]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/perf/core-book3s.c
nvmem: meson-mx-efuse: fix reading from an offset other than 0
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / perf / core-book3s.c
1 /*
2 * Performance event support - powerpc architecture code
3 *
4 * Copyright 2008-2009 Paul Mackerras, IBM Corporation.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11 #include <linux/kernel.h>
12 #include <linux/sched.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/hardirq.h>
16 #include <linux/uaccess.h>
17 #include <asm/reg.h>
18 #include <asm/pmc.h>
19 #include <asm/machdep.h>
20 #include <asm/firmware.h>
21 #include <asm/ptrace.h>
22 #include <asm/code-patching.h>
23
24 #define BHRB_MAX_ENTRIES 32
25 #define BHRB_TARGET 0x0000000000000002
26 #define BHRB_PREDICTION 0x0000000000000001
27 #define BHRB_EA 0xFFFFFFFFFFFFFFFCUL
28
29 struct cpu_hw_events {
30 int n_events;
31 int n_percpu;
32 int disabled;
33 int n_added;
34 int n_limited;
35 u8 pmcs_enabled;
36 struct perf_event *event[MAX_HWEVENTS];
37 u64 events[MAX_HWEVENTS];
38 unsigned int flags[MAX_HWEVENTS];
39 /*
40 * The order of the MMCR array is:
41 * - 64-bit, MMCR0, MMCR1, MMCRA, MMCR2
42 * - 32-bit, MMCR0, MMCR1, MMCR2
43 */
44 unsigned long mmcr[4];
45 struct perf_event *limited_counter[MAX_LIMITED_HWCOUNTERS];
46 u8 limited_hwidx[MAX_LIMITED_HWCOUNTERS];
47 u64 alternatives[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
48 unsigned long amasks[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
49 unsigned long avalues[MAX_HWEVENTS][MAX_EVENT_ALTERNATIVES];
50
51 unsigned int txn_flags;
52 int n_txn_start;
53
54 /* BHRB bits */
55 u64 bhrb_filter; /* BHRB HW branch filter */
56 unsigned int bhrb_users;
57 void *bhrb_context;
58 struct perf_branch_stack bhrb_stack;
59 struct perf_branch_entry bhrb_entries[BHRB_MAX_ENTRIES];
60 u64 ic_init;
61 };
62
63 static DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
64
65 static struct power_pmu *ppmu;
66
67 /*
68 * Normally, to ignore kernel events we set the FCS (freeze counters
69 * in supervisor mode) bit in MMCR0, but if the kernel runs with the
70 * hypervisor bit set in the MSR, or if we are running on a processor
71 * where the hypervisor bit is forced to 1 (as on Apple G5 processors),
72 * then we need to use the FCHV bit to ignore kernel events.
73 */
74 static unsigned int freeze_events_kernel = MMCR0_FCS;
75
76 /*
77 * 32-bit doesn't have MMCRA but does have an MMCR2,
78 * and a few other names are different.
79 */
80 #ifdef CONFIG_PPC32
81
82 #define MMCR0_FCHV 0
83 #define MMCR0_PMCjCE MMCR0_PMCnCE
84 #define MMCR0_FC56 0
85 #define MMCR0_PMAO 0
86 #define MMCR0_EBE 0
87 #define MMCR0_BHRBA 0
88 #define MMCR0_PMCC 0
89 #define MMCR0_PMCC_U6 0
90
91 #define SPRN_MMCRA SPRN_MMCR2
92 #define MMCRA_SAMPLE_ENABLE 0
93
94 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
95 {
96 return 0;
97 }
98 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp) { }
99 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
100 {
101 return 0;
102 }
103 static inline void perf_read_regs(struct pt_regs *regs)
104 {
105 regs->result = 0;
106 }
107 static inline int perf_intr_is_nmi(struct pt_regs *regs)
108 {
109 return 0;
110 }
111
112 static inline int siar_valid(struct pt_regs *regs)
113 {
114 return 1;
115 }
116
117 static bool is_ebb_event(struct perf_event *event) { return false; }
118 static int ebb_event_check(struct perf_event *event) { return 0; }
119 static void ebb_event_add(struct perf_event *event) { }
120 static void ebb_switch_out(unsigned long mmcr0) { }
121 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
122 {
123 return cpuhw->mmcr[0];
124 }
125
126 static inline void power_pmu_bhrb_enable(struct perf_event *event) {}
127 static inline void power_pmu_bhrb_disable(struct perf_event *event) {}
128 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in) {}
129 static inline void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw) {}
130 static void pmao_restore_workaround(bool ebb) { }
131 static bool use_ic(u64 event)
132 {
133 return false;
134 }
135 #endif /* CONFIG_PPC32 */
136
137 static bool regs_use_siar(struct pt_regs *regs)
138 {
139 /*
140 * When we take a performance monitor exception the regs are setup
141 * using perf_read_regs() which overloads some fields, in particular
142 * regs->result to tell us whether to use SIAR.
143 *
144 * However if the regs are from another exception, eg. a syscall, then
145 * they have not been setup using perf_read_regs() and so regs->result
146 * is something random.
147 */
148 return ((TRAP(regs) == 0xf00) && regs->result);
149 }
150
151 /*
152 * Things that are specific to 64-bit implementations.
153 */
154 #ifdef CONFIG_PPC64
155
156 static inline unsigned long perf_ip_adjust(struct pt_regs *regs)
157 {
158 unsigned long mmcra = regs->dsisr;
159
160 if ((ppmu->flags & PPMU_HAS_SSLOT) && (mmcra & MMCRA_SAMPLE_ENABLE)) {
161 unsigned long slot = (mmcra & MMCRA_SLOT) >> MMCRA_SLOT_SHIFT;
162 if (slot > 1)
163 return 4 * (slot - 1);
164 }
165
166 return 0;
167 }
168
169 /*
170 * The user wants a data address recorded.
171 * If we're not doing instruction sampling, give them the SDAR
172 * (sampled data address). If we are doing instruction sampling, then
173 * only give them the SDAR if it corresponds to the instruction
174 * pointed to by SIAR; this is indicated by the [POWER6_]MMCRA_SDSYNC, the
175 * [POWER7P_]MMCRA_SDAR_VALID bit in MMCRA, or the SDAR_VALID bit in SIER.
176 */
177 static inline void perf_get_data_addr(struct pt_regs *regs, u64 *addrp)
178 {
179 unsigned long mmcra = regs->dsisr;
180 bool sdar_valid;
181
182 if (ppmu->flags & PPMU_HAS_SIER)
183 sdar_valid = regs->dar & SIER_SDAR_VALID;
184 else {
185 unsigned long sdsync;
186
187 if (ppmu->flags & PPMU_SIAR_VALID)
188 sdsync = POWER7P_MMCRA_SDAR_VALID;
189 else if (ppmu->flags & PPMU_ALT_SIPR)
190 sdsync = POWER6_MMCRA_SDSYNC;
191 else if (ppmu->flags & PPMU_NO_SIAR)
192 sdsync = MMCRA_SAMPLE_ENABLE;
193 else
194 sdsync = MMCRA_SDSYNC;
195
196 sdar_valid = mmcra & sdsync;
197 }
198
199 if (!(mmcra & MMCRA_SAMPLE_ENABLE) || sdar_valid)
200 *addrp = mfspr(SPRN_SDAR);
201 }
202
203 static bool regs_sihv(struct pt_regs *regs)
204 {
205 unsigned long sihv = MMCRA_SIHV;
206
207 if (ppmu->flags & PPMU_HAS_SIER)
208 return !!(regs->dar & SIER_SIHV);
209
210 if (ppmu->flags & PPMU_ALT_SIPR)
211 sihv = POWER6_MMCRA_SIHV;
212
213 return !!(regs->dsisr & sihv);
214 }
215
216 static bool regs_sipr(struct pt_regs *regs)
217 {
218 unsigned long sipr = MMCRA_SIPR;
219
220 if (ppmu->flags & PPMU_HAS_SIER)
221 return !!(regs->dar & SIER_SIPR);
222
223 if (ppmu->flags & PPMU_ALT_SIPR)
224 sipr = POWER6_MMCRA_SIPR;
225
226 return !!(regs->dsisr & sipr);
227 }
228
229 static inline u32 perf_flags_from_msr(struct pt_regs *regs)
230 {
231 if (regs->msr & MSR_PR)
232 return PERF_RECORD_MISC_USER;
233 if ((regs->msr & MSR_HV) && freeze_events_kernel != MMCR0_FCHV)
234 return PERF_RECORD_MISC_HYPERVISOR;
235 return PERF_RECORD_MISC_KERNEL;
236 }
237
238 static inline u32 perf_get_misc_flags(struct pt_regs *regs)
239 {
240 bool use_siar = regs_use_siar(regs);
241
242 if (!use_siar)
243 return perf_flags_from_msr(regs);
244
245 /*
246 * If we don't have flags in MMCRA, rather than using
247 * the MSR, we intuit the flags from the address in
248 * SIAR which should give slightly more reliable
249 * results
250 */
251 if (ppmu->flags & PPMU_NO_SIPR) {
252 unsigned long siar = mfspr(SPRN_SIAR);
253 if (is_kernel_addr(siar))
254 return PERF_RECORD_MISC_KERNEL;
255 return PERF_RECORD_MISC_USER;
256 }
257
258 /* PR has priority over HV, so order below is important */
259 if (regs_sipr(regs))
260 return PERF_RECORD_MISC_USER;
261
262 if (regs_sihv(regs) && (freeze_events_kernel != MMCR0_FCHV))
263 return PERF_RECORD_MISC_HYPERVISOR;
264
265 return PERF_RECORD_MISC_KERNEL;
266 }
267
268 /*
269 * Overload regs->dsisr to store MMCRA so we only need to read it once
270 * on each interrupt.
271 * Overload regs->dar to store SIER if we have it.
272 * Overload regs->result to specify whether we should use the MSR (result
273 * is zero) or the SIAR (result is non zero).
