]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/powerpc/perf/hv-24x7.c
Merge tag 'drm-intel-next-2019-03-20' of git://anongit.freedesktop.org/drm/drm-intel...
[mirror_ubuntu-eoan-kernel.git] / arch / powerpc / perf / hv-24x7.c
1 /*
2 * Hypervisor supplied "24x7" performance counter support
3 *
4 * Author: Cody P Schafer <cody@linux.vnet.ibm.com>
5 * Copyright 2014 IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #define pr_fmt(fmt) "hv-24x7: " fmt
14
15 #include <linux/perf_event.h>
16 #include <linux/rbtree.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/vmalloc.h>
20
21 #include <asm/cputhreads.h>
22 #include <asm/firmware.h>
23 #include <asm/hvcall.h>
24 #include <asm/io.h>
25 #include <linux/byteorder/generic.h>
26
27 #include "hv-24x7.h"
28 #include "hv-24x7-catalog.h"
29 #include "hv-common.h"
30
31 /* Version of the 24x7 hypervisor API that we should use in this machine. */
32 static int interface_version;
33
34 /* Whether we have to aggregate result data for some domains. */
35 static bool aggregate_result_elements;
36
37 static bool domain_is_valid(unsigned domain)
38 {
39 switch (domain) {
40 #define DOMAIN(n, v, x, c) \
41 case HV_PERF_DOMAIN_##n: \
42 /* fall through */
43 #include "hv-24x7-domains.h"
44 #undef DOMAIN
45 return true;
46 default:
47 return false;
48 }
49 }
50
51 static bool is_physical_domain(unsigned domain)
52 {
53 switch (domain) {
54 #define DOMAIN(n, v, x, c) \
55 case HV_PERF_DOMAIN_##n: \
56 return c;
57 #include "hv-24x7-domains.h"
58 #undef DOMAIN
59 default:
60 return false;
61 }
62 }
63
64 /* Domains for which more than one result element are returned for each event. */
65 static bool domain_needs_aggregation(unsigned int domain)
66 {
67 return aggregate_result_elements &&
68 (domain == HV_PERF_DOMAIN_PHYS_CORE ||
69 (domain >= HV_PERF_DOMAIN_VCPU_HOME_CORE &&
70 domain <= HV_PERF_DOMAIN_VCPU_REMOTE_NODE));
71 }
72
73 static const char *domain_name(unsigned domain)
74 {
75 if (!domain_is_valid(domain))
76 return NULL;
77
78 switch (domain) {
79 case HV_PERF_DOMAIN_PHYS_CHIP: return "Physical Chip";
80 case HV_PERF_DOMAIN_PHYS_CORE: return "Physical Core";
81 case HV_PERF_DOMAIN_VCPU_HOME_CORE: return "VCPU Home Core";
82 case HV_PERF_DOMAIN_VCPU_HOME_CHIP: return "VCPU Home Chip";
83 case HV_PERF_DOMAIN_VCPU_HOME_NODE: return "VCPU Home Node";
84 case HV_PERF_DOMAIN_VCPU_REMOTE_NODE: return "VCPU Remote Node";
85 }
86
87 WARN_ON_ONCE(domain);
88 return NULL;
89 }
90
91 static bool catalog_entry_domain_is_valid(unsigned domain)
92 {
93 /* POWER8 doesn't support virtual domains. */
94 if (interface_version == 1)
95 return is_physical_domain(domain);
96 else
97 return domain_is_valid(domain);
98 }
99
100 /*
101 * TODO: Merging events:
102 * - Think of the hcall as an interface to a 4d array of counters:
103 * - x = domains
104 * - y = indexes in the domain (core, chip, vcpu, node, etc)
105 * - z = offset into the counter space
106 * - w = lpars (guest vms, "logical partitions")
107 * - A single request is: x,y,y_last,z,z_last,w,w_last
108 * - this means we can retrieve a rectangle of counters in y,z for a single x.
109 *
110 * - Things to consider (ignoring w):
111 * - input cost_per_request = 16
112 * - output cost_per_result(ys,zs) = 8 + 8 * ys + ys * zs
113 * - limited number of requests per hcall (must fit into 4K bytes)
114 * - 4k = 16 [buffer header] - 16 [request size] * request_count
115 * - 255 requests per hcall
116 * - sometimes it will be more efficient to read extra data and discard
117 */
118
119 /*
120 * Example usage:
121 * perf stat -e 'hv_24x7/domain=2,offset=8,vcpu=0,lpar=0xffffffff/'
122 */
123
124 /* u3 0-6, one of HV_24X7_PERF_DOMAIN */
125 EVENT_DEFINE_RANGE_FORMAT(domain, config, 0, 3);
126 /* u16 */
127 EVENT_DEFINE_RANGE_FORMAT(core, config, 16, 31);
128 EVENT_DEFINE_RANGE_FORMAT(chip, config, 16, 31);
129 EVENT_DEFINE_RANGE_FORMAT(vcpu, config, 16, 31);
130 /* u32, see "data_offset" */
131 EVENT_DEFINE_RANGE_FORMAT(offset, config, 32, 63);
132 /* u16 */
133 EVENT_DEFINE_RANGE_FORMAT(lpar, config1, 0, 15);
134
135 EVENT_DEFINE_RANGE(reserved1, config, 4, 15);
136 EVENT_DEFINE_RANGE(reserved2, config1, 16, 63);
137 EVENT_DEFINE_RANGE(reserved3, config2, 0, 63);
138
139 static struct attribute *format_attrs[] = {
140 &format_attr_domain.attr,
141 &format_attr_offset.attr,
142 &format_attr_core.attr,
143 &format_attr_chip.attr,
144 &format_attr_vcpu.attr,
145 &format_attr_lpar.attr,
146 NULL,
147 };
148
149 static struct attribute_group format_group = {
150 .name = "format",
151 .attrs = format_attrs,
152 };
153
154 static struct attribute_group event_group = {
155 .name = "events",
156 /* .attrs is set in init */
157 };
158
159 static struct attribute_group event_desc_group = {
160 .name = "event_descs",
161 /* .attrs is set in init */
162 };
163
164 static struct attribute_group event_long_desc_group = {
165 .name = "event_long_descs",
166 /* .attrs is set in init */
167 };
168
169 static struct kmem_cache *hv_page_cache;
170
171 DEFINE_PER_CPU(int, hv_24x7_txn_flags);
172 DEFINE_PER_CPU(int, hv_24x7_txn_err);
173
174 struct hv_24x7_hw {
175 struct perf_event *events[255];
176 };
177
178 DEFINE_PER_CPU(struct hv_24x7_hw, hv_24x7_hw);
179
180 /*
181 * request_buffer and result_buffer are not required to be 4k aligned,
182 * but are not allowed to cross any 4k boundary. Aligning them to 4k is
183 * the simplest way to ensure that.
