]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/mm/tlb_nohash.c
Merge branch 'rmobile-latest' of git://github.com/pmundt/linux-sh
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / mm / tlb_nohash.c
1 /*
2 * This file contains the routines for TLB flushing.
3 * On machines where the MMU does not use a hash table to store virtual to
4 * physical translations (ie, SW loaded TLBs or Book3E compilant processors,
5 * this does -not- include 603 however which shares the implementation with
6 * hash based processors)
7 *
8 * -- BenH
9 *
10 * Copyright 2008,2009 Ben Herrenschmidt <benh@kernel.crashing.org>
11 * IBM Corp.
12 *
13 * Derived from arch/ppc/mm/init.c:
14 * Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
15 *
16 * Modifications by Paul Mackerras (PowerMac) (paulus@cs.anu.edu.au)
17 * and Cort Dougan (PReP) (cort@cs.nmt.edu)
18 * Copyright (C) 1996 Paul Mackerras
19 *
20 * Derived from "arch/i386/mm/init.c"
21 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
22 *
23 * This program is free software; you can redistribute it and/or
24 * modify it under the terms of the GNU General Public License
25 * as published by the Free Software Foundation; either version
26 * 2 of the License, or (at your option) any later version.
27 *
28 */
29
30 #include <linux/kernel.h>
31 #include <linux/mm.h>
32 #include <linux/init.h>
33 #include <linux/highmem.h>
34 #include <linux/pagemap.h>
35 #include <linux/preempt.h>
36 #include <linux/spinlock.h>
37 #include <linux/memblock.h>
38 #include <linux/of_fdt.h>
39 #include <linux/hugetlb.h>
40
41 #include <asm/tlbflush.h>
42 #include <asm/tlb.h>
43 #include <asm/code-patching.h>
44 #include <asm/hugetlb.h>
45
46 #include "mmu_decl.h"
47
48 /*
49 * This struct lists the sw-supported page sizes. The hardawre MMU may support
50 * other sizes not listed here. The .ind field is only used on MMUs that have
51 * indirect page table entries.
52 */
53 #ifdef CONFIG_PPC_BOOK3E_MMU
54 #ifdef CONFIG_FSL_BOOKE
55 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
56 [MMU_PAGE_4K] = {
57 .shift = 12,
58 .enc = BOOK3E_PAGESZ_4K,
59 },
60 [MMU_PAGE_4M] = {
61 .shift = 22,
62 .enc = BOOK3E_PAGESZ_4M,
63 },
64 [MMU_PAGE_16M] = {
65 .shift = 24,
66 .enc = BOOK3E_PAGESZ_16M,
67 },
68 [MMU_PAGE_64M] = {
69 .shift = 26,
70 .enc = BOOK3E_PAGESZ_64M,
71 },
72 [MMU_PAGE_256M] = {
73 .shift = 28,
74 .enc = BOOK3E_PAGESZ_256M,
75 },
76 [MMU_PAGE_1G] = {
77 .shift = 30,
78 .enc = BOOK3E_PAGESZ_1GB,
79 },
80 };
81 #else
82 struct mmu_psize_def mmu_psize_defs[MMU_PAGE_COUNT] = {
83 [MMU_PAGE_4K] = {
84 .shift = 12,
85 .ind = 20,
86 .enc = BOOK3E_PAGESZ_4K,
87 },
88 [MMU_PAGE_16K] = {
89 .shift = 14,
90 .enc = BOOK3E_PAGESZ_16K,
91 },
92 [MMU_PAGE_64K] = {
93 .shift = 16,
94 .ind = 28,
95 .enc = BOOK3E_PAGESZ_64K,
96 },
97 [MMU_PAGE_1M] = {
98 .shift = 20,
99 .enc = BOOK3E_PAGESZ_1M,
100 },
101 [MMU_PAGE_16M] = {
102 .shift = 24,
103 .ind = 36,
104 .enc = BOOK3E_PAGESZ_16M,
105 },
106 [MMU_PAGE_256M] = {
107 .shift = 28,
108 .enc = BOOK3E_PAGESZ_256M,
109 },
110 [MMU_PAGE_1G] = {
111 .shift = 30,
112 .enc = BOOK3E_PAGESZ_1GB,
113 },
114 };
115 #endif /* CONFIG_FSL_BOOKE */
116
117 static inline int mmu_get_tsize(int psize)
118 {
119 return mmu_psize_defs[psize].enc;
120 }
121 #else
122 static inline int mmu_get_tsize(int psize)
