tsize, int ind)
284 {
285 struct cpumask *cpu_mask;
286 unsigned int pid;
287
288 /*
289 * This function as well as __local_flush_tlb_page() must only be called
290 * for user contexts.
291 */
292 if (unlikely(WARN_ON(!mm)))
293 return;
294
295 preempt_disable();
296 pid = mm->context.id;
297 if (unlikely(pid == MMU_NO_CONTEXT))
298 goto bail;
299 cpu_mask = mm_cpumask(mm);
300 if (!mm_is_core_local(mm)) {
301 /* If broadcast tlbivax is supported, use it */
302 if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) {
303 int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL);
304 if (lock)
305 raw_spin_lock(&tlbivax_lock);
306 _tlbivax_bcast(vmaddr, pid, tsize, ind);
307 if (lock)
308 raw_spin_unlock(&tlbivax_lock);
309 goto bail;
310 } else {
311 struct tlb_flush_param p = {
312 .pid = pid,
313 .addr = vmaddr,
314 .tsize = tsize,
315 .ind = ind,
316 };
317 /* Ignores smp_processor_id() even if set in cpu_mask */
318 smp_call_function_many(cpu_mask,
319 do_flush_tlb_page_ipi, &p, 1);
320 }
321 }
322 _tlbil_va(vmaddr, pid, tsize, ind);
323 bail:
324 preempt_enable();
325 }
326
327 void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
328 {
329 #ifdef CONFIG_HUGETLB_PAGE
330 if (vma && is_vm_hugetlb_page(vma))
331 flush_hugetlb_page(vma, vmaddr);
332 #endif
333
334 __flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
335 mmu_get_tsize(mmu_virtual_psize), 0);
336 }
337 EXPORT_SYMBOL(flush_tlb_page);
338
339 #endif /* CONFIG_SMP */
340
341 #ifdef CONFIG_PPC_47x
342 void __init early_init_mmu_47x(void)
343 {
344 #ifdef CONFIG_SMP
345 unsigned long root = of_get_flat_dt_root();
346 if (of_get_flat_dt_prop(root, "cooperative-partition", NULL))
347 mmu_clear_feature(MMU_FTR_USE_TLBIVAX_BCAST);
348 #endif /* CONFIG_SMP */
349 }
350 #endif /* CONFIG_PPC_47x */
351
352 /*
353 * Flush kernel TLB entries in the given range
354 */
355 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
356 {
357 #ifdef CONFIG_SMP
358 preempt_disable();
359 smp_call_function(do_flush_tlb_mm_ipi, NULL, 1);
360 _tlbil_pid(0);
361 preempt_enable();
362 #else
363 _tlbil_pid(0);
364 #endif
365 }
366 EXPORT_SYMBOL(flush_tlb_kernel_range);
367
368 /*
369 * Currently, for range flushing, we just do a full mm flush. This should
370 * be optimized based on a threshold on the size of the range, since
371 * some implementation can stack multiple tlbivax before a tlbsync but
372 * for now, we keep it that way
373 */
374 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
375 unsigned long end)
376
377 {
378 flush_tlb_mm(vma->vm_mm);
379 }
380 EXPORT_SYMBOL(flush_tlb_range);
381
382 void tlb_flush(struct mmu_gather *tlb)
383 {
384 flush_tlb_mm(tlb->mm);
385 }
386
387 /*
388 * Below are functions specific to the 64-bit variant of Book3E though that
389 * may change in the future
390 */
391
392 #ifdef CONFIG_PPC64
393
394 /*
395 * Handling of virtual linear page tables or indirect TLB entries
396 * flushing when PTE pages are freed
397 */
398 void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address)
399 {
400 int tsize = mmu_psize_defs[mmu_pte_psize].enc;
401
402 if (book3e_htw_mode != PPC_HTW_NONE) {
403 unsigned long start = address & PMD_MASK;
404 unsigned long end = address + PMD_SIZE;
405 unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift;
406
407 /* This isn't the most optimal, ideally we would factor out the