184 */
185 #define H24x7_DATA_BUFFER_SIZE 4096
186 DEFINE_PER_CPU(char, hv_24x7_reqb[H24x7_DATA_BUFFER_SIZE]) __aligned(4096);
187 DEFINE_PER_CPU(char, hv_24x7_resb[H24x7_DATA_BUFFER_SIZE]) __aligned(4096);
188
189 static unsigned int max_num_requests(int interface_version)
190 {
191 return (H24x7_DATA_BUFFER_SIZE - sizeof(struct hv_24x7_request_buffer))
192 / H24x7_REQUEST_SIZE(interface_version);
193 }
194
195 static char *event_name(struct hv_24x7_event_data *ev, int *len)
196 {
197 *len = be16_to_cpu(ev->event_name_len) - 2;
198 return (char *)ev->remainder;
199 }
200
201 static char *event_desc(struct hv_24x7_event_data *ev, int *len)
202 {
203 unsigned nl = be16_to_cpu(ev->event_name_len);
204 __be16 *desc_len = (__be16 *)(ev->remainder + nl - 2);
205
206 *len = be16_to_cpu(*desc_len) - 2;
207 return (char *)ev->remainder + nl;
208 }
209
210 static char *event_long_desc(struct hv_24x7_event_data *ev, int *len)
211 {
212 unsigned nl = be16_to_cpu(ev->event_name_len);
213 __be16 *desc_len_ = (__be16 *)(ev->remainder + nl - 2);
214 unsigned desc_len = be16_to_cpu(*desc_len_);
215 __be16 *long_desc_len = (__be16 *)(ev->remainder + nl + desc_len - 2);
216
217 *len = be16_to_cpu(*long_desc_len) - 2;
218 return (char *)ev->remainder + nl + desc_len;
219 }
220
221 static bool event_fixed_portion_is_within(struct hv_24x7_event_data *ev,
222 void *end)
223 {
224 void *start = ev;
225
226 return (start + offsetof(struct hv_24x7_event_data, remainder)) < end;
227 }
228
229 /*
230 * Things we don't check:
231 * - padding for desc, name, and long/detailed desc is required to be '\0'
232 * bytes.
233 *
234 * Return NULL if we pass end,
235 * Otherwise return the address of the byte just following the event.
236 */
237 static void *event_end(struct hv_24x7_event_data *ev, void *end)
238 {
239 void *start = ev;
240 __be16 *dl_, *ldl_;
241 unsigned dl, ldl;
242 unsigned nl = be16_to_cpu(ev->event_name_len);
243
244 if (nl < 2) {
245 pr_debug("%s: name length too short: %d", __func__, nl);
246 return NULL;
247 }
248
249 if (start + nl > end) {
250 pr_debug("%s: start=%p + nl=%u > end=%p",
251 __func__, start, nl, end);
252 return NULL;
253 }
254
255 dl_ = (__be16 *)(ev->remainder + nl - 2);
256 if (!IS_ALIGNED((uintptr_t)dl_, 2))
257 pr_warn("desc len not aligned %p", dl_);
258 dl = be16_to_cpu(*dl_);
259 if (dl < 2) {
260 pr_debug("%s: desc len too short: %d", __func__, dl);
261 return NULL;
262 }
263
264 if (start + nl + dl > end) {
265 pr_debug("%s: (start=%p + nl=%u + dl=%u)=%p > end=%p",
266 __func__, start, nl, dl, start + nl + dl, end);
267 return NULL;
268 }
269
270 ldl_ = (__be16 *)(ev->remainder + nl + dl - 2);
271 if (!IS_ALIGNED((uintptr_t)ldl_, 2))
272 pr_warn("long desc len not aligned %p", ldl_);
273 ldl = be16_to_cpu(*ldl_);
274 if (ldl < 2) {
275 pr_debug("%s: long desc len too short (ldl=%u)",
276 __func__, ldl);
277 return NULL;
278 }
279
280 if (start + nl + dl + ldl > end) {
281 pr_debug("%s: start=%p + nl=%u + dl=%u + ldl=%u > end=%p",
282 __func__, start, nl, dl, ldl, end);
283 return NULL;
284 }
285
286 return start + nl + dl + ldl;
287 }
288
289 static long h_get_24x7_catalog_page_(unsigned long phys_4096,
290 unsigned long version, unsigned long index)
291 {
292 pr_devel("h_get_24x7_catalog_page(0x%lx, %lu, %lu)",
293 phys_4096, version, index);
294
295 WARN_ON(!IS_ALIGNED(phys_4096, 4096));
296
297 return plpar_hcall_norets(H_GET_24X7_CATALOG_PAGE,
298 phys_4096, version, index);
299 }
300
301 static long h_get_24x7_catalog_page(char page[], u64 version, u32 index)
302 {
303 return h_get_24x7_catalog_page_(virt_to_phys(page),
304 version, index);
305 }
306
307 /*
308 * Each event we find in the catalog, will have a sysfs entry. Format the
309 * data for this sysfs entry based on the event's domain.
310 *
311 * Events belonging to the Chip domain can only be monitored in that domain.
312 * i.e the domain for these events is a fixed/knwon value.
313 *
314 * Events belonging to the Core domain can be monitored either in the physical
315 * core or in one of the virtual CPU domains. So the domain value for these
316 * events must be specified by the user (i.e is a required parameter). Format
317 * the Core events with 'domain=?' so the perf-tool can error check required
318 * parameters.
319 *
320 * NOTE: For the Core domain events, rather than making domain a required
321 * parameter we could default it to PHYS_CORE and allowe users to
322 * override the domain to one of the VCPU domains.
323 *
324 * However, this can make the interface a little inconsistent.
325 *
326 * If we set domain=2 (PHYS_CHIP) and allow user to override this field
327 * the user may be tempted to also modify the "offset=x" field in which
328 * can lead to confusing usage. Consider the HPM_PCYC (offset=0x18) and
329 * HPM_INST (offset=0x20) events. With:
330 *
331 * perf stat -e hv_24x7/HPM_PCYC,offset=0x20/
332 *
333 * we end up monitoring HPM_INST, while the command line has HPM_PCYC.
334 *
335 * By not assigning a default value to the domain for the Core events,
336 * we can have simple guidelines:
337 *
338 * - Specifying values for parameters with "=?" is required.
339 *
340 * - Specifying (i.e overriding) values for other parameters
341 * is undefined.
342 */
343 static char *event_fmt(struct hv_24x7_event_data *event, unsigned domain)
344 {
345 const char *sindex;
346 const char *lpar;
347 const char *domain_str;
348 char buf[8];
349
350 switch (domain) {
351 case HV_PERF_DOMAIN_PHYS_CHIP:
352 snprintf(buf, sizeof(buf), "%d", domain);
353 domain_str = buf;
354 lpar = "0x0";
355 sindex = "chip";
356 break;
357 case HV_PERF_DOMAIN_PHYS_CORE:
358 domain_str = "?";
359 lpar = "0x0";
360 sindex = "core";
361 break;
362 default:
363 domain_str = "?";
364 lpar = "?";
365 sindex = "vcpu";
366 }
367
368 return kasprintf(GFP_KERNEL,
369 "domain=%s,offset=0x%x,%s=?,lpar=%s",
370 domain_str,
371 be16_to_cpu(event->event_counter_offs) +
372 be16_to_cpu(event->event_group_record_offs),
373 sindex,
374 lpar);
375 }
376
377 /* Avoid trusting fw to NUL terminate strings */
378 static char *memdup_to_str(char *maybe_str, int max_len, gfp_t gfp)
379 {
380 return kasprintf(gfp, "%.*s", max_len, maybe_str);
381 }
382
383 static ssize_t device_show_string(struct device *dev,
384 struct device_attribute *attr, char *buf)
385 {
386 struct dev_ext_attribute *d;
387
388 d = container_of(attr, struct dev_ext_attribute, attr);
389
390 return sprintf(buf, "%s\n", (char *)d->var);
391 }
392
393 static struct attribute *device_str_attr_create_(char *name, char *str)
394 {
395 struct dev_ext_attribute *attr = kzalloc(sizeof(*attr), GFP_KERNEL);
396
397 if (!attr)
398 return NULL;
399
400 sysfs_attr_init(&attr->attr.attr);
401
402 attr->var = str;
403 attr->attr.attr.name = name;
404 attr->attr.attr.mode = 0444;
405 attr->attr.show = device_show_string;
406
407 return &attr->attr.attr;
408 }
409
410 /*
411 * Allocate and initialize strings representing event attributes.