123 {
124 /* This isn't used on !Book3E for now */
125 return 0;
126 }
127 #endif /* CONFIG_PPC_BOOK3E_MMU */
128
129 /* The variables below are currently only used on 64-bit Book3E
130 * though this will probably be made common with other nohash
131 * implementations at some point
132 */
133 #ifdef CONFIG_PPC64
134
135 int mmu_linear_psize; /* Page size used for the linear mapping */
136 int mmu_pte_psize; /* Page size used for PTE pages */
137 int mmu_vmemmap_psize; /* Page size used for the virtual mem map */
138 int book3e_htw_enabled; /* Is HW tablewalk enabled ? */
139 unsigned long linear_map_top; /* Top of linear mapping */
140
141 #endif /* CONFIG_PPC64 */
142
143 #ifdef CONFIG_PPC_FSL_BOOK3E
144 /* next_tlbcam_idx is used to round-robin tlbcam entry assignment */
145 DEFINE_PER_CPU(int, next_tlbcam_idx);
146 EXPORT_PER_CPU_SYMBOL(next_tlbcam_idx);
147 #endif
148
149 /*
150 * Base TLB flushing operations:
151 *
152 * - flush_tlb_mm(mm) flushes the specified mm context TLB's
153 * - flush_tlb_page(vma, vmaddr) flushes one page
154 * - flush_tlb_range(vma, start, end) flushes a range of pages
155 * - flush_tlb_kernel_range(start, end) flushes kernel pages
156 *
157 * - local_* variants of page and mm only apply to the current
158 * processor
159 */
160
161 /*
162 * These are the base non-SMP variants of page and mm flushing
163 */
164 void local_flush_tlb_mm(struct mm_struct *mm)
165 {
166 unsigned int pid;
167
168 preempt_disable();
169 pid = mm->context.id;
170 if (pid != MMU_NO_CONTEXT)
171 _tlbil_pid(pid);
172 preempt_enable();
173 }
174 EXPORT_SYMBOL(local_flush_tlb_mm);
175
176 void __local_flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
177 int tsize, int ind)
178 {
179 unsigned int pid;
180
181 preempt_disable();
182 pid = mm ? mm->context.id : 0;
183 if (pid != MMU_NO_CONTEXT)
184 _tlbil_va(vmaddr, pid, tsize, ind);
185 preempt_enable();
186 }
187
188 void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
189 {
190 __local_flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
191 mmu_get_tsize(mmu_virtual_psize), 0);
192 }
193 EXPORT_SYMBOL(local_flush_tlb_page);
194
195 /*
196 * And here are the SMP non-local implementations
197 */
198 #ifdef CONFIG_SMP
199
200 static DEFINE_RAW_SPINLOCK(tlbivax_lock);
201
202 static int mm_is_core_local(struct mm_struct *mm)
203 {
204 return cpumask_subset(mm_cpumask(mm),
205 topology_thread_cpumask(smp_processor_id()));
206 }
207
208 struct tlb_flush_param {
209 unsigned long addr;
210 unsigned int pid;
211 unsigned int tsize;
212 unsigned int ind;
213 };
214
215 static void do_flush_tlb_mm_ipi(void *param)
216 {
217 struct tlb_flush_param *p = param;
218
219 _tlbil_pid(p ? p->pid : 0);
220 }
221
222 static void do_flush_tlb_page_ipi(void *param)
223 {
224 struct tlb_flush_param *p = param;
225
226 _tlbil_va(p->addr, p->pid, p->tsize, p->ind);
227 }
228
229
230 /* Note on invalidations and PID:
231 *
232 * We snapshot the PID with preempt disabled. At this point, it can still
233 * change either because:
234 * - our context is being stolen (PID -> NO_CONTEXT) on another CPU
235 * - we are invaliating some target that isn't currently running here
236 * and is concurrently acquiring a new PID on another CPU
237 * - some other CPU is re-acquiring a lost PID for this mm
238 * etc...