274 */
275 static inline void perf_read_regs(struct pt_regs *regs)
276 {
277 unsigned long mmcra = mfspr(SPRN_MMCRA);
278 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
279 int use_siar;
280
281 regs->dsisr = mmcra;
282
283 if (ppmu->flags & PPMU_HAS_SIER)
284 regs->dar = mfspr(SPRN_SIER);
285
286 /*
287 * If this isn't a PMU exception (eg a software event) the SIAR is
288 * not valid. Use pt_regs.
289 *
290 * If it is a marked event use the SIAR.
291 *
292 * If the PMU doesn't update the SIAR for non marked events use
293 * pt_regs.
294 *
295 * If the PMU has HV/PR flags then check to see if they
296 * place the exception in userspace. If so, use pt_regs. In
297 * continuous sampling mode the SIAR and the PMU exception are
298 * not synchronised, so they may be many instructions apart.
299 * This can result in confusing backtraces. We still want
300 * hypervisor samples as well as samples in the kernel with
301 * interrupts off hence the userspace check.
302 */
303 if (TRAP(regs) != 0xf00)
304 use_siar = 0;
305 else if ((ppmu->flags & PPMU_NO_SIAR))
306 use_siar = 0;
307 else if (marked)
308 use_siar = 1;
309 else if ((ppmu->flags & PPMU_NO_CONT_SAMPLING))
310 use_siar = 0;
311 else if (!(ppmu->flags & PPMU_NO_SIPR) && regs_sipr(regs))
312 use_siar = 0;
313 else
314 use_siar = 1;
315
316 regs->result = use_siar;
317 }
318
319 /*
320 * If interrupts were soft-disabled when a PMU interrupt occurs, treat
321 * it as an NMI.
322 */
323 static inline int perf_intr_is_nmi(struct pt_regs *regs)
324 {
325 return !regs->softe;
326 }
327
328 /*
329 * On processors like P7+ that have the SIAR-Valid bit, marked instructions
330 * must be sampled only if the SIAR-valid bit is set.
331 *
332 * For unmarked instructions and for processors that don't have the SIAR-Valid
333 * bit, assume that SIAR is valid.
334 */
335 static inline int siar_valid(struct pt_regs *regs)
336 {
337 unsigned long mmcra = regs->dsisr;
338 int marked = mmcra & MMCRA_SAMPLE_ENABLE;
339
340 if (marked) {
341 if (ppmu->flags & PPMU_HAS_SIER)
342 return regs->dar & SIER_SIAR_VALID;
343
344 if (ppmu->flags & PPMU_SIAR_VALID)
345 return mmcra & POWER7P_MMCRA_SIAR_VALID;
346 }
347
348 return 1;
349 }
350
351
352 /* Reset all possible BHRB entries */
353 static void power_pmu_bhrb_reset(void)
354 {
355 asm volatile(PPC_CLRBHRB);
356 }
357
358 static void power_pmu_bhrb_enable(struct perf_event *event)
359 {
360 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
361
362 if (!ppmu->bhrb_nr)
363 return;
364
365 /* Clear BHRB if we changed task context to avoid data leaks */
366 if (event->ctx->task && cpuhw->bhrb_context != event->ctx) {
367 power_pmu_bhrb_reset();
368 cpuhw->bhrb_context = event->ctx;
369 }
370 cpuhw->bhrb_users++;
371 perf_sched_cb_inc(event->ctx->pmu);
372 }
373
374 static void power_pmu_bhrb_disable(struct perf_event *event)
375 {
376 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
377
378 if (!ppmu->bhrb_nr)
379 return;
380
381 WARN_ON_ONCE(!cpuhw->bhrb_users);
382 cpuhw->bhrb_users--;
383 perf_sched_cb_dec(event->ctx->pmu);
384
385 if (!cpuhw->disabled && !cpuhw->bhrb_users) {
386 /* BHRB cannot be turned off when other
387 * events are active on the PMU.
388 */
389
390 /* avoid stale pointer */
391 cpuhw->bhrb_context = NULL;
392 }
393 }
394
395 /* Called from ctxsw to prevent one process's branch entries to
396 * mingle with the other process's entries during context switch.
397 */
398 static void power_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
399 {
400 if (!ppmu->bhrb_nr)
401 return;
402
403 if (sched_in)
404 power_pmu_bhrb_reset();
405 }
406 /* Calculate the to address for a branch */
407 static __u64 power_pmu_bhrb_to(u64 addr)
408 {
409 unsigned int instr;
410 int ret;
411 __u64 target;
412
413 if (is_kernel_addr(addr))
414 return branch_target((unsigned int *)addr);
415
416 /* Userspace: need copy instruction here then translate it */
417 pagefault_disable();
418 ret = __get_user_inatomic(instr, (unsigned int __user *)addr);
419 if (ret) {
420 pagefault_enable();
421 return 0;
422 }
423 pagefault_enable();
424
425 target = branch_target(&instr);
426 if ((!target) || (instr & BRANCH_ABSOLUTE))
427 return target;
428
429 /* Translate relative branch target from kernel to user address */
430 return target - (unsigned long)&instr + addr;
431 }
432
433 /* Processing BHRB entries */
434 static void power_pmu_bhrb_read(struct cpu_hw_events *cpuhw)
435 {
436 u64 val;
437 u64 addr;
438 int r_index, u_index, pred;
439
440 r_index = 0;
441 u_index = 0;
442 while (r_index < ppmu->bhrb_nr) {
443 /* Assembly read function */
444 val = read_bhrb(r_index++);
445 if (!val)
446 /* Terminal marker: End of valid BHRB entries */
447 break;
448 else {
449 addr = val & BHRB_EA;
450 pred = val & BHRB_PREDICTION;
451
452 if (!addr)
453 /* invalid entry */
454 continue;
455
456 /* Branches are read most recent first (ie. mfbhrb 0 is
457 * the most recent branch).
458 * There are two types of valid entries:
459 * 1) a target entry which is the to address of a
460 * computed goto like a blr,bctr,btar. The next
461 * entry read from the bhrb will be branch
462 * corresponding to this target (ie. the actual
463 * blr/bctr/btar instruction).
464 * 2) a from address which is an actual branch. If a
465 * target entry proceeds this, then this is the
466 * matching branch for that target. If this is not
467 * following a target entry, then this is a branch
468 * where the target is given as an immediate field
469 * in the instruction (ie. an i or b form branch).
470 * In this case we need to read the instruction from
471 * memory to determine the target/to address.
472 */
473
474 if (val & BHRB_TARGET) {
475 /* Target branches use two entries
476 * (ie. computed gotos/XL form)
477 */
478 cpuhw->bhrb_entries[u_index].to = addr;
479 cpuhw->bhrb_entries[u_index].mispred = pred;
480 cpuhw->bhrb_entries[u_index].predicted = ~pred;
481
482 /* Get from address in next entry */
483 val = read_bhrb(r_index++);
484 addr = val & BHRB_EA;
485 if (val & BHRB_TARGET) {
486 /* Shouldn't have two targets in a
487 row.. Reset index and try again */
488 r_index--;
489 addr = 0;
490 }
491 cpuhw->bhrb_entries[u_index].from = addr;
492 } else {
493 /* Branches to immediate field
494 (ie I or B form) */
495 cpuhw->bhrb_entries[u_index].from = addr;
496 cpuhw->bhrb_entries[u_index].to =
497 power_pmu_bhrb_to(addr);
498 cpuhw->bhrb_entries[u_index].mispred = pred;
499 cpuhw->bhrb_entries[u_index].predicted = ~pred;
500 }
501 u_index++;
502
503 }
504 }
505 cpuhw->bhrb_stack.nr = u_index;
506 return;
507 }
508
509 static bool is_ebb_event(struct perf_event *event)
510 {
511 /*
512 * This could be a per-PMU callback, but we'd rather avoid the cost. We
513 * check that the PMU supports EBB, meaning those that don't can still
514 * use bit 63 of the event code for something else if they wish.
515 */
516 return (ppmu->flags & PPMU_ARCH_207S) &&
517 ((event->attr.config >> PERF_EVENT_CONFIG_EBB_SHIFT) & 1);
518 }
519
520 static int ebb_event_check(struct perf_event *event)
521 {
522 struct perf_event *leader = event->group_leader;
523
524 /* Event and group leader must agree on EBB */
525 if (is_ebb_event(leader) != is_ebb_event(event))
526 return -EINVAL;
527
528 if (is_ebb_event(event)) {
529 if (!(event->attach_state & PERF_ATTACH_TASK))
530 return -EINVAL;
531
532 if (!leader->attr.pinned || !leader->attr.exclusive)
533 return -EINVAL;
534
535 if (event->attr.freq ||
536 event->attr.inherit ||
537 event->attr.sample_type ||
538 event->attr.sample_period ||
539 event->attr.enable_on_exec)
540 return -EINVAL;
541 }
542
543 return 0;
544 }
545
546 static void ebb_event_add(struct perf_event *event)
547 {
548 if (!is_ebb_event(event) || current->thread.used_ebb)
549 return;
550
551 /*
552 * IFF this is the first time we've added an EBB event, set
553 * PMXE in the user MMCR0 so we can detect when it's cleared by
554 * userspace. We need this so that we can context switch while
555 * userspace is in the EBB handler (where PMXE is 0).
556 */
557 current->thread.used_ebb = 1;
558 current->thread.mmcr0 |= MMCR0_PMXE;
559 }
560
561 static void ebb_switch_out(unsigned long mmcr0)
562 {
563 if (!(mmcr0 & MMCR0_EBE))
564 return;
565
566 current->thread.siar = mfspr(SPRN_SIAR);
567 current->thread.sier = mfspr(SPRN_SIER);
568 current->thread.sdar = mfspr(SPRN_SDAR);
569 current->thread.mmcr0 = mmcr0 & MMCR0_USER_MASK;
570 current->thread.mmcr2 = mfspr(SPRN_MMCR2) & MMCR2_USER_MASK;
571 }
572
573 static unsigned long ebb_switch_in(bool ebb, struct cpu_hw_events *cpuhw)
574 {
575 unsigned long mmcr0 = cpuhw->mmcr[0];
576
577 if (!ebb)
578 goto out;
579
580 /* Enable EBB and read/write to all 6 PMCs and BHRB for userspace */
581 mmcr0 |= MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC_U6;
582
583 /*
584 * Add any bits from the user MMCR0, FC or PMAO. This is compatible
585 * with pmao_restore_workaround() because we may add PMAO but we never
586 * clear it here.