412 *
413 * NOTE: The strings allocated here are never destroyed and continue to
414 * exist till shutdown. This is to allow us to create as many events
415 * from the catalog as possible, even if we encounter errors with some.
416 * In case of changes to error paths in future, these may need to be
417 * freed by the caller.
418 */
419 static struct attribute *device_str_attr_create(char *name, int name_max,
420 int name_nonce,
421 char *str, size_t str_max)
422 {
423 char *n;
424 char *s = memdup_to_str(str, str_max, GFP_KERNEL);
425 struct attribute *a;
426
427 if (!s)
428 return NULL;
429
430 if (!name_nonce)
431 n = kasprintf(GFP_KERNEL, "%.*s", name_max, name);
432 else
433 n = kasprintf(GFP_KERNEL, "%.*s__%d", name_max, name,
434 name_nonce);
435 if (!n)
436 goto out_s;
437
438 a = device_str_attr_create_(n, s);
439 if (!a)
440 goto out_n;
441
442 return a;
443 out_n:
444 kfree(n);
445 out_s:
446 kfree(s);
447 return NULL;
448 }
449
450 static struct attribute *event_to_attr(unsigned ix,
451 struct hv_24x7_event_data *event,
452 unsigned domain,
453 int nonce)
454 {
455 int event_name_len;
456 char *ev_name, *a_ev_name, *val;
457 struct attribute *attr;
458
459 if (!domain_is_valid(domain)) {
460 pr_warn("catalog event %u has invalid domain %u\n",
461 ix, domain);
462 return NULL;
463 }
464
465 val = event_fmt(event, domain);
466 if (!val)
467 return NULL;
468
469 ev_name = event_name(event, &event_name_len);
470 if (!nonce)
471 a_ev_name = kasprintf(GFP_KERNEL, "%.*s",
472 (int)event_name_len, ev_name);
473 else
474 a_ev_name = kasprintf(GFP_KERNEL, "%.*s__%d",
475 (int)event_name_len, ev_name, nonce);
476
477 if (!a_ev_name)
478 goto out_val;
479
480 attr = device_str_attr_create_(a_ev_name, val);
481 if (!attr)
482 goto out_name;
483
484 return attr;
485 out_name:
486 kfree(a_ev_name);
487 out_val:
488 kfree(val);
489 return NULL;
490 }
491
492 static struct attribute *event_to_desc_attr(struct hv_24x7_event_data *event,
493 int nonce)
494 {
495 int nl, dl;
496 char *name = event_name(event, &nl);
497 char *desc = event_desc(event, &dl);
498
499 /* If there isn't a description, don't create the sysfs file */
500 if (!dl)
501 return NULL;
502
503 return device_str_attr_create(name, nl, nonce, desc, dl);
504 }
505
506 static struct attribute *
507 event_to_long_desc_attr(struct hv_24x7_event_data *event, int nonce)
508 {
509 int nl, dl;
510 char *name = event_name(event, &nl);
511 char *desc = event_long_desc(event, &dl);
512
513 /* If there isn't a description, don't create the sysfs file */
514 if (!dl)
515 return NULL;
516
517 return device_str_attr_create(name, nl, nonce, desc, dl);
518 }
519
520 static int event_data_to_attrs(unsigned ix, struct attribute **attrs,
521 struct hv_24x7_event_data *event, int nonce)
522 {
523 *attrs = event_to_attr(ix, event, event->domain, nonce);
524 if (!*attrs)
525 return -1;
526
527 return 0;
528 }
529
530 /* */
531 struct event_uniq {
532 struct rb_node node;
533 const char *name;
534 int nl;
535 unsigned ct;
536 unsigned domain;
537 };
538
539 static int memord(const void *d1, size_t s1, const void *d2, size_t s2)
540 {
541 if (s1 < s2)
542 return 1;
543 if (s1 > s2)
544 return -1;
545
546 return memcmp(d1, d2, s1);
547 }
548
549 static int ev_uniq_ord(const void *v1, size_t s1, unsigned d1, const void *v2,
550 size_t s2, unsigned d2)
551 {
552 int r = memord(v1, s1, v2, s2);
553
554 if (r)
555 return r;
556 if (d1 > d2)
557 return 1;
558 if (d2 > d1)
559 return -1;
560 return 0;
561 }
562
563 static int event_uniq_add(struct rb_root *root, const char *name, int nl,
564 unsigned domain)
565 {
566 struct rb_node **new = &(root->rb_node), *parent = NULL;
567 struct event_uniq *data;
568
569 /* Figure out where to put new node */
570 while (*new) {
571 struct event_uniq *it;
572 int result;
573
574 it = container_of(*new, struct event_uniq, node);
575 result = ev_uniq_ord(name, nl, domain, it->name, it->nl,
576 it->domain);
577
578 parent = *new;
579 if (result < 0)
580 new = &((*new)->rb_left);
581 else if (result > 0)
582 new = &((*new)->rb_right);
583 else {
584 it->ct++;
585 pr_info("found a duplicate event %.*s, ct=%u\n", nl,
586 name, it->ct);
587 return it->ct;
588 }
589 }
590
591 data = kmalloc(sizeof(*data), GFP_KERNEL);
592 if (!data)
593 return -ENOMEM;
594
595 *data = (struct event_uniq) {
596 .name = name,
597 .nl = nl,
598 .ct = 0,
599 .domain = domain,
600 };
601
602 /* Add new node and rebalance tree. */
603 rb_link_node(&data->node, parent, new);
604 rb_insert_color(&data->node, root);
605
606 /* data->ct */
607 return 0;
608 }
609
610 static void event_uniq_destroy(struct rb_root *root)
611 {
612 /*
613 * the strings we point to are in the giant block of memory filled by
614 * the catalog, and are freed separately.
615 */
616 struct event_uniq *pos, *n;
617
618 rbtree_postorder_for_each_entry_safe(pos, n, root, node)
619 kfree(pos);
620 }
621
622
623 /*
624 * ensure the event structure's sizes are self consistent and don't cause us to
625 * read outside of the event
626 *
627 * On success, return the event length in bytes.