239 *
240 * However, this shouldn't be a problem as we only guarantee
241 * invalidation of TLB entries present prior to this call, so we
242 * don't care about the PID changing, and invalidating a stale PID
243 * is generally harmless.
244 */
245
246 void flush_tlb_mm(struct mm_struct *mm)
247 {
248 unsigned int pid;
249
250 preempt_disable();
251 pid = mm->context.id;
252 if (unlikely(pid == MMU_NO_CONTEXT))
253 goto no_context;
254 if (!mm_is_core_local(mm)) {
255 struct tlb_flush_param p = { .pid = pid };
256 /* Ignores smp_processor_id() even if set. */
257 smp_call_function_many(mm_cpumask(mm),
258 do_flush_tlb_mm_ipi, &p, 1);
259 }
260 _tlbil_pid(pid);
261 no_context:
262 preempt_enable();
263 }
264 EXPORT_SYMBOL(flush_tlb_mm);
265
266 void __flush_tlb_page(struct mm_struct *mm, unsigned long vmaddr,
267 int tsize, int ind)
268 {
269 struct cpumask *cpu_mask;
270 unsigned int pid;
271
272 preempt_disable();
273 pid = mm ? mm->context.id : 0;
274 if (unlikely(pid == MMU_NO_CONTEXT))
275 goto bail;
276 cpu_mask = mm_cpumask(mm);
277 if (!mm_is_core_local(mm)) {
278 /* If broadcast tlbivax is supported, use it */
279 if (mmu_has_feature(MMU_FTR_USE_TLBIVAX_BCAST)) {
280 int lock = mmu_has_feature(MMU_FTR_LOCK_BCAST_INVAL);
281 if (lock)
282 raw_spin_lock(&tlbivax_lock);
283 _tlbivax_bcast(vmaddr, pid, tsize, ind);
284 if (lock)
285 raw_spin_unlock(&tlbivax_lock);
286 goto bail;
287 } else {
288 struct tlb_flush_param p = {
289 .pid = pid,
290 .addr = vmaddr,
291 .tsize = tsize,
292 .ind = ind,
293 };
294 /* Ignores smp_processor_id() even if set in cpu_mask */
295 smp_call_function_many(cpu_mask,
296 do_flush_tlb_page_ipi, &p, 1);
297 }
298 }
299 _tlbil_va(vmaddr, pid, tsize, ind);
300 bail:
301 preempt_enable();
302 }
303
304 void flush_tlb_page(struct vm_area_struct *vma, unsigned long vmaddr)
305 {
306 #ifdef CONFIG_HUGETLB_PAGE
307 if (is_vm_hugetlb_page(vma))
308 flush_hugetlb_page(vma, vmaddr);
309 #endif
310
311 __flush_tlb_page(vma ? vma->vm_mm : NULL, vmaddr,
312 mmu_get_tsize(mmu_virtual_psize), 0);
313 }
314 EXPORT_SYMBOL(flush_tlb_page);
315
316 #endif /* CONFIG_SMP */
317
318 #ifdef CONFIG_PPC_47x
319 void __init early_init_mmu_47x(void)
320 {
321 #ifdef CONFIG_SMP
322 unsigned long root = of_get_flat_dt_root();
323 if (of_get_flat_dt_prop(root, "cooperative-partition", NULL))
324 mmu_clear_feature(MMU_FTR_USE_TLBIVAX_BCAST);
325 #endif /* CONFIG_SMP */
326 }
327 #endif /* CONFIG_PPC_47x */
328
329 /*
330 * Flush kernel TLB entries in the given range
331 */
332 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
333 {
334 #ifdef CONFIG_SMP
335 preempt_disable();
336 smp_call_function(do_flush_tlb_mm_ipi, NULL, 1);
337 _tlbil_pid(0);
338 preempt_enable();
339 #else
340 _tlbil_pid(0);
341 #endif
342 }
343 EXPORT_SYMBOL(flush_tlb_kernel_range);
344
345 /*
346 * Currently, for range flushing, we just do a full mm flush. This should
347 * be optimized based on a threshold on the size of the range, since
348 * some implementation can stack multiple tlbivax before a tlbsync but
349 * for now, we keep it that way
350 */
351 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