587 */
588 mmcr0 |= current->thread.mmcr0;
589
590 /*
591 * Be careful not to set PMXE if userspace had it cleared. This is also
592 * compatible with pmao_restore_workaround() because it has already
593 * cleared PMXE and we leave PMAO alone.
594 */
595 if (!(current->thread.mmcr0 & MMCR0_PMXE))
596 mmcr0 &= ~MMCR0_PMXE;
597
598 mtspr(SPRN_SIAR, current->thread.siar);
599 mtspr(SPRN_SIER, current->thread.sier);
600 mtspr(SPRN_SDAR, current->thread.sdar);
601
602 /*
603 * Merge the kernel & user values of MMCR2. The semantics we implement
604 * are that the user MMCR2 can set bits, ie. cause counters to freeze,
605 * but not clear bits. If a task wants to be able to clear bits, ie.
606 * unfreeze counters, it should not set exclude_xxx in its events and
607 * instead manage the MMCR2 entirely by itself.
608 */
609 mtspr(SPRN_MMCR2, cpuhw->mmcr[3] | current->thread.mmcr2);
610 out:
611 return mmcr0;
612 }
613
614 static void pmao_restore_workaround(bool ebb)
615 {
616 unsigned pmcs[6];
617
618 if (!cpu_has_feature(CPU_FTR_PMAO_BUG))
619 return;
620
621 /*
622 * On POWER8E there is a hardware defect which affects the PMU context
623 * switch logic, ie. power_pmu_disable/enable().
624 *
625 * When a counter overflows PMXE is cleared and FC/PMAO is set in MMCR0
626 * by the hardware. Sometime later the actual PMU exception is
627 * delivered.
628 *
629 * If we context switch, or simply disable/enable, the PMU prior to the
630 * exception arriving, the exception will be lost when we clear PMAO.
631 *
632 * When we reenable the PMU, we will write the saved MMCR0 with PMAO
633 * set, and this _should_ generate an exception. However because of the
634 * defect no exception is generated when we write PMAO, and we get
635 * stuck with no counters counting but no exception delivered.
636 *
637 * The workaround is to detect this case and tweak the hardware to
638 * create another pending PMU exception.
639 *
640 * We do that by setting up PMC6 (cycles) for an imminent overflow and
641 * enabling the PMU. That causes a new exception to be generated in the
642 * chip, but we don't take it yet because we have interrupts hard
643 * disabled. We then write back the PMU state as we want it to be seen
644 * by the exception handler. When we reenable interrupts the exception
645 * handler will be called and see the correct state.
646 *
647 * The logic is the same for EBB, except that the exception is gated by
648 * us having interrupts hard disabled as well as the fact that we are
649 * not in userspace. The exception is finally delivered when we return
650 * to userspace.
651 */
652
653 /* Only if PMAO is set and PMAO_SYNC is clear */
654 if ((current->thread.mmcr0 & (MMCR0_PMAO | MMCR0_PMAO_SYNC)) != MMCR0_PMAO)
655 return;
656
657 /* If we're doing EBB, only if BESCR[GE] is set */
658 if (ebb && !(current->thread.bescr & BESCR_GE))
659 return;
660
661 /*
662 * We are already soft-disabled in power_pmu_enable(). We need to hard
663 * disable to actually prevent the PMU exception from firing.
664 */
665 hard_irq_disable();
666
667 /*
668 * This is a bit gross, but we know we're on POWER8E and have 6 PMCs.
669 * Using read/write_pmc() in a for loop adds 12 function calls and
670 * almost doubles our code size.
671 */
672 pmcs[0] = mfspr(SPRN_PMC1);
673 pmcs[1] = mfspr(SPRN_PMC2);
674 pmcs[2] = mfspr(SPRN_PMC3);
675 pmcs[3] = mfspr(SPRN_PMC4);
676 pmcs[4] = mfspr(SPRN_PMC5);
677 pmcs[5] = mfspr(SPRN_PMC6);
678
679 /* Ensure all freeze bits are unset */
680 mtspr(SPRN_MMCR2, 0);
681
682 /* Set up PMC6 to overflow in one cycle */
683 mtspr(SPRN_PMC6, 0x7FFFFFFE);
684
685 /* Enable exceptions and unfreeze PMC6 */
686 mtspr(SPRN_MMCR0, MMCR0_PMXE | MMCR0_PMCjCE | MMCR0_PMAO);
687
688 /* Now we need to refreeze and restore the PMCs */
689 mtspr(SPRN_MMCR0, MMCR0_FC | MMCR0_PMAO);
690
691 mtspr(SPRN_PMC1, pmcs[0]);
692 mtspr(SPRN_PMC2, pmcs[1]);
693 mtspr(SPRN_PMC3, pmcs[2]);
694 mtspr(SPRN_PMC4, pmcs[3]);
695 mtspr(SPRN_PMC5, pmcs[4]);
696 mtspr(SPRN_PMC6, pmcs[5]);
697 }
698
699 static bool use_ic(u64 event)
700 {
701 if (cpu_has_feature(CPU_FTR_POWER9_DD1) &&
702 (event == 0x200f2 || event == 0x300f2))
703 return true;
704
705 return false;
706 }
707 #endif /* CONFIG_PPC64 */
708
709 static void perf_event_interrupt(struct pt_regs *regs);
710
711 /*
712 * Read one performance monitor counter (PMC).
713 */
714 static unsigned long read_pmc(int idx)
715 {
716 unsigned long val;
717
718 switch (idx) {
719 case 1:
720 val = mfspr(SPRN_PMC1);
721 break;
722 case 2:
723 val = mfspr(SPRN_PMC2);
724 break;
725 case 3:
726 val = mfspr(SPRN_PMC3);
727 break;
728 case 4:
729 val = mfspr(SPRN_PMC4);
730 break;
731 case 5:
732 val = mfspr(SPRN_PMC5);
733 break;
734 case 6:
735 val = mfspr(SPRN_PMC6);
736 break;
737 #ifdef CONFIG_PPC64
738 case 7:
739 val = mfspr(SPRN_PMC7);
740 break;
741 case 8:
742 val = mfspr(SPRN_PMC8);
743 break;
744 #endif /* CONFIG_PPC64 */
745 default:
746 printk(KERN_ERR "oops trying to read PMC%d\n", idx);
747 val = 0;
748 }
749 return val;
750 }
751
752 /*
753 * Write one PMC.
754 */
755 static void write_pmc(int idx, unsigned long val)
756 {
757 switch (idx) {
758 case 1:
759 mtspr(SPRN_PMC1, val);
760 break;
761 case 2:
762 mtspr(SPRN_PMC2, val);
763 break;
764 case 3:
765 mtspr(SPRN_PMC3, val);
766 break;
767 case 4:
768 mtspr(SPRN_PMC4, val);
769 break;
770 case 5:
771 mtspr(SPRN_PMC5, val);
772 break;
773 case 6:
774 mtspr(SPRN_PMC6, val);
775 break;
776 #ifdef CONFIG_PPC64
777 case 7:
778 mtspr(SPRN_PMC7, val);
779 break;
780 case 8:
781 mtspr(SPRN_PMC8, val);
782 break;
783 #endif /* CONFIG_PPC64 */
784 default:
785 printk(KERN_ERR "oops trying to write PMC%d\n", idx);
786 }
787 }
788
789 /* Called from sysrq_handle_showregs() */
790 void perf_event_print_debug(void)
791 {
792 unsigned long sdar, sier, flags;
793 u32 pmcs[MAX_HWEVENTS];
794 int i;
795
796 if (!ppmu) {
797 pr_info("Performance monitor hardware not registered.\n");
798 return;
799 }
800
801 if (!ppmu->n_counter)
802 return;
803
804 local_irq_save(flags);
805
806 pr_info("CPU: %d PMU registers, ppmu = %s n_counters = %d",
807 smp_processor_id(), ppmu->name, ppmu->n_counter);
808
809 for (i = 0; i < ppmu->n_counter; i++)
810 pmcs[i] = read_pmc(i + 1);
811
812 for (; i < MAX_HWEVENTS; i++)
813 pmcs[i] = 0xdeadbeef;
814
815 pr_info("PMC1: %08x PMC2: %08x PMC3: %08x PMC4: %08x\n",
816 pmcs[0], pmcs[1], pmcs[2], pmcs[3]);
817
818 if (ppmu->n_counter > 4)
819 pr_info("PMC5: %08x PMC6: %08x PMC7: %08x PMC8: %08x\n",
820 pmcs[4], pmcs[5], pmcs[6], pmcs[7]);
821
822 pr_info("MMCR0: %016lx MMCR1: %016lx MMCRA: %016lx\n",
823 mfspr(SPRN_MMCR0), mfspr(SPRN_MMCR1), mfspr(SPRN_MMCRA));
824
825 sdar = sier = 0;
826 #ifdef CONFIG_PPC64
827 sdar = mfspr(SPRN_SDAR);
828
829 if (ppmu->flags & PPMU_HAS_SIER)
830 sier = mfspr(SPRN_SIER);
831
832 if (ppmu->flags & PPMU_ARCH_207S) {
833 pr_info("MMCR2: %016lx EBBHR: %016lx\n",
834 mfspr(SPRN_MMCR2), mfspr(SPRN_EBBHR));
835 pr_info("EBBRR: %016lx BESCR: %016lx\n",
836 mfspr(SPRN_EBBRR), mfspr(SPRN_BESCR));
837 }
838 #endif
839 pr_info("SIAR: %016lx SDAR: %016lx SIER: %016lx\n",
840 mfspr(SPRN_SIAR), sdar, sier);
841
842 local_irq_restore(flags);
843 }
844
845 /*
846 * Check if a set of events can all go on the PMU at once.