628 * Otherwise, return -1 (and print as appropriate).
629 */
630 static ssize_t catalog_event_len_validate(struct hv_24x7_event_data *event,
631 size_t event_idx,
632 size_t event_data_bytes,
633 size_t event_entry_count,
634 size_t offset, void *end)
635 {
636 ssize_t ev_len;
637 void *ev_end, *calc_ev_end;
638
639 if (offset >= event_data_bytes)
640 return -1;
641
642 if (event_idx >= event_entry_count) {
643 pr_devel("catalog event data has %zu bytes of padding after last event\n",
644 event_data_bytes - offset);
645 return -1;
646 }
647
648 if (!event_fixed_portion_is_within(event, end)) {
649 pr_warn("event %zu fixed portion is not within range\n",
650 event_idx);
651 return -1;
652 }
653
654 ev_len = be16_to_cpu(event->length);
655
656 if (ev_len % 16)
657 pr_info("event %zu has length %zu not divisible by 16: event=%pK\n",
658 event_idx, ev_len, event);
659
660 ev_end = (__u8 *)event + ev_len;
661 if (ev_end > end) {
662 pr_warn("event %zu has .length=%zu, ends after buffer end: ev_end=%pK > end=%pK, offset=%zu\n",
663 event_idx, ev_len, ev_end, end,
664 offset);
665 return -1;
666 }
667
668 calc_ev_end = event_end(event, end);
669 if (!calc_ev_end) {
670 pr_warn("event %zu has a calculated length which exceeds buffer length %zu: event=%pK end=%pK, offset=%zu\n",
671 event_idx, event_data_bytes, event, end,
672 offset);
673 return -1;
674 }
675
676 if (calc_ev_end > ev_end) {
677 pr_warn("event %zu exceeds it's own length: event=%pK, end=%pK, offset=%zu, calc_ev_end=%pK\n",
678 event_idx, event, ev_end, offset, calc_ev_end);
679 return -1;
680 }
681
682 return ev_len;
683 }
684
685 #define MAX_4K (SIZE_MAX / 4096)
686
687 static int create_events_from_catalog(struct attribute ***events_,
688 struct attribute ***event_descs_,
689 struct attribute ***event_long_descs_)
690 {
691 long hret;
692 size_t catalog_len, catalog_page_len, event_entry_count,
693 event_data_len, event_data_offs,
694 event_data_bytes, junk_events, event_idx, event_attr_ct, i,
695 attr_max, event_idx_last, desc_ct, long_desc_ct;
696 ssize_t ct, ev_len;
697 uint64_t catalog_version_num;
698 struct attribute **events, **event_descs, **event_long_descs;
699 struct hv_24x7_catalog_page_0 *page_0 =
700 kmem_cache_alloc(hv_page_cache, GFP_KERNEL);
701 void *page = page_0;
702 void *event_data, *end;
703 struct hv_24x7_event_data *event;
704 struct rb_root ev_uniq = RB_ROOT;
705 int ret = 0;
706
707 if (!page) {
708 ret = -ENOMEM;
709 goto e_out;
710 }
711
712 hret = h_get_24x7_catalog_page(page, 0, 0);
713 if (hret) {
714 ret = -EIO;
715 goto e_free;
716 }
717
718 catalog_version_num = be64_to_cpu(page_0->version);
719 catalog_page_len = be32_to_cpu(page_0->length);
720
721 if (MAX_4K < catalog_page_len) {
722 pr_err("invalid page count: %zu\n", catalog_page_len);
723 ret = -EIO;
724 goto e_free;
725 }
726
727 catalog_len = catalog_page_len * 4096;
728
729 event_entry_count = be16_to_cpu(page_0->event_entry_count);
730 event_data_offs = be16_to_cpu(page_0->event_data_offs);
731 event_data_len = be16_to_cpu(page_0->event_data_len);
732
733 pr_devel("cv %llu cl %zu eec %zu edo %zu edl %zu\n",
734 catalog_version_num, catalog_len,
735 event_entry_count, event_data_offs, event_data_len);
736
737 if ((MAX_4K < event_data_len)
738 || (MAX_4K < event_data_offs)
739 || (MAX_4K - event_data_offs < event_data_len)) {
740 pr_err("invalid event data offs %zu and/or len %zu\n",
741 event_data_offs, event_data_len);
742 ret = -EIO;
743 goto e_free;
744 }
745
746 if ((event_data_offs + event_data_len) > catalog_page_len) {
747 pr_err("event data %zu-%zu does not fit inside catalog 0-%zu\n",
748 event_data_offs,
749 event_data_offs + event_data_len,
750 catalog_page_len);
751 ret = -EIO;
752 goto e_free;
753 }
754
755 if (SIZE_MAX - 1 < event_entry_count) {
756 pr_err("event_entry_count %zu is invalid\n", event_entry_count);
757 ret = -EIO;
758 goto e_free;
759 }
760
761 event_data_bytes = event_data_len * 4096;
762
763 /*
764 * event data can span several pages, events can cross between these
765 * pages. Use vmalloc to make this easier.
766 */
767 event_data = vmalloc(event_data_bytes);
768 if (!event_data) {
769 pr_err("could not allocate event data\n");
770 ret = -ENOMEM;
771 goto e_free;
772 }
773
774 end = event_data + event_data_bytes;
775
776 /*
777 * using vmalloc_to_phys() like this only works if PAGE_SIZE is
778 * divisible by 4096
779 */
780 BUILD_BUG_ON(PAGE_SIZE % 4096);
781
782 for (i = 0; i < event_data_len; i++) {
783 hret = h_get_24x7_catalog_page_(
784 vmalloc_to_phys(event_data + i * 4096),
785 catalog_version_num,
786 i + event_data_offs);
787 if (hret) {
788 pr_err("Failed to get event data in page %zu: rc=%ld\n",
789 i + event_data_offs, hret);
790 ret = -EIO;
791 goto e_event_data;
792 }
793 }
794
795 /*
796 * scan the catalog to determine the number of attributes we need, and
797 * verify it at the same time.