352 unsigned long end)
353
354 {
355 flush_tlb_mm(vma->vm_mm);
356 }
357 EXPORT_SYMBOL(flush_tlb_range);
358
359 void tlb_flush(struct mmu_gather *tlb)
360 {
361 flush_tlb_mm(tlb->mm);
362 }
363
364 /*
365 * Below are functions specific to the 64-bit variant of Book3E though that
366 * may change in the future
367 */
368
369 #ifdef CONFIG_PPC64
370
371 /*
372 * Handling of virtual linear page tables or indirect TLB entries
373 * flushing when PTE pages are freed
374 */
375 void tlb_flush_pgtable(struct mmu_gather *tlb, unsigned long address)
376 {
377 int tsize = mmu_psize_defs[mmu_pte_psize].enc;
378
379 if (book3e_htw_enabled) {
380 unsigned long start = address & PMD_MASK;
381 unsigned long end = address + PMD_SIZE;
382 unsigned long size = 1UL << mmu_psize_defs[mmu_pte_psize].shift;
383
384 /* This isn't the most optimal, ideally we would factor out the
385 * while preempt & CPU mask mucking around, or even the IPI but
386 * it will do for now
387 */
388 while (start < end) {
389 __flush_tlb_page(tlb->mm, start, tsize, 1);
390 start += size;
391 }
392 } else {
393 unsigned long rmask = 0xf000000000000000ul;
394 unsigned long rid = (address & rmask) | 0x1000000000000000ul;
395 unsigned long vpte = address & ~rmask;
396
397 #ifdef CONFIG_PPC_64K_PAGES
398 vpte = (vpte >> (PAGE_SHIFT - 4)) & ~0xfffful;
399 #else
400 vpte = (vpte >> (PAGE_SHIFT - 3)) & ~0xffful;
401 #endif
402 vpte |= rid;
403 __flush_tlb_page(tlb->mm, vpte, tsize, 0);
404 }
405 }
406
407 static void setup_page_sizes(void)
408 {
409 unsigned int tlb0cfg;
410 unsigned int tlb0ps;
411 unsigned int eptcfg;
412 int i, psize;
413
414 #ifdef CONFIG_PPC_FSL_BOOK3E
415 unsigned int mmucfg = mfspr(SPRN_MMUCFG);
416
417 if (((mmucfg & MMUCFG_MAVN) == MMUCFG_MAVN_V1) &&
418 (mmu_has_feature(MMU_FTR_TYPE_FSL_E))) {
419 unsigned int tlb1cfg = mfspr(SPRN_TLB1CFG);
420 unsigned int min_pg, max_pg;
421
422 min_pg = (tlb1cfg & TLBnCFG_MINSIZE) >> TLBnCFG_MINSIZE_SHIFT;
423 max_pg = (tlb1cfg & TLBnCFG_MAXSIZE) >> TLBnCFG_MAXSIZE_SHIFT;
424
425 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
426 struct mmu_psize_def *def;
427 unsigned int shift;
428
429 def = &mmu_psize_defs[psize];
430 shift = def->shift;
431
432 if (shift == 0)
433 continue;
434
435 /* adjust to be in terms of 4^shift Kb */
436 shift = (shift - 10) >> 1;
437
438 if ((shift >= min_pg) && (shift <= max_pg))
439 def->flags |= MMU_PAGE_SIZE_DIRECT;
440 }
441
442 goto no_indirect;
443 }
444 #endif
445
446 tlb0cfg = mfspr(SPRN_TLB0CFG);
447 tlb0ps = mfspr(SPRN_TLB0PS);
448 eptcfg = mfspr(SPRN_EPTCFG);
449
450 /* Look for supported direct sizes */
451 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
452 struct mmu_psize_def *def = &mmu_psize_defs[psize];
453
454 if (tlb0ps & (1U << (def->shift - 10)))
455 def->flags |= MMU_PAGE_SIZE_DIRECT;
456 }
457
458 /* Indirect page sizes supported ? */
459 if ((tlb0cfg & TLBnCFG_IND) == 0)
460 goto no_indirect;
461
462 /* Now, we only deal with one IND page size for each
463 * direct size. Hopefully all implementations today are
464 * unambiguous, but we might want to be careful in the
465 * future.