847 * If they can't, this will look at alternative codes for the events
848 * and see if any combination of alternative codes is feasible.
849 * The feasible set is returned in event_id[].
850 */
851 static int power_check_constraints(struct cpu_hw_events *cpuhw,
852 u64 event_id[], unsigned int cflags[],
853 int n_ev)
854 {
855 unsigned long mask, value, nv;
856 unsigned long smasks[MAX_HWEVENTS], svalues[MAX_HWEVENTS];
857 int n_alt[MAX_HWEVENTS], choice[MAX_HWEVENTS];
858 int i, j;
859 unsigned long addf = ppmu->add_fields;
860 unsigned long tadd = ppmu->test_adder;
861
862 if (n_ev > ppmu->n_counter)
863 return -1;
864
865 /* First see if the events will go on as-is */
866 for (i = 0; i < n_ev; ++i) {
867 if ((cflags[i] & PPMU_LIMITED_PMC_REQD)
868 && !ppmu->limited_pmc_event(event_id[i])) {
869 ppmu->get_alternatives(event_id[i], cflags[i],
870 cpuhw->alternatives[i]);
871 event_id[i] = cpuhw->alternatives[i][0];
872 }
873 if (ppmu->get_constraint(event_id[i], &cpuhw->amasks[i][0],
874 &cpuhw->avalues[i][0]))
875 return -1;
876 }
877 value = mask = 0;
878 for (i = 0; i < n_ev; ++i) {
879 nv = (value | cpuhw->avalues[i][0]) +
880 (value & cpuhw->avalues[i][0] & addf);
881 if ((((nv + tadd) ^ value) & mask) != 0 ||
882 (((nv + tadd) ^ cpuhw->avalues[i][0]) &
883 cpuhw->amasks[i][0]) != 0)
884 break;
885 value = nv;
886 mask |= cpuhw->amasks[i][0];
887 }
888 if (i == n_ev)
889 return 0; /* all OK */
890
891 /* doesn't work, gather alternatives... */
892 if (!ppmu->get_alternatives)
893 return -1;
894 for (i = 0; i < n_ev; ++i) {
895 choice[i] = 0;
896 n_alt[i] = ppmu->get_alternatives(event_id[i], cflags[i],
897 cpuhw->alternatives[i]);
898 for (j = 1; j < n_alt[i]; ++j)
899 ppmu->get_constraint(cpuhw->alternatives[i][j],
900 &cpuhw->amasks[i][j],
901 &cpuhw->avalues[i][j]);
902 }
903
904 /* enumerate all possibilities and see if any will work */
905 i = 0;
906 j = -1;
907 value = mask = nv = 0;
908 while (i < n_ev) {
909 if (j >= 0) {
910 /* we're backtracking, restore context */
911 value = svalues[i];
912 mask = smasks[i];
913 j = choice[i];
914 }
915 /*
916 * See if any alternative k for event_id i,
917 * where k > j, will satisfy the constraints.
918 */
919 while (++j < n_alt[i]) {
920 nv = (value | cpuhw->avalues[i][j]) +
921 (value & cpuhw->avalues[i][j] & addf);
922 if ((((nv + tadd) ^ value) & mask) == 0 &&
923 (((nv + tadd) ^ cpuhw->avalues[i][j])
924 & cpuhw->amasks[i][j]) == 0)
925 break;
926 }
927 if (j >= n_alt[i]) {
928 /*
929 * No feasible alternative, backtrack
930 * to event_id i-1 and continue enumerating its
931 * alternatives from where we got up to.
932 */
933 if (--i < 0)
934 return -1;
935 } else {
936 /*
937 * Found a feasible alternative for event_id i,
938 * remember where we got up to with this event_id,
939 * go on to the next event_id, and start with
940 * the first alternative for it.
941 */
942 choice[i] = j;
943 svalues[i] = value;
944 smasks[i] = mask;
945 value = nv;
946 mask |= cpuhw->amasks[i][j];
947 ++i;
948 j = -1;
949 }
950 }
951
952 /* OK, we have a feasible combination, tell the caller the solution */
953 for (i = 0; i < n_ev; ++i)
954 event_id[i] = cpuhw->alternatives[i][choice[i]];
955 return 0;
956 }
957
958 /*
959 * Check if newly-added events have consistent settings for
960 * exclude_{user,kernel,hv} with each other and any previously
961 * added events.
962 */
963 static int check_excludes(struct perf_event **ctrs, unsigned int cflags[],
964 int n_prev, int n_new)
965 {
966 int eu = 0, ek = 0, eh = 0;
967 int i, n, first;
968 struct perf_event *event;
969
970 /*
971 * If the PMU we're on supports per event exclude settings then we
972 * don't need to do any of this logic. NB. This assumes no PMU has both
973 * per event exclude and limited PMCs.
974 */
975 if (ppmu->flags & PPMU_ARCH_207S)
976 return 0;
977
978 n = n_prev + n_new;
979 if (n <= 1)
980 return 0;
981
982 first = 1;
983 for (i = 0; i < n; ++i) {
984 if (cflags[i] & PPMU_LIMITED_PMC_OK) {
985 cflags[i] &= ~PPMU_LIMITED_PMC_REQD;
986 continue;
987 }
988 event = ctrs[i];
989 if (first) {
990 eu = event->attr.exclude_user;
991 ek = event->attr.exclude_kernel;
992 eh = event->attr.exclude_hv;
993 first = 0;
994 } else if (event->attr.exclude_user != eu ||
995 event->attr.exclude_kernel != ek ||
996 event->attr.exclude_hv != eh) {
997 return -EAGAIN;
998 }
999 }
1000
1001 if (eu || ek || eh)
1002 for (i = 0; i < n; ++i)
1003 if (cflags[i] & PPMU_LIMITED_PMC_OK)
1004 cflags[i] |= PPMU_LIMITED_PMC_REQD;
1005
1006 return 0;
1007 }
1008
1009 static u64 check_and_compute_delta(u64 prev, u64 val)
1010 {
1011 u64 delta = (val - prev) & 0xfffffffful;
1012
1013 /*
1014 * POWER7 can roll back counter values, if the new value is smaller
1015 * than the previous value it will cause the delta and the counter to
1016 * have bogus values unless we rolled a counter over. If a coutner is
1017 * rolled back, it will be smaller, but within 256, which is the maximum
1018 * number of events to rollback at once. If we detect a rollback
1019 * return 0. This can lead to a small lack of precision in the
1020 * counters.
1021 */
1022 if (prev > val && (prev - val) < 256)
1023 delta = 0;
1024
1025 return delta;
1026 }
1027
1028 static void power_pmu_read(struct perf_event *event)
1029 {
1030 s64 val, delta, prev;
1031 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1032
1033 if (event->hw.state & PERF_HES_STOPPED)
1034 return;
1035
1036 if (!event->hw.idx)
1037 return;
1038
1039 if (is_ebb_event(event)) {
1040 val = read_pmc(event->hw.idx);
1041 if (use_ic(event->attr.config)) {
1042 val = mfspr(SPRN_IC);
1043 if (val > cpuhw->ic_init)
1044 val = val - cpuhw->ic_init;
1045 else
1046 val = val + (0 - cpuhw->ic_init);
1047 }
1048 local64_set(&event->hw.prev_count, val);
1049 return;
1050 }
1051
1052 /*
1053 * Performance monitor interrupts come even when interrupts
1054 * are soft-disabled, as long as interrupts are hard-enabled.
1055 * Therefore we treat them like NMIs.
1056 */
1057 do {
1058 prev = local64_read(&event->hw.prev_count);
1059 barrier();
1060 val = read_pmc(event->hw.idx);
1061 if (use_ic(event->attr.config)) {
1062 val = mfspr(SPRN_IC);
1063 if (val > cpuhw->ic_init)
1064 val = val - cpuhw->ic_init;
1065 else
1066 val = val + (0 - cpuhw->ic_init);
1067 }
1068 delta = check_and_compute_delta(prev, val);
1069 if (!delta)
1070 return;
1071 } while (local64_cmpxchg(&event->hw.prev_count, prev, val) != prev);
1072
1073 local64_add(delta, &event->count);
1074
1075 /*
1076 * A number of places program the PMC with (0x80000000 - period_left).
1077 * We never want period_left to be less than 1 because we will program
1078 * the PMC with a value >= 0x800000000 and an edge detected PMC will
1079 * roll around to 0 before taking an exception. We have seen this
1080 * on POWER8.
1081 *
1082 * To fix this, clamp the minimum value of period_left to 1.
1083 */
1084 do {
1085 prev = local64_read(&event->hw.period_left);
1086 val = prev - delta;
1087 if (val < 1)
1088 val = 1;
1089 } while (local64_cmpxchg(&event->hw.period_left, prev, val) != prev);
1090 }
1091
1092 /*
1093 * On some machines, PMC5 and PMC6 can't be written, don't respect
1094 * the freeze conditions, and don't generate interrupts. This tells
1095 * us if `event' is using such a PMC.
1096 */
1097 static int is_limited_pmc(int pmcnum)
1098 {
1099 return (ppmu->flags & PPMU_LIMITED_PMC5_6)
1100 && (pmcnum == 5 || pmcnum == 6);
1101 }
1102
1103 static void freeze_limited_counters(struct cpu_hw_events *cpuhw,
1104 unsigned long pmc5, unsigned long pmc6)
1105 {
1106 struct perf_event *event;
1107 u64 val, prev, delta;
1108 int i;
1109
1110 for (i = 0; i < cpuhw->n_limited; ++i) {
1111 event = cpuhw->limited_counter[i];
1112 if (!event->hw.idx)
1113 continue;
1114 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1115 prev = local64_read(&event->hw.prev_count);
1116 event->hw.idx = 0;
1117 delta = check_and_compute_delta(prev, val);
1118 if (delta)
1119 local64_add(delta, &event->count);
1120 }
1121 }
1122
1123 static void thaw_limited_counters(struct cpu_hw_events *cpuhw,
1124 unsigned long pmc5, unsigned long pmc6)
1125 {
1126 struct perf_event *event;
1127 u64 val, prev;
1128 int i;
1129
1130 for (i = 0; i < cpuhw->n_limited; ++i) {
1131 event = cpuhw->limited_counter[i];
1132 event->hw.idx = cpuhw->limited_hwidx[i];
1133 val = (event->hw.idx == 5) ? pmc5 : pmc6;
1134 prev = local64_read(&event->hw.prev_count);
1135 if (check_and_compute_delta(prev, val))
1136 local64_set(&event->hw.prev_count, val);
1137 perf_event_update_userpage(event);
1138 }
1139 }
1140
1141 /*
1142 * Since limited events don't respect the freeze conditions, we
1143 * have to read them immediately after freezing or unfreezing the
1144 * other events. We try to keep the values from the limited
1145 * events as consistent as possible by keeping the delay (in
1146 * cycles and instructions) between freezing/unfreezing and reading
1147 * the limited events as small and consistent as possible.