798 */
799 for (junk_events = 0, event = event_data, event_idx = 0, attr_max = 0;
800 ;
801 event_idx++, event = (void *)event + ev_len) {
802 size_t offset = (void *)event - (void *)event_data;
803 char *name;
804 int nl;
805
806 ev_len = catalog_event_len_validate(event, event_idx,
807 event_data_bytes,
808 event_entry_count,
809 offset, end);
810 if (ev_len < 0)
811 break;
812
813 name = event_name(event, &nl);
814
815 if (event->event_group_record_len == 0) {
816 pr_devel("invalid event %zu (%.*s): group_record_len == 0, skipping\n",
817 event_idx, nl, name);
818 junk_events++;
819 continue;
820 }
821
822 if (!catalog_entry_domain_is_valid(event->domain)) {
823 pr_info("event %zu (%.*s) has invalid domain %d\n",
824 event_idx, nl, name, event->domain);
825 junk_events++;
826 continue;
827 }
828
829 attr_max++;
830 }
831
832 event_idx_last = event_idx;
833 if (event_idx_last != event_entry_count)
834 pr_warn("event buffer ended before listed # of events were parsed (got %zu, wanted %zu, junk %zu)\n",
835 event_idx_last, event_entry_count, junk_events);
836
837 events = kmalloc_array(attr_max + 1, sizeof(*events), GFP_KERNEL);
838 if (!events) {
839 ret = -ENOMEM;
840 goto e_event_data;
841 }
842
843 event_descs = kmalloc_array(event_idx + 1, sizeof(*event_descs),
844 GFP_KERNEL);
845 if (!event_descs) {
846 ret = -ENOMEM;
847 goto e_event_attrs;
848 }
849
850 event_long_descs = kmalloc_array(event_idx + 1,
851 sizeof(*event_long_descs), GFP_KERNEL);
852 if (!event_long_descs) {
853 ret = -ENOMEM;
854 goto e_event_descs;
855 }
856
857 /* Iterate over the catalog filling in the attribute vector */
858 for (junk_events = 0, event_attr_ct = 0, desc_ct = 0, long_desc_ct = 0,
859 event = event_data, event_idx = 0;
860 event_idx < event_idx_last;
861 event_idx++, ev_len = be16_to_cpu(event->length),
862 event = (void *)event + ev_len) {
863 char *name;
864 int nl;
865 int nonce;
866 /*
867 * these are the only "bad" events that are intermixed and that
868 * we can ignore without issue. make sure to skip them here
869 */
870 if (event->event_group_record_len == 0)
871 continue;
872 if (!catalog_entry_domain_is_valid(event->domain))
873 continue;
874
875 name = event_name(event, &nl);
876 nonce = event_uniq_add(&ev_uniq, name, nl, event->domain);
877 ct = event_data_to_attrs(event_idx, events + event_attr_ct,
878 event, nonce);
879 if (ct < 0) {
880 pr_warn("event %zu (%.*s) creation failure, skipping\n",
881 event_idx, nl, name);
882 junk_events++;
883 } else {
884 event_attr_ct++;
885 event_descs[desc_ct] = event_to_desc_attr(event, nonce);
886 if (event_descs[desc_ct])
887 desc_ct++;
888 event_long_descs[long_desc_ct] =
889 event_to_long_desc_attr(event, nonce);
890 if (event_long_descs[long_desc_ct])
891 long_desc_ct++;
892 }
893 }
894
895 pr_info("read %zu catalog entries, created %zu event attrs (%zu failures), %zu descs\n",
896 event_idx, event_attr_ct, junk_events, desc_ct);
897
898 events[event_attr_ct] = NULL;
899 event_descs[desc_ct] = NULL;
900 event_long_descs[long_desc_ct] = NULL;
901
902 event_uniq_destroy(&ev_uniq);
903 vfree(event_data);
904 kmem_cache_free(hv_page_cache, page);
905
906 *events_ = events;
907 *event_descs_ = event_descs;
908 *event_long_descs_ = event_long_descs;
909 return 0;
910
911 e_event_descs:
912 kfree(event_descs);
913 e_event_attrs:
914 kfree(events);
915 e_event_data:
916 vfree(event_data);
917 e_free:
918 kmem_cache_free(hv_page_cache, page);
919 e_out:
920 *events_ = NULL;
921 *event_descs_ = NULL;
922 *event_long_descs_ = NULL;
923 return ret;
924 }
925
926 static ssize_t catalog_read(struct file *filp, struct kobject *kobj,
927 struct bin_attribute *bin_attr, char *buf,
928 loff_t offset, size_t count)
929 {
930 long hret;
931 ssize_t ret = 0;
932 size_t catalog_len = 0, catalog_page_len = 0;
933 loff_t page_offset = 0;
934 loff_t offset_in_page;
935 size_t copy_len;
936 uint64_t catalog_version_num = 0;
937 void *page = kmem_cache_alloc(hv_page_cache, GFP_USER);
938 struct hv_24x7_catalog_page_0 *page_0 = page;
939
940 if (!page)
941 return -ENOMEM;
942
943 hret = h_get_24x7_catalog_page(page, 0, 0);
944 if (hret) {
945 ret = -EIO;
946 goto e_free;
947 }
948
949 catalog_version_num = be64_to_cpu(page_0->version);
950 catalog_page_len = be32_to_cpu(page_0->length);
951 catalog_len = catalog_page_len * 4096;
952
953 page_offset = offset / 4096;
954 offset_in_page = offset % 4096;
955
956 if (page_offset >= catalog_page_len)
957 goto e_free;
958
959 if (page_offset != 0) {
960 hret = h_get_24x7_catalog_page(page, catalog_version_num,
961 page_offset);
962 if (hret) {
963 ret = -EIO;
964 goto e_free;
965 }
966 }
967
968 copy_len = 4096 - offset_in_page;
969 if (copy_len > count)
970 copy_len = count;
971
972 memcpy(buf, page+offset_in_page, copy_len);
973 ret = copy_len;
974
975 e_free:
976 if (hret)
977 pr_err("h_get_24x7_catalog_page(ver=%lld, page=%lld) failed:"
978 " rc=%ld\n",
979 catalog_version_num, page_offset, hret);
980 kmem_cache_free(hv_page_cache, page);
981
982 pr_devel("catalog_read: offset=%lld(%lld) count=%zu "
983 "catalog_len=%zu(%zu) => %zd\n", offset, page_offset,
984 count, catalog_len, catalog_page_len, ret);
985
986 return ret;
987 }
988
989 static ssize_t domains_show(struct device *dev, struct device_attribute *attr,
990 char *page)
991 {
992 int d, n, count = 0;
993 const char *str;
994
995 for (d = 0; d < HV_PERF_DOMAIN_MAX; d++) {
996 str = domain_name(d);
997 if (!str)
998 continue;
999
1000 n = sprintf(page, "%d: %s\n", d, str);
1001 if (n < 0)
1002 break;
1003
1004 count += n;
1005 page += n;
1006 }
1007 return count;
1008 }
1009
1010 #define PAGE_0_ATTR(_name, _fmt, _expr) \
1011 static ssize_t _name##_show(struct device *dev, \
1012 struct device_attribute *dev_attr, \
1013 char *buf) \
1014 { \
1015 long hret; \
1016 ssize_t ret = 0; \
1017 void *page = kmem_cache_alloc(hv_page_cache, GFP_USER); \
1018 struct hv_24x7_catalog_page_0 *page_0 = page; \
1019 if (!page) \
1020 return -ENOMEM; \
1021 hret = h_get_24x7_catalog_page(page, 0, 0); \
1022 if (hret) { \
1023 ret = -EIO; \
1024 goto e_free; \
1025 } \
1026 ret = sprintf(buf, _fmt, _expr); \
1027 e_free: \
1028 kmem_cache_free(hv_page_cache, page); \
1029 return ret; \
1030 } \
1031 static DEVICE_ATTR_RO(_name)
1032
1033 PAGE_0_ATTR(catalog_version, "%lld\n",
1034 (unsigned long long)be64_to_cpu(page_0->version));
1035 PAGE_0_ATTR(catalog_len, "%lld\n",
1036 (unsigned long long)be32_to_cpu(page_0->length) * 4096);
1037 static BIN_ATTR_RO(catalog, 0/* real length varies */);
1038 static DEVICE_ATTR_RO(domains);
1039
1040 static struct bin_attribute *if_bin_attrs[] = {
1041 &bin_attr_catalog,
1042 NULL,
1043 };
1044
1045 static struct attribute *if_attrs[] = {
1046 &dev_attr_catalog_len.attr,
1047 &dev_attr_catalog_version.attr,
1048 &dev_attr_domains.attr,
1049 NULL,
1050 };
1051
1052 static struct attribute_group if_group = {
1053 .name = "interface",
1054 .bin_attrs = if_bin_attrs,
1055 .attrs = if_attrs,
1056 };
1057
1058 static const struct attribute_group *attr_groups[] = {
1059 &format_group,
1060 &event_group,
1061 &event_desc_group,
1062 &event_long_desc_group,
1063 &if_group,
1064 NULL,
1065 };
1066
1067 /*
1068 * Start the process for a new H_GET_24x7_DATA hcall.