408 * while preempt & CPU mask mucking around, or even the IPI but
409 * it will do for now
410 */
411 while (start < end) {
412 __flush_tlb_page(tlb->mm, start, tsize, 1);
413 start += size;
414 }
415 } else {
416 unsigned long rmask = 0xf000000000000000ul;
417 unsigned long rid = (address & rmask) | 0x1000000000000000ul;
418 unsigned long vpte = address & ~rmask;
419
420 #ifdef CONFIG_PPC_64K_PAGES
421 vpte = (vpte >> (PAGE_SHIFT - 4)) & ~0xfffful;
422 #else
423 vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful;
424 #endif
425 vpte |= rid;
426 __flush_tlb_page(tlb->mm, vpte, tsize, 0);
427 }
428 }
429
430 static void setup_page_sizes(void)
431 {
432 unsigned int tlb0cfg;
433 unsigned int tlb0ps;
434 unsigned int eptcfg;
435 int i, psize;
436
437 #ifdef CONFIG_PPC_FSL_BOOK3E
438 unsigned int mmucfg = mfspr(SPRN_MMUCFG);
439 int fsl_mmu = mmu_has_feature(MMU_FTR_TYPE_FSL_E);
440
441 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) {
442 unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG);
443 unsigned int min_pg, max_pg;
444
445 min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT;
446 max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT;
447
448 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
449 struct mmu_psize_def *def;
450 unsigned int shift;
451
452 def = &mmu_psize_defs[psize];
453 shift = def->shift;
454
455 if (shift == 0 || shift & 1)
456 continue;
457
458 /* adjust to be in terms of 4^shift Kb */
459 shift = (shift - 10) >> 1;
460
461 if ((shift >= min_pg) && (shift <= max_pg))
462 def->flags |= MMU_PAGE_SIZE_DIRECT;
463 }
464
465 goto out;
466 }
467
468 if (fsl_mmu && (mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V2) {
469 u32 tlb1cfg, tlb1ps;
470
471 tlb0cfg = mfspr(SPRN_TLB0CFG);
472 tlb1cfg = mfspr(SPRN_TLB1CFG);
473 tlb1ps = mfspr(SPRN_TLB1PS);
474 eptcfg = mfspr(SPRN_EPTCFG);
475
476 if ((tlb1cfg & TLBnCFG_IND) && (tlb0cfg & TLBnCFG_PT))
477 book3e_htw_mode = PPC_HTW_E6500;
478
479 /*
480 * We expect 4K subpage size and unrestricted indirect size.
481 * The lack of a restriction on indirect size is a Freescale
482 * extension, indicated by PSn = 0 but SPSn != 0.
483 */
484 if (eptcfg != 2)
485 book3e_htw_mode = PPC_HTW_NONE;
486
487 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
488 struct mmu_psize_def *def = &mmu_psize_defs[psize];
489
490 if (tlb1ps & (1U << (def->shift - 10))) {
491 def->flags |= MMU_PAGE_SIZE_DIRECT;
492
493 if (book3e_htw_mode && psize == MMU_PAGE_2M)
494 def->flags |= MMU_PAGE_SIZE_INDIRECT;
495 }
496 }
497
498 goto out;
499 }
500 #endif
501
502 tlb0cfg = mfspr(SPRN_TLB0CFG);
503 tlb0ps = mfspr(SPRN_TLB0PS);
504 eptcfg = mfspr(SPRN_EPTCFG);
505
506 /* Look for supported direct sizes */
507 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
508 struct mmu_psize_def *def = &mmu_psize_defs[psize];
509
510 if (tlb0ps & (1U << (def->shift - 10)))
511 def->flags |= MMU_PAGE_SIZE_DIRECT;
512 }
513
514 /* Indirect page sizes supported ? */
515 if ((tlb0cfg & TLBnCFG_IND) == 0 ||
516 (tlb0cfg & TLBnCFG_PT) == 0)
517 goto out;
518
519 book3e_htw_mode = PPC_HTW_IBM;
520
521 /* Now, we only deal with one IND page size for each
522 * direct size. Hopefully all implementations today are
523 * unambiguous, but we might want to be careful in the
524 * future.