1148 * Therefore, if any limited events are in use, we read them
1149 * both, and always in the same order, to minimize variability,
1150 * and do it inside the same asm that writes MMCR0.
1151 */
1152 static void write_mmcr0(struct cpu_hw_events *cpuhw, unsigned long mmcr0)
1153 {
1154 unsigned long pmc5, pmc6;
1155
1156 if (!cpuhw->n_limited) {
1157 mtspr(SPRN_MMCR0, mmcr0);
1158 return;
1159 }
1160
1161 /*
1162 * Write MMCR0, then read PMC5 and PMC6 immediately.
1163 * To ensure we don't get a performance monitor interrupt
1164 * between writing MMCR0 and freezing/thawing the limited
1165 * events, we first write MMCR0 with the event overflow
1166 * interrupt enable bits turned off.
1167 */
1168 asm volatile("mtspr %3,%2; mfspr %0,%4; mfspr %1,%5"
1169 : "=&r" (pmc5), "=&r" (pmc6)
1170 : "r" (mmcr0 & ~(MMCR0_PMC1CE | MMCR0_PMCjCE)),
1171 "i" (SPRN_MMCR0),
1172 "i" (SPRN_PMC5), "i" (SPRN_PMC6));
1173
1174 if (mmcr0 & MMCR0_FC)
1175 freeze_limited_counters(cpuhw, pmc5, pmc6);
1176 else
1177 thaw_limited_counters(cpuhw, pmc5, pmc6);
1178
1179 /*
1180 * Write the full MMCR0 including the event overflow interrupt
1181 * enable bits, if necessary.
1182 */
1183 if (mmcr0 & (MMCR0_PMC1CE | MMCR0_PMCjCE))
1184 mtspr(SPRN_MMCR0, mmcr0);
1185 }
1186
1187 /*
1188 * Disable all events to prevent PMU interrupts and to allow
1189 * events to be added or removed.
1190 */
1191 static void power_pmu_disable(struct pmu *pmu)
1192 {
1193 struct cpu_hw_events *cpuhw;
1194 unsigned long flags, mmcr0, val;
1195
1196 if (!ppmu)
1197 return;
1198 local_irq_save(flags);
1199 cpuhw = this_cpu_ptr(&cpu_hw_events);
1200
1201 if (!cpuhw->disabled) {
1202 /*
1203 * Check if we ever enabled the PMU on this cpu.
1204 */
1205 if (!cpuhw->pmcs_enabled) {
1206 ppc_enable_pmcs();
1207 cpuhw->pmcs_enabled = 1;
1208 }
1209
1210 /*
1211 * Set the 'freeze counters' bit, clear EBE/BHRBA/PMCC/PMAO/FC56
1212 */
1213 val = mmcr0 = mfspr(SPRN_MMCR0);
1214 val |= MMCR0_FC;
1215 val &= ~(MMCR0_EBE | MMCR0_BHRBA | MMCR0_PMCC | MMCR0_PMAO |
1216 MMCR0_FC56);
1217
1218 /*
1219 * The barrier is to make sure the mtspr has been
1220 * executed and the PMU has frozen the events etc.
1221 * before we return.
1222 */
1223 write_mmcr0(cpuhw, val);
1224 mb();
1225
1226 /*
1227 * Disable instruction sampling if it was enabled
1228 */
1229 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1230 mtspr(SPRN_MMCRA,
1231 cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1232 mb();
1233 }
1234
1235 cpuhw->disabled = 1;
1236 cpuhw->n_added = 0;
1237
1238 ebb_switch_out(mmcr0);
1239 }
1240
1241 local_irq_restore(flags);
1242 }
1243
1244 /*
1245 * Re-enable all events if disable == 0.
1246 * If we were previously disabled and events were added, then
1247 * put the new config on the PMU.
1248 */
1249 static void power_pmu_enable(struct pmu *pmu)
1250 {
1251 struct perf_event *event;
1252 struct cpu_hw_events *cpuhw;
1253 unsigned long flags;
1254 long i;
1255 unsigned long val, mmcr0;
1256 s64 left;
1257 unsigned int hwc_index[MAX_HWEVENTS];
1258 int n_lim;
1259 int idx;
1260 bool ebb;
1261
1262 if (!ppmu)
1263 return;
1264 local_irq_save(flags);
1265
1266 cpuhw = this_cpu_ptr(&cpu_hw_events);
1267 if (!cpuhw->disabled)
1268 goto out;
1269
1270 if (cpuhw->n_events == 0) {
1271 ppc_set_pmu_inuse(0);
1272 goto out;
1273 }
1274
1275 cpuhw->disabled = 0;
1276
1277 /*
1278 * EBB requires an exclusive group and all events must have the EBB
1279 * flag set, or not set, so we can just check a single event. Also we
1280 * know we have at least one event.
1281 */
1282 ebb = is_ebb_event(cpuhw->event[0]);
1283
1284 /*
1285 * If we didn't change anything, or only removed events,
1286 * no need to recalculate MMCR* settings and reset the PMCs.
1287 * Just reenable the PMU with the current MMCR* settings
1288 * (possibly updated for removal of events).
1289 */
1290 if (!cpuhw->n_added) {
1291 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1292 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1293 goto out_enable;
1294 }
1295
1296 /*
1297 * Clear all MMCR settings and recompute them for the new set of events.
1298 */
1299 memset(cpuhw->mmcr, 0, sizeof(cpuhw->mmcr));
1300
1301 if (ppmu->compute_mmcr(cpuhw->events, cpuhw->n_events, hwc_index,
1302 cpuhw->mmcr, cpuhw->event)) {
1303 /* shouldn't ever get here */
1304 printk(KERN_ERR "oops compute_mmcr failed\n");
1305 goto out;
1306 }
1307
1308 if (!(ppmu->flags & PPMU_ARCH_207S)) {
1309 /*
1310 * Add in MMCR0 freeze bits corresponding to the attr.exclude_*
1311 * bits for the first event. We have already checked that all
1312 * events have the same value for these bits as the first event.
1313 */
1314 event = cpuhw->event[0];
1315 if (event->attr.exclude_user)
1316 cpuhw->mmcr[0] |= MMCR0_FCP;
1317 if (event->attr.exclude_kernel)
1318 cpuhw->mmcr[0] |= freeze_events_kernel;
1319 if (event->attr.exclude_hv)
1320 cpuhw->mmcr[0] |= MMCR0_FCHV;
1321 }
1322
1323 /*
1324 * Write the new configuration to MMCR* with the freeze
1325 * bit set and set the hardware events to their initial values.
1326 * Then unfreeze the events.
1327 */
1328 ppc_set_pmu_inuse(1);
1329 mtspr(SPRN_MMCRA, cpuhw->mmcr[2] & ~MMCRA_SAMPLE_ENABLE);
1330 mtspr(SPRN_MMCR1, cpuhw->mmcr[1]);
1331 mtspr(SPRN_MMCR0, (cpuhw->mmcr[0] & ~(MMCR0_PMC1CE | MMCR0_PMCjCE))
1332 | MMCR0_FC);
1333 if (ppmu->flags & PPMU_ARCH_207S)
1334 mtspr(SPRN_MMCR2, cpuhw->mmcr[3]);
1335
1336 /*
1337 * Read off any pre-existing events that need to move
1338 * to another PMC.
1339 */
1340 for (i = 0; i < cpuhw->n_events; ++i) {
1341 event = cpuhw->event[i];
1342 if (event->hw.idx && event->hw.idx != hwc_index[i] + 1) {
1343 power_pmu_read(event);
1344 write_pmc(event->hw.idx, 0);
1345 event->hw.idx = 0;
1346 }
1347 }
1348
1349 /*
1350 * Initialize the PMCs for all the new and moved events.