1069 */
1070 static void init_24x7_request(struct hv_24x7_request_buffer *request_buffer,
1071 struct hv_24x7_data_result_buffer *result_buffer)
1072 {
1073
1074 memset(request_buffer, 0, H24x7_DATA_BUFFER_SIZE);
1075 memset(result_buffer, 0, H24x7_DATA_BUFFER_SIZE);
1076
1077 request_buffer->interface_version = interface_version;
1078 /* memset above set request_buffer->num_requests to 0 */
1079 }
1080
1081 /*
1082 * Commit (i.e perform) the H_GET_24x7_DATA hcall using the data collected
1083 * by 'init_24x7_request()' and 'add_event_to_24x7_request()'.
1084 */
1085 static int make_24x7_request(struct hv_24x7_request_buffer *request_buffer,
1086 struct hv_24x7_data_result_buffer *result_buffer)
1087 {
1088 long ret;
1089
1090 /*
1091 * NOTE: Due to variable number of array elements in request and
1092 * result buffer(s), sizeof() is not reliable. Use the actual
1093 * allocated buffer size, H24x7_DATA_BUFFER_SIZE.
1094 */
1095 ret = plpar_hcall_norets(H_GET_24X7_DATA,
1096 virt_to_phys(request_buffer), H24x7_DATA_BUFFER_SIZE,
1097 virt_to_phys(result_buffer), H24x7_DATA_BUFFER_SIZE);
1098
1099 if (ret) {
1100 struct hv_24x7_request *req;
1101
1102 req = request_buffer->requests;
1103 pr_notice_ratelimited("hcall failed: [%d %#x %#x %d] => ret 0x%lx (%ld) detail=0x%x failing ix=%x\n",
1104 req->performance_domain, req->data_offset,
1105 req->starting_ix, req->starting_lpar_ix,
1106 ret, ret, result_buffer->detailed_rc,
1107 result_buffer->failing_request_ix);
1108 return -EIO;
1109 }
1110
1111 return 0;
1112 }
1113
1114 /*
1115 * Add the given @event to the next slot in the 24x7 request_buffer.
1116 *
1117 * Note that H_GET_24X7_DATA hcall allows reading several counters'
1118 * values in a single HCALL. We expect the caller to add events to the
1119 * request buffer one by one, make the HCALL and process the results.
1120 */
1121 static int add_event_to_24x7_request(struct perf_event *event,
1122 struct hv_24x7_request_buffer *request_buffer)
1123 {
1124 u16 idx;
1125 int i;
1126 size_t req_size;
1127 struct hv_24x7_request *req;
1128
1129 if (request_buffer->num_requests >=
1130 max_num_requests(request_buffer->interface_version)) {
1131 pr_devel("Too many requests for 24x7 HCALL %d\n",
1132 request_buffer->num_requests);
1133 return -EINVAL;
1134 }
1135
1136 switch (event_get_domain(event)) {
1137 case HV_PERF_DOMAIN_PHYS_CHIP:
1138 idx = event_get_chip(event);
1139 break;
1140 case HV_PERF_DOMAIN_PHYS_CORE:
1141 idx = event_get_core(event);
1142 break;
1143 default:
1144 idx = event_get_vcpu(event);
1145 }
1146
1147 req_size = H24x7_REQUEST_SIZE(request_buffer->interface_version);
1148
1149 i = request_buffer->num_requests++;
1150 req = (void *) request_buffer->requests + i * req_size;
1151
1152 req->performance_domain = event_get_domain(event);
1153 req->data_size = cpu_to_be16(8);
1154 req->data_offset = cpu_to_be32(event_get_offset(event));
1155 req->starting_lpar_ix = cpu_to_be16(event_get_lpar(event));
1156 req->max_num_lpars = cpu_to_be16(1);
1157 req->starting_ix = cpu_to_be16(idx);
1158 req->max_ix = cpu_to_be16(1);
1159
1160 if (request_buffer->interface_version > 1) {
1161 if (domain_needs_aggregation(req->performance_domain))
1162 req->max_num_thread_groups = -1;
1163 else if (req->performance_domain != HV_PERF_DOMAIN_PHYS_CHIP) {
1164 req->starting_thread_group_ix = idx % 2;
1165 req->max_num_thread_groups = 1;
1166 }
1167 }
1168
1169 return 0;
1170 }
1171
1172 /**
1173 * get_count_from_result - get event count from all result elements in result
1174 *
1175 * If the event corresponding to this result needs aggregation of the result
1176 * element values, then this function does that.
1177 *
1178 * @event: Event associated with @res.
1179 * @resb: Result buffer containing @res.
1180 * @res: Result to work on.
1181 * @countp: Output variable containing the event count.
1182 * @next: Optional output variable pointing to the next result in @resb.
1183 */
1184 static int get_count_from_result(struct perf_event *event,
1185 struct hv_24x7_data_result_buffer *resb,
1186 struct hv_24x7_result *res, u64 *countp,
1187 struct hv_24x7_result **next)
1188 {
1189 u16 num_elements = be16_to_cpu(res->num_elements_returned);
1190 u16 data_size = be16_to_cpu(res->result_element_data_size);
1191 unsigned int data_offset;
1192 void *element_data;
1193 int i;
1194 u64 count;
1195
1196 /*
1197 * We can bail out early if the result is empty.
1198 */
1199 if (!num_elements) {
1200 pr_debug("Result of request %hhu is empty, nothing to do\n",
1201 res->result_ix);
1202
1203 if (next)
1204 *next = (struct hv_24x7_result *) res->elements;
1205
1206 return -ENODATA;
1207 }
1208
1209 /*
1210 * Since we always specify 1 as the maximum for the smallest resource
1211 * we're requesting, there should to be only one element per result.
1212 * Except when an event needs aggregation, in which case there are more.