525 */
526 for (i = 0; i < 3; i++) {
527 unsigned int ps, sps;
528
529 sps = eptcfg & 0x1f;
530 eptcfg >>= 5;
531 ps = eptcfg & 0x1f;
532 eptcfg >>= 5;
533 if (!ps || !sps)
534 continue;
535 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
536 struct mmu_psize_def *def = &mmu_psize_defs[psize];
537
538 if (ps == (def->shift - 10))
539 def->flags |= MMU_PAGE_SIZE_INDIRECT;
540 if (sps == (def->shift - 10))
541 def->ind = ps + 10;
542 }
543 }
544
545 out:
546 /* Cleanup array and print summary */
547 pr_info("MMU: Supported page sizes\n");
548 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
549 struct mmu_psize_def *def = &mmu_psize_defs[psize];
550 const char *__page_type_names[] = {
551 "unsupported",
552 "direct",
553 "indirect",
554 "direct & indirect"
555 };
556 if (def->flags == 0) {
557 def->shift = 0;
558 continue;
559 }
560 pr_info(" %8ld KB as %s\n", 1ul << (def->shift - 10),
561 __page_type_names[def->flags & 0x3]);
562 }
563 }
564
565 static void setup_mmu_htw(void)
566 {
567 /*
568 * If we want to use HW tablewalk, enable it by patching the TLB miss
569 * handlers to branch to the one dedicated to it.
570 */
571
572 switch (book3e_htw_mode) {
573 case PPC_HTW_IBM:
574 patch_exception(0x1c0, exc_data_tlb_miss_htw_book3e);
575 patch_exception(0x1e0, exc_instruction_tlb_miss_htw_book3e);
576 break;
577 #ifdef CONFIG_PPC_FSL_BOOK3E
578 case PPC_HTW_E6500:
579 extlb_level_exc = EX_TLB_SIZE;
580 patch_exception(0x1c0, exc_data_tlb_miss_e6500_book3e);
581 patch_exception(0x1e0, exc_instruction_tlb_miss_e6500_book3e);
582 break;
583 #endif
584 }
585 pr_info("MMU: Book3E HW tablewalk %s\n",
586 book3e_htw_mode != PPC_HTW_NONE ? "enabled" : "not supported");
587 }
588
589 /*
590 * Early initialization of the MMU TLB code
591 */
592 static void early_init_this_mmu(void)
593 {
594 unsigned int mas4;
595
596 /* Set MAS4 based on page table setting */
597
598 mas4 = 0x4 << MAS4_WIMGED_SHIFT;
599 switch (book3e_htw_mode) {
600 case PPC_HTW_E6500:
601 mas4 |= MAS4_INDD;
602 mas4 |= BOOK3E_PAGESZ_2M << MAS4_TSIZED_SHIFT;
603 mas4 |= MAS4_TLBSELD(1);
604 mmu_pte_psize = MMU_PAGE_2M;
605 break;
606
607 case PPC_HTW_IBM:
608 mas4 |= MAS4_INDD;
609 #ifdef CONFIG_PPC_64K_PAGES
610 mas4 |= BOOK3E_PAGESZ_256M << MAS4_TSIZED_SHIFT;
611 mmu_pte_psize = MMU_PAGE_256M;
612 #else
613 mas4 |= BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT;
614 mmu_pte_psize = MMU_PAGE_1M;
615 #endif
616 break;
617
618 case PPC_HTW_NONE:
619 #ifdef CONFIG_PPC_64K_PAGES
620 mas4 |= BOOK3E_PAGESZ_64K << MAS4_TSIZED_SHIFT;
621 #else
622 mas4 |= BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT;
623 #endif
624 mmu_pte_psize = mmu_virtual_psize;
625 break;
626 }
627 mtspr(SPRN_MAS4, mas4);
628
629 #ifdef CONFIG_PPC_FSL_BOOK3E
630 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
631 unsigned int num_cams;
632 int __maybe_unused cpu = smp_processor_id();
633 bool map = true;
634
635 /* use a quarter of the TLBCAM for bolted linear map */
636 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
637
638 /*
639 * Only do the mapping once per core, or else the
640 * transient mapping would cause problems.
641 */
642 #ifdef CONFIG_SMP
643 if (hweight32(get_tensr()) > 1)
644 map = false;
645 #endif
646
647 if (map)
648 linear_map_top = map_mem_in_cams(linear_map_top,
649 num_cams, false);
650 }
651 #endif
652
653 /* A sync won't hurt us after mucking around with
654 * the MMU configuration
655 */
656 mb();
657 }
658
659 static void __init early_init_mmu_global(void)
660 {
661 /* XXX This will have to be decided at runtime, but right
662 * now our boot and TLB miss code hard wires it. Ideally
663 * we should find out a suitable page size and patch the
664 * TLB miss code (either that or use the PACA to store
665 * the value we want)
666 */
667 mmu_linear_psize = MMU_PAGE_1G;
668
669 /* XXX This should be decided at runtime based on supported
670 * page sizes in the TLB, but for now let's assume 16M is
671 * always there and a good fit (which it probably is)
672 *
673 * Freescale booke only supports 4K pages in TLB0, so use that.