466 */
467 for (i = 0; i < 3; i++) {
468 unsigned int ps, sps;
469
470 sps = eptcfg & 0x1f;
471 eptcfg >>= 5;
472 ps = eptcfg & 0x1f;
473 eptcfg >>= 5;
474 if (!ps || !sps)
475 continue;
476 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
477 struct mmu_psize_def *def = &mmu_psize_defs[psize];
478
479 if (ps == (def->shift - 10))
480 def->flags |= MMU_PAGE_SIZE_INDIRECT;
481 if (sps == (def->shift - 10))
482 def->ind = ps + 10;
483 }
484 }
485 no_indirect:
486
487 /* Cleanup array and print summary */
488 pr_info("MMU: Supported page sizes\n");
489 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
490 struct mmu_psize_def *def = &mmu_psize_defs[psize];
491 const char *__page_type_names[] = {
492 "unsupported",
493 "direct",
494 "indirect",
495 "direct & indirect"
496 };
497 if (def->flags == 0) {
498 def->shift = 0;
499 continue;
500 }
501 pr_info(" %8ld KB as %s\n", 1ul << (def->shift - 10),
502 __page_type_names[def->flags & 0x3]);
503 }
504 }
505
506 static void __patch_exception(int exc, unsigned long addr)
507 {
508 extern unsigned int interrupt_base_book3e;
509 unsigned int *ibase = &interrupt_base_book3e;
510
511 /* Our exceptions vectors start with a NOP and -then- a branch
512 * to deal with single stepping from userspace which stops on
513 * the second instruction. Thus we need to patch the second
514 * instruction of the exception, not the first one
515 */
516
517 patch_branch(ibase + (exc / 4) + 1, addr, 0);
518 }
519
520 #define patch_exception(exc, name) do { \
521 extern unsigned int name; \
522 __patch_exception((exc), (unsigned long)&name); \
523 } while (0)
524
525 static void setup_mmu_htw(void)
526 {
527 /* Check if HW tablewalk is present, and if yes, enable it by:
528 *
529 * - patching the TLB miss handlers to branch to the
530 * one dedicates to it
531 *
532 * - setting the global book3e_htw_enabled
533 */
534 unsigned int tlb0cfg = mfspr(SPRN_TLB0CFG);
535
536 if ((tlb0cfg & TLBnCFG_IND) &&
537 (tlb0cfg & TLBnCFG_PT)) {
538 patch_exception(0x1c0, exc_data_tlb_miss_htw_book3e);
539 patch_exception(0x1e0, exc_instruction_tlb_miss_htw_book3e);
540 book3e_htw_enabled = 1;
541 }
542 pr_info("MMU: Book3E HW tablewalk %s\n",
543 book3e_htw_enabled ? "enabled" : "not supported");
544 }
545
546 /*
547 * Early initialization of the MMU TLB code
548 */
549 static void __early_init_mmu(int boot_cpu)
550 {
551 unsigned int mas4;
552
553 /* XXX This will have to be decided at runtime, but right
554 * now our boot and TLB miss code hard wires it. Ideally
555 * we should find out a suitable page size and patch the
556 * TLB miss code (either that or use the PACA to store
557 * the value we want)
558 */
559 mmu_linear_psize = MMU_PAGE_1G;
560
561 /* XXX This should be decided at runtime based on supported
562 * page sizes in the TLB, but for now let's assume 16M is
563 * always there and a good fit (which it probably is)
564 */
565 mmu_vmemmap_psize = MMU_PAGE_16M;
566
567 /* XXX This code only checks for TLB 0 capabilities and doesn't
568 * check what page size combos are supported by the HW. It
569 * also doesn't handle the case where a separate array holds
570 * the IND entries from the array loaded by the PT.