1213 */
1214 if (num_elements != 1 &&
1215 !domain_needs_aggregation(event_get_domain(event))) {
1216 pr_err("Error: result of request %hhu has %hu elements\n",
1217 res->result_ix, num_elements);
1218
1219 return -EIO;
1220 }
1221
1222 if (data_size != sizeof(u64)) {
1223 pr_debug("Error: result of request %hhu has data of %hu bytes\n",
1224 res->result_ix, data_size);
1225
1226 return -ENOTSUPP;
1227 }
1228
1229 if (resb->interface_version == 1)
1230 data_offset = offsetof(struct hv_24x7_result_element_v1,
1231 element_data);
1232 else
1233 data_offset = offsetof(struct hv_24x7_result_element_v2,
1234 element_data);
1235
1236 /* Go through the result elements in the result. */
1237 for (i = count = 0, element_data = res->elements + data_offset;
1238 i < num_elements;
1239 i++, element_data += data_size + data_offset)
1240 count += be64_to_cpu(*((u64 *) element_data));
1241
1242 *countp = count;
1243
1244 /* The next result is after the last result element. */
1245 if (next)
1246 *next = element_data - data_offset;
1247
1248 return 0;
1249 }
1250
1251 static int single_24x7_request(struct perf_event *event, u64 *count)
1252 {
1253 int ret;
1254 struct hv_24x7_request_buffer *request_buffer;
1255 struct hv_24x7_data_result_buffer *result_buffer;
1256
1257 BUILD_BUG_ON(sizeof(*request_buffer) > 4096);
1258 BUILD_BUG_ON(sizeof(*result_buffer) > 4096);
1259
1260 request_buffer = (void *)get_cpu_var(hv_24x7_reqb);
1261 result_buffer = (void *)get_cpu_var(hv_24x7_resb);
1262
1263 init_24x7_request(request_buffer, result_buffer);
1264
1265 ret = add_event_to_24x7_request(event, request_buffer);
1266 if (ret)
1267 goto out;
1268
1269 ret = make_24x7_request(request_buffer, result_buffer);
1270 if (ret)
1271 goto out;
1272
1273 /* process result from hcall */
1274 ret = get_count_from_result(event, result_buffer,
1275 result_buffer->results, count, NULL);
1276
1277 out:
1278 put_cpu_var(hv_24x7_reqb);
1279 put_cpu_var(hv_24x7_resb);
1280 return ret;
1281 }
1282
1283
1284 static int h_24x7_event_init(struct perf_event *event)
1285 {
1286 struct hv_perf_caps caps;
1287 unsigned domain;
1288 unsigned long hret;
1289 u64 ct;
1290
1291 /* Not our event */
1292 if (event->attr.type != event->pmu->type)
1293 return -ENOENT;
1294
1295 /* Unused areas must be 0 */
1296 if (event_get_reserved1(event) ||
1297 event_get_reserved2(event) ||
1298 event_get_reserved3(event)) {
1299 pr_devel("reserved set when forbidden 0x%llx(0x%llx) 0x%llx(0x%llx) 0x%llx(0x%llx)\n",
1300 event->attr.config,
1301 event_get_reserved1(event),
1302 event->attr.config1,
1303 event_get_reserved2(event),
1304 event->attr.config2,
1305 event_get_reserved3(event));
1306 return -EINVAL;
1307 }
1308
1309 /* no branch sampling */
1310 if (has_branch_stack(event))
1311 return -EOPNOTSUPP;
1312
1313 /* offset must be 8 byte aligned */
1314 if (event_get_offset(event) % 8) {
1315 pr_devel("bad alignment\n");
1316 return -EINVAL;
1317 }
1318
1319 domain = event_get_domain(event);
1320 if (domain >= HV_PERF_DOMAIN_MAX) {
1321 pr_devel("invalid domain %d\n", domain);
1322 return -EINVAL;
1323 }
1324
1325 hret = hv_perf_caps_get(&caps);
1326 if (hret) {
1327 pr_devel("could not get capabilities: rc=%ld\n", hret);
1328 return -EIO;
1329 }
1330
1331 /* Physical domains & other lpars require extra capabilities */
1332 if (!caps.collect_privileged && (is_physical_domain(domain) ||
1333 (event_get_lpar(event) != event_get_lpar_max()))) {
1334 pr_devel("hv permissions disallow: is_physical_domain:%d, lpar=0x%llx\n",
1335 is_physical_domain(domain),
1336 event_get_lpar(event));
1337 return -EACCES;
1338 }
1339
1340 /* Get the initial value of the counter for this event */
1341 if (single_24x7_request(event, &ct)) {
1342 pr_devel("test hcall failed\n");
1343 return -EIO;
1344 }
1345 (void)local64_xchg(&event->hw.prev_count, ct);
1346
1347 return 0;
1348 }
1349
1350 static u64 h_24x7_get_value(struct perf_event *event)
1351 {
1352 u64 ct;
1353
1354 if (single_24x7_request(event, &ct))
1355 /* We checked this in event init, shouldn't fail here... */
1356 return 0;
1357
1358 return ct;
1359 }
1360
1361 static void update_event_count(struct perf_event *event, u64 now)
1362 {
1363 s64 prev;
1364
1365 prev = local64_xchg(&event->hw.prev_count, now);
1366 local64_add(now - prev, &event->count);
1367 }
1368
1369 static void h_24x7_event_read(struct perf_event *event)
1370 {
1371 u64 now;
1372 struct hv_24x7_request_buffer *request_buffer;
1373 struct hv_24x7_hw *h24x7hw;
1374 int txn_flags;
1375
1376 txn_flags = __this_cpu_read(hv_24x7_txn_flags);
1377
1378 /*
1379 * If in a READ transaction, add this counter to the list of
1380 * counters to read during the next HCALL (i.e commit_txn()).
1381 * If not in a READ transaction, go ahead and make the HCALL
1382 * to read this counter by itself.
1383 */
1384
1385 if (txn_flags & PERF_PMU_TXN_READ) {
1386 int i;
1387 int ret;
1388
1389 if (__this_cpu_read(hv_24x7_txn_err))
1390 return;
1391
1392 request_buffer = (void *)get_cpu_var(hv_24x7_reqb);
1393
1394 ret = add_event_to_24x7_request(event, request_buffer);
1395 if (ret) {
1396 __this_cpu_write(hv_24x7_txn_err, ret);
1397 } else {
1398 /*
1399 * Associate the event with the HCALL request index,
1400 * so ->commit_txn() can quickly find/update count.
1401 */
1402 i = request_buffer->num_requests - 1;
1403
1404 h24x7hw = &get_cpu_var(hv_24x7_hw);
1405 h24x7hw->events[i] = event;
1406 put_cpu_var(h24x7hw);
1407 /*
1408 * Clear the event count so we can compute the _change_
1409 * in the 24x7 raw counter value at the end of the txn.
1410 *
1411 * Note that we could alternatively read the 24x7 value
1412 * now and save its value in event->hw.prev_count. But
1413 * that would require issuing a hcall, which would then
1414 * defeat the purpose of using the txn interface.
1415 */
1416 local64_set(&event->count, 0);
1417 }
1418
1419 put_cpu_var(hv_24x7_reqb);
1420 } else {
1421 now = h_24x7_get_value(event);
1422 update_event_count(event, now);
1423 }
1424 }
1425
1426 static void h_24x7_event_start(struct perf_event *event, int flags)
1427 {
1428 if (flags & PERF_EF_RELOAD)
1429 local64_set(&event->hw.prev_count, h_24x7_get_value(event));
1430 }
1431
1432 static void h_24x7_event_stop(struct perf_event *event, int flags)
1433 {
1434 h_24x7_event_read(event);
1435 }
1436
1437 static int h_24x7_event_add(struct perf_event *event, int flags)
1438 {
1439 if (flags & PERF_EF_START)
1440 h_24x7_event_start(event, flags);
1441
1442 return 0;
1443 }
1444
1445 /*
1446 * 24x7 counters only support READ transactions. They are
1447 * always counting and dont need/support ADD transactions.