674 */
675 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E))
676 mmu_vmemmap_psize = MMU_PAGE_4K;
677 else
678 mmu_vmemmap_psize = MMU_PAGE_16M;
679
680 /* XXX This code only checks for TLB 0 capabilities and doesn't
681 * check what page size combos are supported by the HW. It
682 * also doesn't handle the case where a separate array holds
683 * the IND entries from the array loaded by the PT.
684 */
685 /* Look for supported page sizes */
686 setup_page_sizes();
687
688 /* Look for HW tablewalk support */
689 setup_mmu_htw();
690
691 #ifdef CONFIG_PPC_FSL_BOOK3E
692 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
693 if (book3e_htw_mode == PPC_HTW_NONE) {
694 extlb_level_exc = EX_TLB_SIZE;
695 patch_exception(0x1c0, exc_data_tlb_miss_bolted_book3e);
696 patch_exception(0x1e0,
697 exc_instruction_tlb_miss_bolted_book3e);
698 }
699 }
700 #endif
701
702 /* Set the global containing the top of the linear mapping
703 * for use by the TLB miss code
704 */
705 linear_map_top = memblock_end_of_DRAM();
706 }
707
708 static void __init early_mmu_set_memory_limit(void)
709 {
710 #ifdef CONFIG_PPC_FSL_BOOK3E
711 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
712 /*
713 * Limit memory so we dont have linear faults.
714 * Unlike memblock_set_current_limit, which limits
715 * memory available during early boot, this permanently
716 * reduces the memory available to Linux. We need to
717 * do this because highmem is not supported on 64-bit.
718 */
719 memblock_enforce_memory_limit(linear_map_top);
720 }
721 #endif
722
723 memblock_set_current_limit(linear_map_top);
724 }
725
726 /* boot cpu only */
727 void __init early_init_mmu(void)
728 {
729 early_init_mmu_global();
730 early_init_this_mmu();
731 early_mmu_set_memory_limit();
732 }
733
734 void early_init_mmu_secondary(void)
735 {
736 early_init_this_mmu();
737 }
738
739 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
740 phys_addr_t first_memblock_size)
741 {
742 /* On non-FSL Embedded 64-bit, we adjust the RMA size to match
743 * the bolted TLB entry. We know for now that only 1G
744 * entries are supported though that may eventually
745 * change.
746 *
747 * on FSL Embedded 64-bit, usually all RAM is bolted, but with
748 * unusual memory sizes it's possible for some RAM to not be mapped
749 * (such RAM is not used at all by Linux, since we don't support
750 * highmem on 64-bit). We limit ppc64_rma_size to what would be
751 * mappable if this memblock is the only one. Additional memblocks
752 * can only increase, not decrease, the amount that ends up getting
753 * mapped. We still limit max to 1G even if we'll eventually map
754 * more. This is due to what the early init code is set up to do.
755 *
756 * We crop it to the size of the first MEMBLOCK to
757 * avoid going over total available memory just in case...
758 */
759 #ifdef CONFIG_PPC_FSL_BOOK3E
760 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
761 unsigned long linear_sz;
762 unsigned int num_cams;
763
764 /* use a quarter of the TLBCAM for bolted linear map */
765 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
766
767 linear_sz = map_mem_in_cams(first_memblock_size, num_cams,
768 true);
769
770 ppc64_rma_size = min_t(u64, linear_sz, 0x40000000);
771 } else
772 #endif
773 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
774
775 /* Finally limit subsequent allocations */
776 memblock_set_current_limit(first_memblock_base + ppc64_rma_size);
777 }
778 #else /* ! CONFIG_PPC64 */
779 void __init early_init_mmu(void)
780 {
781 #ifdef CONFIG_PPC_47x
782 early_init_mmu_47x();
783 #endif
784 }
785 #endif /* CONFIG_PPC64 */