571 */
572 if (boot_cpu) {
573 /* Look for supported page sizes */
574 setup_page_sizes();
575
576 /* Look for HW tablewalk support */
577 setup_mmu_htw();
578 }
579
580 /* Set MAS4 based on page table setting */
581
582 mas4 = 0x4 << MAS4_WIMGED_SHIFT;
583 if (book3e_htw_enabled) {
584 mas4 |= mas4 | MAS4_INDD;
585 #ifdef CONFIG_PPC_64K_PAGES
586 mas4 |= BOOK3E_PAGESZ_256M << MAS4_TSIZED_SHIFT;
587 mmu_pte_psize = MMU_PAGE_256M;
588 #else
589 mas4 |= BOOK3E_PAGESZ_1M << MAS4_TSIZED_SHIFT;
590 mmu_pte_psize = MMU_PAGE_1M;
591 #endif
592 } else {
593 #ifdef CONFIG_PPC_64K_PAGES
594 mas4 |= BOOK3E_PAGESZ_64K << MAS4_TSIZED_SHIFT;
595 #else
596 mas4 |= BOOK3E_PAGESZ_4K << MAS4_TSIZED_SHIFT;
597 #endif
598 mmu_pte_psize = mmu_virtual_psize;
599 }
600 mtspr(SPRN_MAS4, mas4);
601
602 /* Set the global containing the top of the linear mapping
603 * for use by the TLB miss code
604 */
605 linear_map_top = memblock_end_of_DRAM();
606
607 #ifdef CONFIG_PPC_FSL_BOOK3E
608 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
609 unsigned int num_cams;
610
611 /* use a quarter of the TLBCAM for bolted linear map */
612 num_cams = (mfspr(SPRN_TLB1CFG) & TLBnCFG_N_ENTRY) / 4;
613 linear_map_top = map_mem_in_cams(linear_map_top, num_cams);
614
615 /* limit memory so we dont have linear faults */
616 memblock_enforce_memory_limit(linear_map_top);
617 memblock_analyze();
618
619 patch_exception(0x1c0, exc_data_tlb_miss_bolted_book3e);
620 patch_exception(0x1e0, exc_instruction_tlb_miss_bolted_book3e);
621 }
622 #endif
623
624 /* A sync won't hurt us after mucking around with
625 * the MMU configuration
626 */
627 mb();
628
629 memblock_set_current_limit(linear_map_top);
630 }
631
632 void __init early_init_mmu(void)
633 {
634 __early_init_mmu(1);
635 }
636
637 void __cpuinit early_init_mmu_secondary(void)
638 {
639 __early_init_mmu(0);
640 }
641
642 void setup_initial_memory_limit(phys_addr_t first_memblock_base,
643 phys_addr_t first_memblock_size)
644 {
645 /* On non-FSL Embedded 64-bit, we adjust the RMA size to match
646 * the bolted TLB entry. We know for now that only 1G
647 * entries are supported though that may eventually
648 * change.
649 *
650 * on FSL Embedded 64-bit, we adjust the RMA size to match the
651 * first bolted TLB entry size. We still limit max to 1G even if
652 * the TLB could cover more. This is due to what the early init
653 * code is setup to do.
654 *
655 * We crop it to the size of the first MEMBLOCK to
656 * avoid going over total available memory just in case...
657 */
658 #ifdef CONFIG_PPC_FSL_BOOK3E
659 if (mmu_has_feature(MMU_FTR_TYPE_FSL_E)) {
660 unsigned long linear_sz;
661 linear_sz = calc_cam_sz(first_memblock_size, PAGE_OFFSET,
662 first_memblock_base);
663 ppc64_rma_size = min_t(u64, linear_sz, 0x40000000);
664 } else
665 #endif
666 ppc64_rma_size = min_t(u64, first_memblock_size, 0x40000000);
667
668 /* Finally limit subsequent allocations */
669 memblock_set_current_limit(first_memblock_base + ppc64_rma_size);
670 }
671 #else /* ! CONFIG_PPC64 */
672 void __init early_init_mmu(void)
673 {
674 #ifdef CONFIG_PPC_47x
675 early_init_mmu_47x();
676 #endif
677 }
678 #endif /* CONFIG_PPC64 */