1448 * Cache the flags, but otherwise ignore transactions that
1449 * are not PERF_PMU_TXN_READ.
1450 */
1451 static void h_24x7_event_start_txn(struct pmu *pmu, unsigned int flags)
1452 {
1453 struct hv_24x7_request_buffer *request_buffer;
1454 struct hv_24x7_data_result_buffer *result_buffer;
1455
1456 /* We should not be called if we are already in a txn */
1457 WARN_ON_ONCE(__this_cpu_read(hv_24x7_txn_flags));
1458
1459 __this_cpu_write(hv_24x7_txn_flags, flags);
1460 if (flags & ~PERF_PMU_TXN_READ)
1461 return;
1462
1463 request_buffer = (void *)get_cpu_var(hv_24x7_reqb);
1464 result_buffer = (void *)get_cpu_var(hv_24x7_resb);
1465
1466 init_24x7_request(request_buffer, result_buffer);
1467
1468 put_cpu_var(hv_24x7_resb);
1469 put_cpu_var(hv_24x7_reqb);
1470 }
1471
1472 /*
1473 * Clean up transaction state.
1474 *
1475 * NOTE: Ignore state of request and result buffers for now.
1476 * We will initialize them during the next read/txn.
1477 */
1478 static void reset_txn(void)
1479 {
1480 __this_cpu_write(hv_24x7_txn_flags, 0);
1481 __this_cpu_write(hv_24x7_txn_err, 0);
1482 }
1483
1484 /*
1485 * 24x7 counters only support READ transactions. They are always counting
1486 * and dont need/support ADD transactions. Clear ->txn_flags but otherwise
1487 * ignore transactions that are not of type PERF_PMU_TXN_READ.
1488 *
1489 * For READ transactions, submit all pending 24x7 requests (i.e requests
1490 * that were queued by h_24x7_event_read()), to the hypervisor and update
1491 * the event counts.
1492 */
1493 static int h_24x7_event_commit_txn(struct pmu *pmu)
1494 {
1495 struct hv_24x7_request_buffer *request_buffer;
1496 struct hv_24x7_data_result_buffer *result_buffer;
1497 struct hv_24x7_result *res, *next_res;
1498 u64 count;
1499 int i, ret, txn_flags;
1500 struct hv_24x7_hw *h24x7hw;
1501
1502 txn_flags = __this_cpu_read(hv_24x7_txn_flags);
1503 WARN_ON_ONCE(!txn_flags);
1504
1505 ret = 0;
1506 if (txn_flags & ~PERF_PMU_TXN_READ)
1507 goto out;
1508
1509 ret = __this_cpu_read(hv_24x7_txn_err);
1510 if (ret)
1511 goto out;
1512
1513 request_buffer = (void *)get_cpu_var(hv_24x7_reqb);
1514 result_buffer = (void *)get_cpu_var(hv_24x7_resb);
1515
1516 ret = make_24x7_request(request_buffer, result_buffer);
1517 if (ret)
1518 goto put_reqb;
1519
1520 h24x7hw = &get_cpu_var(hv_24x7_hw);
1521
1522 /* Go through results in the result buffer to update event counts. */
1523 for (i = 0, res = result_buffer->results;
1524 i < result_buffer->num_results; i++, res = next_res) {
1525 struct perf_event *event = h24x7hw->events[res->result_ix];
1526
1527 ret = get_count_from_result(event, result_buffer, res, &count,
1528 &next_res);
1529 if (ret)
1530 break;
1531
1532 update_event_count(event, count);
1533 }
1534
1535 put_cpu_var(hv_24x7_hw);
1536
1537 put_reqb:
1538 put_cpu_var(hv_24x7_resb);
1539 put_cpu_var(hv_24x7_reqb);
1540 out:
1541 reset_txn();
1542 return ret;
1543 }
1544
1545 /*
1546 * 24x7 counters only support READ transactions. They are always counting
1547 * and dont need/support ADD transactions. However, regardless of type
1548 * of transaction, all we need to do is cleanup, so we don't have to check
1549 * the type of transaction.
1550 */
1551 static void h_24x7_event_cancel_txn(struct pmu *pmu)
1552 {
1553 WARN_ON_ONCE(!__this_cpu_read(hv_24x7_txn_flags));
1554 reset_txn();
1555 }
1556
1557 static struct pmu h_24x7_pmu = {
1558 .task_ctx_nr = perf_invalid_context,
1559
1560 .name = "hv_24x7",
1561 .attr_groups = attr_groups,
1562 .event_init = h_24x7_event_init,
1563 .add = h_24x7_event_add,
1564 .del = h_24x7_event_stop,
1565 .start = h_24x7_event_start,
1566 .stop = h_24x7_event_stop,
1567 .read = h_24x7_event_read,
1568 .start_txn = h_24x7_event_start_txn,
1569 .commit_txn = h_24x7_event_commit_txn,
1570 .cancel_txn = h_24x7_event_cancel_txn,
1571 .capabilities = PERF_PMU_CAP_NO_EXCLUDE,
1572 };
1573
1574 static int hv_24x7_init(void)
1575 {
1576 int r;
1577 unsigned long hret;
1578 struct hv_perf_caps caps;
1579
1580 if (!firmware_has_feature(FW_FEATURE_LPAR)) {
1581 pr_debug("not a virtualized system, not enabling\n");
1582 return -ENODEV;
1583 } else if (!cur_cpu_spec->oprofile_cpu_type)
1584 return -ENODEV;
1585
1586 /* POWER8 only supports v1, while POWER9 only supports v2. */
1587 if (!strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc64/power8"))
1588 interface_version = 1;
1589 else {
1590 interface_version = 2;
1591
1592 /* SMT8 in POWER9 needs to aggregate result elements. */
1593 if (threads_per_core == 8)
1594 aggregate_result_elements = true;
1595 }
1596
1597 hret = hv_perf_caps_get(&caps);
1598 if (hret) {
1599 pr_debug("could not obtain capabilities, not enabling, rc=%ld\n",
1600 hret);
1601 return -ENODEV;
1602 }
1603
1604 hv_page_cache = kmem_cache_create("hv-page-4096", 4096, 4096, 0, NULL);
1605 if (!hv_page_cache)
1606 return -ENOMEM;
1607
1608 /* sampling not supported */
1609 h_24x7_pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1610
1611 r = create_events_from_catalog(&event_group.attrs,
1612 &event_desc_group.attrs,
1613 &event_long_desc_group.attrs);
1614
1615 if (r)
1616 return r;
1617
1618 r = perf_pmu_register(&h_24x7_pmu, h_24x7_pmu.name, -1);
1619 if (r)
1620 return r;
1621
1622 return 0;
1623 }
1624
1625 device_initcall(hv_24x7_init);