1351 */
1352 cpuhw->n_limited = n_lim = 0;
1353 for (i = 0; i < cpuhw->n_events; ++i) {
1354 event = cpuhw->event[i];
1355 if (event->hw.idx)
1356 continue;
1357 idx = hwc_index[i] + 1;
1358 if (is_limited_pmc(idx)) {
1359 cpuhw->limited_counter[n_lim] = event;
1360 cpuhw->limited_hwidx[n_lim] = idx;
1361 ++n_lim;
1362 continue;
1363 }
1364
1365 if (ebb)
1366 val = local64_read(&event->hw.prev_count);
1367 else {
1368 val = 0;
1369 if (event->hw.sample_period) {
1370 left = local64_read(&event->hw.period_left);
1371 if (left < 0x80000000L)
1372 val = 0x80000000L - left;
1373 }
1374 local64_set(&event->hw.prev_count, val);
1375 }
1376
1377 event->hw.idx = idx;
1378 if (event->hw.state & PERF_HES_STOPPED)
1379 val = 0;
1380 write_pmc(idx, val);
1381
1382 perf_event_update_userpage(event);
1383 }
1384 cpuhw->n_limited = n_lim;
1385 cpuhw->mmcr[0] |= MMCR0_PMXE | MMCR0_FCECE;
1386
1387 out_enable:
1388 pmao_restore_workaround(ebb);
1389
1390 mmcr0 = ebb_switch_in(ebb, cpuhw);
1391
1392 mb();
1393 if (cpuhw->bhrb_users)
1394 ppmu->config_bhrb(cpuhw->bhrb_filter);
1395
1396 write_mmcr0(cpuhw, mmcr0);
1397
1398 /*
1399 * Enable instruction sampling if necessary
1400 */
1401 if (cpuhw->mmcr[2] & MMCRA_SAMPLE_ENABLE) {
1402 mb();
1403 mtspr(SPRN_MMCRA, cpuhw->mmcr[2]);
1404 }
1405
1406 out:
1407
1408 local_irq_restore(flags);
1409 }
1410
1411 static int collect_events(struct perf_event *group, int max_count,
1412 struct perf_event *ctrs[], u64 *events,
1413 unsigned int *flags)
1414 {
1415 int n = 0;
1416 struct perf_event *event;
1417
1418 if (group->pmu->task_ctx_nr == perf_hw_context) {
1419 if (n >= max_count)
1420 return -1;
1421 ctrs[n] = group;
1422 flags[n] = group->hw.event_base;
1423 events[n++] = group->hw.config;
1424 }
1425 list_for_each_entry(event, &group->sibling_list, group_entry) {
1426 if (event->pmu->task_ctx_nr == perf_hw_context &&
1427 event->state != PERF_EVENT_STATE_OFF) {
1428 if (n >= max_count)
1429 return -1;
1430 ctrs[n] = event;
1431 flags[n] = event->hw.event_base;
1432 events[n++] = event->hw.config;
1433 }
1434 }
1435 return n;
1436 }
1437
1438 /*
1439 * Add a event to the PMU.
1440 * If all events are not already frozen, then we disable and
1441 * re-enable the PMU in order to get hw_perf_enable to do the
1442 * actual work of reconfiguring the PMU.
1443 */
1444 static int power_pmu_add(struct perf_event *event, int ef_flags)
1445 {
1446 struct cpu_hw_events *cpuhw;
1447 unsigned long flags;
1448 int n0;
1449 int ret = -EAGAIN;
1450
1451 local_irq_save(flags);
1452 perf_pmu_disable(event->pmu);
1453
1454 /*
1455 * Add the event to the list (if there is room)
1456 * and check whether the total set is still feasible.
1457 */
1458 cpuhw = this_cpu_ptr(&cpu_hw_events);
1459 n0 = cpuhw->n_events;
1460 if (n0 >= ppmu->n_counter)
1461 goto out;
1462 cpuhw->event[n0] = event;
1463 cpuhw->events[n0] = event->hw.config;
1464 cpuhw->flags[n0] = event->hw.event_base;
1465
1466 /*
1467 * This event may have been disabled/stopped in record_and_restart()
1468 * because we exceeded the ->event_limit. If re-starting the event,
1469 * clear the ->hw.state (STOPPED and UPTODATE flags), so the user
1470 * notification is re-enabled.
1471 */
1472 if (!(ef_flags & PERF_EF_START))
1473 event->hw.state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
1474 else
1475 event->hw.state = 0;
1476
1477 /*
1478 * If group events scheduling transaction was started,
1479 * skip the schedulability test here, it will be performed
1480 * at commit time(->commit_txn) as a whole
1481 */
1482 if (cpuhw->txn_flags & PERF_PMU_TXN_ADD)
1483 goto nocheck;
1484
1485 if (check_excludes(cpuhw->event, cpuhw->flags, n0, 1))
1486 goto out;
1487 if (power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n0 + 1))
1488 goto out;
1489 event->hw.config = cpuhw->events[n0];
1490
1491 nocheck:
1492 ebb_event_add(event);
1493
1494 ++cpuhw->n_events;
1495 ++cpuhw->n_added;
1496
1497 ret = 0;
1498 out:
1499 if (has_branch_stack(event)) {
1500 power_pmu_bhrb_enable(event);
1501 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1502 event->attr.branch_sample_type);
1503 }
1504
1505 /*
1506 * Workaround for POWER9 DD1 to use the Instruction Counter
1507 * register value for instruction counting
1508 */
1509 if (use_ic(event->attr.config))
1510 cpuhw->ic_init = mfspr(SPRN_IC);
1511
1512 perf_pmu_enable(event->pmu);
1513 local_irq_restore(flags);
1514 return ret;
1515 }
1516
1517 /*
1518 * Remove a event from the PMU.
1519 */
1520 static void power_pmu_del(struct perf_event *event, int ef_flags)
1521 {
1522 struct cpu_hw_events *cpuhw;
1523 long i;
1524 unsigned long flags;
1525
1526 local_irq_save(flags);
1527 perf_pmu_disable(event->pmu);
1528
1529 power_pmu_read(event);
1530
1531 cpuhw = this_cpu_ptr(&cpu_hw_events);
1532 for (i = 0; i < cpuhw->n_events; ++i) {
1533 if (event == cpuhw->event[i]) {
1534 while (++i < cpuhw->n_events) {
1535 cpuhw->event[i-1] = cpuhw->event[i];
1536 cpuhw->events[i-1] = cpuhw->events[i];
1537 cpuhw->flags[i-1] = cpuhw->flags[i];
1538 }
1539 --cpuhw->n_events;
1540 ppmu->disable_pmc(event->hw.idx - 1, cpuhw->mmcr);
1541 if (event->hw.idx) {
1542 write_pmc(event->hw.idx, 0);
1543 event->hw.idx = 0;
1544 }
1545 perf_event_update_userpage(event);
1546 break;
1547 }
1548 }
1549 for (i = 0; i < cpuhw->n_limited; ++i)
1550 if (event == cpuhw->limited_counter[i])
1551 break;
1552 if (i < cpuhw->n_limited) {
1553 while (++i < cpuhw->n_limited) {
1554 cpuhw->limited_counter[i-1] = cpuhw->limited_counter[i];
1555 cpuhw->limited_hwidx[i-1] = cpuhw->limited_hwidx[i];
1556 }
1557 --cpuhw->n_limited;
1558 }
1559 if (cpuhw->n_events == 0) {
1560 /* disable exceptions if no events are running */
1561 cpuhw->mmcr[0] &= ~(MMCR0_PMXE | MMCR0_FCECE);
1562 }
1563
1564 if (has_branch_stack(event))
1565 power_pmu_bhrb_disable(event);
1566
1567 perf_pmu_enable(event->pmu);
1568 local_irq_restore(flags);
1569 }
1570
1571 /*
1572 * POWER-PMU does not support disabling individual counters, hence
1573 * program their cycle counter to their max value and ignore the interrupts.
1574 */
1575
1576 static void power_pmu_start(struct perf_event *event, int ef_flags)
1577 {
1578 unsigned long flags;
1579 s64 left;
1580 unsigned long val;
1581
1582 if (!event->hw.idx || !event->hw.sample_period)
1583 return;
1584
1585 if (!(event->hw.state & PERF_HES_STOPPED))
1586 return;
1587
1588 if (ef_flags & PERF_EF_RELOAD)
1589 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1590
1591 local_irq_save(flags);
1592 perf_pmu_disable(event->pmu);
1593
1594 event->hw.state = 0;
1595 left = local64_read(&event->hw.period_left);
1596
1597 val = 0;
1598 if (left < 0x80000000L)
1599 val = 0x80000000L - left;
1600
1601 write_pmc(event->hw.idx, val);
1602
1603 perf_event_update_userpage(event);
1604 perf_pmu_enable(event->pmu);
1605 local_irq_restore(flags);
1606 }
1607
1608 static void power_pmu_stop(struct perf_event *event, int ef_flags)
1609 {
1610 unsigned long flags;
1611
1612 if (!event->hw.idx || !event->hw.sample_period)
1613 return;
1614
1615 if (event->hw.state & PERF_HES_STOPPED)
1616 return;
1617
1618 local_irq_save(flags);
1619 perf_pmu_disable(event->pmu);
1620
1621 power_pmu_read(event);
1622 event->hw.state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
1623 write_pmc(event->hw.idx, 0);
1624
1625 perf_event_update_userpage(event);
1626 perf_pmu_enable(event->pmu);
1627 local_irq_restore(flags);
1628 }
1629
1630 /*
1631 * Start group events scheduling transaction
1632 * Set the flag to make pmu::enable() not perform the
1633 * schedulability test, it will be performed at commit time
1634 *
1635 * We only support PERF_PMU_TXN_ADD transactions. Save the
1636 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1637 * transactions.
1638 */
1639 static void power_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
1640 {
1641 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1642
1643 WARN_ON_ONCE(cpuhw->txn_flags); /* txn already in flight */
1644
1645 cpuhw->txn_flags = txn_flags;
1646 if (txn_flags & ~PERF_PMU_TXN_ADD)
1647 return;
1648
1649 perf_pmu_disable(pmu);
1650 cpuhw->n_txn_start = cpuhw->n_events;
1651 }
1652
1653 /*
1654 * Stop group events scheduling transaction
1655 * Clear the flag and pmu::enable() will perform the
1656 * schedulability test.
1657 */
1658 static void power_pmu_cancel_txn(struct pmu *pmu)
1659 {
1660 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
1661 unsigned int txn_flags;
1662
1663 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1664
1665 txn_flags = cpuhw->txn_flags;
1666 cpuhw->txn_flags = 0;
1667 if (txn_flags & ~PERF_PMU_TXN_ADD)
1668 return;
1669
1670 perf_pmu_enable(pmu);
1671 }
1672
1673 /*
1674 * Commit group events scheduling transaction
1675 * Perform the group schedulability test as a whole
1676 * Return 0 if success
1677 */
1678 static int power_pmu_commit_txn(struct pmu *pmu)
1679 {
1680 struct cpu_hw_events *cpuhw;
1681 long i, n;
1682
1683 if (!ppmu)
1684 return -EAGAIN;
1685
1686 cpuhw = this_cpu_ptr(&cpu_hw_events);
1687 WARN_ON_ONCE(!cpuhw->txn_flags); /* no txn in flight */
1688
1689 if (cpuhw->txn_flags & ~PERF_PMU_TXN_ADD) {
1690 cpuhw->txn_flags = 0;
1691 return 0;
1692 }
1693
1694 n = cpuhw->n_events;
1695 if (check_excludes(cpuhw->event, cpuhw->flags, 0, n))
1696 return -EAGAIN;
1697 i = power_check_constraints(cpuhw, cpuhw->events, cpuhw->flags, n);
1698 if (i < 0)
1699 return -EAGAIN;
1700
1701 for (i = cpuhw->n_txn_start; i < n; ++i)
1702 cpuhw->event[i]->hw.config = cpuhw->events[i];
1703
1704 cpuhw->txn_flags = 0;
1705 perf_pmu_enable(pmu);
1706 return 0;
1707 }
1708
1709 /*
1710 * Return 1 if we might be able to put event on a limited PMC,
1711 * or 0 if not.
1712 * A event can only go on a limited PMC if it counts something
1713 * that a limited PMC can count, doesn't require interrupts, and
1714 * doesn't exclude any processor mode.
1715 */
1716 static int can_go_on_limited_pmc(struct perf_event *event, u64 ev,
1717 unsigned int flags)
1718 {
1719 int n;
1720 u64 alt[MAX_EVENT_ALTERNATIVES];
1721
1722 if (event->attr.exclude_user
1723 || event->attr.exclude_kernel
1724 || event->attr.exclude_hv
1725 || event->attr.sample_period)
1726 return 0;
1727
1728 if (ppmu->limited_pmc_event(ev))
1729 return 1;
1730
1731 /*
1732 * The requested event_id isn't on a limited PMC already;
1733 * see if any alternative code goes on a limited PMC.
1734 */
1735 if (!ppmu->get_alternatives)
1736 return 0;
1737
1738 flags |= PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD;
1739 n = ppmu->get_alternatives(ev, flags, alt);
1740
1741 return n > 0;
1742 }
1743
1744 /*
1745 * Find an alternative event_id that goes on a normal PMC, if possible,
1746 * and return the event_id code, or 0 if there is no such alternative.
1747 * (Note: event_id code 0 is "don't count" on all machines.)
1748 */
1749 static u64 normal_pmc_alternative(u64 ev, unsigned long flags)
1750 {
1751 u64 alt[MAX_EVENT_ALTERNATIVES];
1752 int n;
1753
1754 flags &= ~(PPMU_LIMITED_PMC_OK | PPMU_LIMITED_PMC_REQD);
1755 n = ppmu->get_alternatives(ev, flags, alt);
1756 if (!n)
1757 return 0;
1758 return alt[0];
1759 }
1760
1761 /* Number of perf_events counting hardware events */
1762 static atomic_t num_events;
1763 /* Used to avoid races in calling reserve/release_pmc_hardware */
1764 static DEFINE_MUTEX(pmc_reserve_mutex);
1765
1766 /*
1767 * Release the PMU if this is the last perf_event.
1768 */
1769 static void hw_perf_event_destroy(struct perf_event *event)
1770 {
1771 if (!atomic_add_unless(&num_events, -1, 1)) {
1772 mutex_lock(&pmc_reserve_mutex);
1773 if (atomic_dec_return(&num_events) == 0)
1774 release_pmc_hardware();
1775 mutex_unlock(&pmc_reserve_mutex);
1776 }
1777 }
1778
1779 /*
1780 * Translate a generic cache event_id config to a raw event_id code.
1781 */
1782 static int hw_perf_cache_event(u64 config, u64 *eventp)
1783 {
1784 unsigned long type, op, result;
1785 int ev;
1786
1787 if (!ppmu->cache_events)
1788 return -EINVAL;
1789
1790 /* unpack config */
1791 type = config & 0xff;
1792 op = (config >> 8) & 0xff;
1793 result = (config >> 16) & 0xff;
1794
1795 if (type >= PERF_COUNT_HW_CACHE_MAX ||
1796 op >= PERF_COUNT_HW_CACHE_OP_MAX ||
1797 result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
1798 return -EINVAL;
1799
1800 ev = (*ppmu->cache_events)[type][op][result];
1801 if (ev == 0)
1802 return -EOPNOTSUPP;
1803 if (ev == -1)
1804 return -EINVAL;
1805 *eventp = ev;
1806 return 0;
1807 }
1808
1809 static int power_pmu_event_init(struct perf_event *event)
1810 {
1811 u64 ev;
1812 unsigned long flags;
1813 struct perf_event *ctrs[MAX_HWEVENTS];
1814 u64 events[MAX_HWEVENTS];
1815 unsigned int cflags[MAX_HWEVENTS];
1816 int n;
1817 int err;
1818 struct cpu_hw_events *cpuhw;
1819
1820 if (!ppmu)
1821 return -ENOENT;
1822
1823 if (has_branch_stack(event)) {
1824 /* PMU has BHRB enabled */
1825 if (!(ppmu->flags & PPMU_ARCH_207S))
1826 return -EOPNOTSUPP;
1827 }
1828
1829 switch (event->attr.type) {
1830 case PERF_TYPE_HARDWARE:
1831 ev = event->attr.config;
1832 if (ev >= ppmu->n_generic || ppmu->generic_events[ev] == 0)
1833 return -EOPNOTSUPP;
1834 ev = ppmu->generic_events[ev];
1835 break;
1836 case PERF_TYPE_HW_CACHE:
1837 err = hw_perf_cache_event(event->attr.config, &ev);
1838 if (err)
1839 return err;
1840 break;
1841 case PERF_TYPE_RAW:
1842 ev = event->attr.config;
1843 break;
1844 default:
1845 return -ENOENT;
1846 }
1847
1848 event->hw.config_base = ev;
1849 event->hw.idx = 0;
1850
1851 /*
1852 * If we are not running on a hypervisor, force the
1853 * exclude_hv bit to 0 so that we don't care what
1854 * the user set it to.
1855 */
1856 if (!firmware_has_feature(FW_FEATURE_LPAR))
1857 event->attr.exclude_hv = 0;
1858
1859 /*
1860 * If this is a per-task event, then we can use
1861 * PM_RUN_* events interchangeably with their non RUN_*
1862 * equivalents, e.g. PM_RUN_CYC instead of PM_CYC.
1863 * XXX we should check if the task is an idle task.
1864 */
1865 flags = 0;
1866 if (event->attach_state & PERF_ATTACH_TASK)
1867 flags |= PPMU_ONLY_COUNT_RUN;
1868
1869 /*
1870 * If this machine has limited events, check whether this
1871 * event_id could go on a limited event.
1872 */
1873 if (ppmu->flags & PPMU_LIMITED_PMC5_6) {
1874 if (can_go_on_limited_pmc(event, ev, flags)) {
1875 flags |= PPMU_LIMITED_PMC_OK;
1876 } else if (ppmu->limited_pmc_event(ev)) {
1877 /*
1878 * The requested event_id is on a limited PMC,
1879 * but we can't use a limited PMC; see if any
1880 * alternative goes on a normal PMC.
1881 */
1882 ev = normal_pmc_alternative(ev, flags);
1883 if (!ev)
1884 return -EINVAL;
1885 }
1886 }
1887
1888 /* Extra checks for EBB */
1889 err = ebb_event_check(event);
1890 if (err)
1891 return err;
1892
1893 /*
1894 * If this is in a group, check if it can go on with all the
1895 * other hardware events in the group. We assume the event
1896 * hasn't been linked into its leader's sibling list at this point.
1897 */
1898 n = 0;
1899 if (event->group_leader != event) {
1900 n = collect_events(event->group_leader, ppmu->n_counter - 1,
1901 ctrs, events, cflags);
1902 if (n < 0)
1903 return -EINVAL;
1904 }
1905 events[n] = ev;
1906 ctrs[n] = event;
1907 cflags[n] = flags;
1908 if (check_excludes(ctrs, cflags, n, 1))
1909 return -EINVAL;
1910
1911 cpuhw = &get_cpu_var(cpu_hw_events);
1912 err = power_check_constraints(cpuhw, events, cflags, n + 1);
1913
1914 if (has_branch_stack(event)) {
1915 cpuhw->bhrb_filter = ppmu->bhrb_filter_map(
1916 event->attr.branch_sample_type);
1917
1918 if (cpuhw->bhrb_filter == -1) {
1919 put_cpu_var(cpu_hw_events);
1920 return -EOPNOTSUPP;
1921 }
1922 }
1923
1924 put_cpu_var(cpu_hw_events);
1925 if (err)
1926 return -EINVAL;
1927
1928 event->hw.config = events[n];
1929 event->hw.event_base = cflags[n];
1930 event->hw.last_period = event->hw.sample_period;
1931 local64_set(&event->hw.period_left, event->hw.last_period);
1932
1933 /*
1934 * For EBB events we just context switch the PMC value, we don't do any
1935 * of the sample_period logic. We use hw.prev_count for this.
1936 */
1937 if (is_ebb_event(event))
1938 local64_set(&event->hw.prev_count, 0);
1939
1940 /*
1941 * See if we need to reserve the PMU.
1942 * If no events are currently in use, then we have to take a
1943 * mutex to ensure that we don't race with another task doing
1944 * reserve_pmc_hardware or release_pmc_hardware.
1945 */
1946 err = 0;
1947 if (!atomic_inc_not_zero(&num_events)) {
1948 mutex_lock(&pmc_reserve_mutex);
1949 if (atomic_read(&num_events) == 0 &&
1950 reserve_pmc_hardware(perf_event_interrupt))
1951 err = -EBUSY;
1952 else
1953 atomic_inc(&num_events);
1954 mutex_unlock(&pmc_reserve_mutex);
1955 }
1956 event->destroy = hw_perf_event_destroy;
1957
1958 return err;
1959 }
1960
1961 static int power_pmu_event_idx(struct perf_event *event)
1962 {
1963 return event->hw.idx;
1964 }
1965
1966 ssize_t power_events_sysfs_show(struct device *dev,
1967 struct device_attribute *attr, char *page)
1968 {
1969 struct perf_pmu_events_attr *pmu_attr;
1970
1971 pmu_attr = container_of(attr, struct perf_pmu_events_attr, attr);
1972
1973 return sprintf(page, "event=0x%02llx\n", pmu_attr->id);
1974 }
1975
1976 static struct pmu power_pmu = {
1977 .pmu_enable = power_pmu_enable,
1978 .pmu_disable = power_pmu_disable,
1979 .event_init = power_pmu_event_init,
1980 .add = power_pmu_add,
1981 .del = power_pmu_del,
1982 .start = power_pmu_start,
1983 .stop = power_pmu_stop,
1984 .read = power_pmu_read,
1985 .start_txn = power_pmu_start_txn,
1986 .cancel_txn = power_pmu_cancel_txn,
1987 .commit_txn = power_pmu_commit_txn,
1988 .event_idx = power_pmu_event_idx,
1989 .sched_task = power_pmu_sched_task,
1990 };
1991
1992 /*
1993 * A counter has overflowed; update its count and record
1994 * things if requested. Note that interrupts are hard-disabled
1995 * here so there is no possibility of being interrupted.
1996 */
1997 static void record_and_restart(struct perf_event *event, unsigned long val,
1998 struct pt_regs *regs)
1999 {
2000 u64 period = event->hw.sample_period;
2001 s64 prev, delta, left;
2002 int record = 0;
2003
2004 if (event->hw.state & PERF_HES_STOPPED) {
2005 write_pmc(event->hw.idx, 0);
2006 return;
2007 }
2008
2009 /* we don't have to worry about interrupts here */
2010 prev = local64_read(&event->hw.prev_count);
2011 delta = check_and_compute_delta(prev, val);
2012 local64_add(delta, &event->count);
2013
2014 /*
2015 * See if the total period for this event has expired,
2016 * and update for the next period.
2017 */
2018 val = 0;
2019 left = local64_read(&event->hw.period_left) - delta;
2020 if (delta == 0)
2021 left++;
2022 if (period) {
2023 if (left <= 0) {
2024 left += period;
2025 if (left <= 0)
2026 left = period;
2027 record = siar_valid(regs);
2028 event->hw.last_period = event->hw.sample_period;
2029 }
2030 if (left < 0x80000000LL)
2031 val = 0x80000000LL - left;
2032 }
2033
2034 write_pmc(event->hw.idx, val);
2035 local64_set(&event->hw.prev_count, val);
2036 local64_set(&event->hw.period_left, left);
2037 perf_event_update_userpage(event);
2038
2039 /*
2040 * Finally record data if requested.
2041 */
2042 if (record) {
2043 struct perf_sample_data data;
2044
2045 perf_sample_data_init(&data, ~0ULL, event->hw.last_period);
2046
2047 if (event->attr.sample_type &
2048 (PERF_SAMPLE_ADDR | PERF_SAMPLE_PHYS_ADDR))
2049 perf_get_data_addr(regs, &data.addr);
2050
2051 if (event->attr.sample_type & PERF_SAMPLE_BRANCH_STACK) {
2052 struct cpu_hw_events *cpuhw;
2053 cpuhw = this_cpu_ptr(&cpu_hw_events);
2054 power_pmu_bhrb_read(cpuhw);
2055 data.br_stack = &cpuhw->bhrb_stack;
2056 }
2057
2058 if (event->attr.sample_type & PERF_SAMPLE_DATA_SRC &&
2059 ppmu->get_mem_data_src)
2060 ppmu->get_mem_data_src(&data.data_src, ppmu->flags, regs);
2061
2062 if (event->attr.sample_type & PERF_SAMPLE_WEIGHT &&
2063 ppmu->get_mem_weight)
2064 ppmu->get_mem_weight(&data.weight);
2065
2066 if (perf_event_overflow(event, &data, regs))
2067 power_pmu_stop(event, 0);
2068 }
2069 }
2070
2071 /*
2072 * Called from generic code to get the misc flags (i.e. processor mode)
2073 * for an event_id.
2074 */
2075 unsigned long perf_misc_flags(struct pt_regs *regs)
2076 {
2077 u32 flags = perf_get_misc_flags(regs);
2078
2079 if (flags)
2080 return flags;
2081 return user_mode(regs) ? PERF_RECORD_MISC_USER :
2082 PERF_RECORD_MISC_KERNEL;
2083 }
2084
2085 /*
2086 * Called from generic code to get the instruction pointer
2087 * for an event_id.
2088 */
2089 unsigned long perf_instruction_pointer(struct pt_regs *regs)
2090 {
2091 bool use_siar = regs_use_siar(regs);
2092
2093 if (use_siar && siar_valid(regs))
2094 return mfspr(SPRN_SIAR) + perf_ip_adjust(regs);
2095 else if (use_siar)
2096 return 0; // no valid instruction pointer
2097 else
2098 return regs->nip;
2099 }
2100
2101 static bool pmc_overflow_power7(unsigned long val)
2102 {
2103 /*
2104 * Events on POWER7 can roll back if a speculative event doesn't
2105 * eventually complete. Unfortunately in some rare cases they will
2106 * raise a performance monitor exception. We need to catch this to
2107 * ensure we reset the PMC. In all cases the PMC will be 256 or less
2108 * cycles from overflow.
2109 *
2110 * We only do this if the first pass fails to find any overflowing
2111 * PMCs because a user might set a period of less than 256 and we
2112 * don't want to mistakenly reset them.
2113 */
2114 if ((0x80000000 - val) <= 256)
2115 return true;
2116
2117 return false;
2118 }
2119
2120 static bool pmc_overflow(unsigned long val)
2121 {
2122 if ((int)val < 0)
2123 return true;
2124
2125 return false;
2126 }
2127
2128 /*
2129 * Performance monitor interrupt stuff
2130 */
2131 static void perf_event_interrupt(struct pt_regs *regs)
2132 {
2133 int i, j;
2134 struct cpu_hw_events *cpuhw = this_cpu_ptr(&cpu_hw_events);
2135 struct perf_event *event;
2136 unsigned long val[8];
2137 int found, active;
2138 int nmi;
2139
2140 if (cpuhw->n_limited)
2141 freeze_limited_counters(cpuhw, mfspr(SPRN_PMC5),
2142 mfspr(SPRN_PMC6));
2143
2144 perf_read_regs(regs);
2145
2146 nmi = perf_intr_is_nmi(regs);
2147 if (nmi)
2148 nmi_enter();
2149 else
2150 irq_enter();
2151
2152 /* Read all the PMCs since we'll need them a bunch of times */
2153 for (i = 0; i < ppmu->n_counter; ++i)
2154 val[i] = read_pmc(i + 1);
2155
2156 /* Try to find what caused the IRQ */
2157 found = 0;
2158 for (i = 0; i < ppmu->n_counter; ++i) {
2159 if (!pmc_overflow(val[i]))
2160 continue;
2161 if (is_limited_pmc(i + 1))
2162 continue; /* these won't generate IRQs */
2163 /*
2164 * We've found one that's overflowed. For active
2165 * counters we need to log this. For inactive
2166 * counters, we need to reset it anyway
2167 */
2168 found = 1;
2169 active = 0;
2170 for (j = 0; j < cpuhw->n_events; ++j) {
2171 event = cpuhw->event[j];
2172 if (event->hw.idx == (i + 1)) {
2173 active = 1;
2174 record_and_restart(event, val[i], regs);
2175 break;
2176 }
2177 }
2178 if (!active)
2179 /* reset non active counters that have overflowed */
2180 write_pmc(i + 1, 0);
2181 }
2182 if (!found && pvr_version_is(PVR_POWER7)) {
2183 /* check active counters for special buggy p7 overflow */
2184 for (i = 0; i < cpuhw->n_events; ++i) {
2185 event = cpuhw->event[i];
2186 if (!event->hw.idx || is_limited_pmc(event->hw.idx))
2187 continue;
2188 if (pmc_overflow_power7(val[event->hw.idx - 1])) {
2189 /* event has overflowed in a buggy way*/
2190 found = 1;
2191 record_and_restart(event,
2192 val[event->hw.idx - 1],
2193 regs);
2194 }
2195 }
2196 }
2197 if (!found && !nmi && printk_ratelimit())
2198 printk(KERN_WARNING "Can't find PMC that caused IRQ\n");
2199
2200 /*
2201 * Reset MMCR0 to its normal value. This will set PMXE and
2202 * clear FC (freeze counters) and PMAO (perf mon alert occurred)
2203 * and thus allow interrupts to occur again.
2204 * XXX might want to use MSR.PM to keep the events frozen until
2205 * we get back out of this interrupt.
2206 */
2207 write_mmcr0(cpuhw, cpuhw->mmcr[0]);
2208
2209 if (nmi)
2210 nmi_exit();
2211 else
2212 irq_exit();
2213 }
2214
2215 static int power_pmu_prepare_cpu(unsigned int cpu)
2216 {
2217 struct cpu_hw_events *cpuhw = &per_cpu(cpu_hw_events, cpu);
2218
2219 if (ppmu) {
2220 memset(cpuhw, 0, sizeof(*cpuhw));
2221 cpuhw->mmcr[0] = MMCR0_FC;
2222 }
2223 return 0;
2224 }
2225
2226 int register_power_pmu(struct power_pmu *pmu)
2227 {
2228 if (ppmu)
2229 return -EBUSY; /* something's already registered */
2230
2231 ppmu = pmu;
2232 pr_info("%s performance monitor hardware support registered\n",
2233 pmu->name);
2234
2235 power_pmu.attr_groups = ppmu->attr_groups;
2236
2237 #ifdef MSR_HV
2238 /*
2239 * Use FCHV to ignore kernel events if MSR.HV is set.
2240 */
2241 if (mfmsr() & MSR_HV)
2242 freeze_events_kernel = MMCR0_FCHV;
2243 #endif /* CONFIG_PPC64 */
2244
2245 perf_pmu_register(&power_pmu, "cpu", PERF_TYPE_RAW);
2246 cpuhp_setup_state(CPUHP_PERF_POWER, "perf/powerpc:prepare",
2247 power_pmu_prepare_cpu, NULL);
2248 return 0;
2249 }