]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/perf/power8-pmu.c
9958ba8bf0d27fca74a182546170a487edb88346
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / perf / power8-pmu.c
1 /*
2 * Performance counter support for POWER8 processors.
3 *
4 * Copyright 2009 Paul Mackerras, IBM Corporation.
5 * Copyright 2013 Michael Ellerman, IBM Corporation.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; either version
10 * 2 of the License, or (at your option) any later version.
11 */
12
13 #define pr_fmt(fmt) "power8-pmu: " fmt
14
15 #include <linux/kernel.h>
16 #include <linux/perf_event.h>
17 #include <asm/firmware.h>
18 #include <asm/cputable.h>
19
20
21 /*
22 * Some power8 event codes.
23 */
24 #define PM_CYC 0x0001e
25 #define PM_GCT_NOSLOT_CYC 0x100f8
26 #define PM_CMPLU_STALL 0x4000a
27 #define PM_INST_CMPL 0x00002
28 #define PM_BRU_FIN 0x10068
29 #define PM_BR_MPRED_CMPL 0x400f6
30
31 /* All L1 D cache load references counted at finish, gated by reject */
32 #define PM_LD_REF_L1 0x100ee
33 /* Load Missed L1 */
34 #define PM_LD_MISS_L1 0x3e054
35 /* Store Missed L1 */
36 #define PM_ST_MISS_L1 0x300f0
37 /* L1 cache data prefetches */
38 #define PM_L1_PREF 0x0d8b8
39 /* Instruction fetches from L1 */
40 #define PM_INST_FROM_L1 0x04080
41 /* Demand iCache Miss */
42 #define PM_L1_ICACHE_MISS 0x200fd
43 /* Instruction Demand sectors wriittent into IL1 */
44 #define PM_L1_DEMAND_WRITE 0x0408c
45 /* Instruction prefetch written into IL1 */
46 #define PM_IC_PREF_WRITE 0x0408e
47 /* The data cache was reloaded from local core's L3 due to a demand load */
48 #define PM_DATA_FROM_L3 0x4c042
49 /* Demand LD - L3 Miss (not L2 hit and not L3 hit) */
50 #define PM_DATA_FROM_L3MISS 0x300fe
51 /* All successful D-side store dispatches for this thread */
52 #define PM_L2_ST 0x17080
53 /* All successful D-side store dispatches for this thread that were L2 Miss */
54 #define PM_L2_ST_MISS 0x17082
55 /* Total HW L3 prefetches(Load+store) */
56 #define PM_L3_PREF_ALL 0x4e052
57 /* Data PTEG reload */
58 #define PM_DTLB_MISS 0x300fc
59 /* ITLB Reloaded */
60 #define PM_ITLB_MISS 0x400fc
61
62
63 /*
64 * Raw event encoding for POWER8:
65 *
66 * 60 56 52 48 44 40 36 32
67 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
68 * | | [ ] [ thresh_cmp ] [ thresh_ctl ]
69 * | | | |
70 * | | *- IFM (Linux) thresh start/stop OR FAB match -*
71 * | *- BHRB (Linux)
72 * *- EBB (Linux)
73 *
74 * 28 24 20 16 12 8 4 0
75 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
76 * [ ] [ sample ] [cache] [ pmc ] [unit ] c m [ pmcxsel ]
77 * | | | | |
78 * | | | | *- mark
79 * | | *- L1/L2/L3 cache_sel |
80 * | | |
81 * | *- sampling mode for marked events *- combine
82 * |
83 * *- thresh_sel
84 *
85 * Below uses IBM bit numbering.
86 *
87 * MMCR1[x:y] = unit (PMCxUNIT)
88 * MMCR1[x] = combine (PMCxCOMB)
89 *
90 * if pmc == 3 and unit == 0 and pmcxsel[0:6] == 0b0101011
91 * # PM_MRK_FAB_RSP_MATCH
92 * MMCR1[20:27] = thresh_ctl (FAB_CRESP_MATCH / FAB_TYPE_MATCH)
93 * else if pmc == 4 and unit == 0xf and pmcxsel[0:6] == 0b0101001
94 * # PM_MRK_FAB_RSP_MATCH_CYC
95 * MMCR1[20:27] = thresh_ctl (FAB_CRESP_MATCH / FAB_TYPE_MATCH)
96 * else
97 * MMCRA[48:55] = thresh_ctl (THRESH START/END)
98 *
99 * if thresh_sel:
100 * MMCRA[45:47] = thresh_sel
101 *
102 * if thresh_cmp:
103 * MMCRA[22:24] = thresh_cmp[0:2]
104 * MMCRA[25:31] = thresh_cmp[3:9]
105 *
106 * if unit == 6 or unit == 7
107 * MMCRC[53:55] = cache_sel[1:3] (L2EVENT_SEL)
108 * else if unit == 8 or unit == 9:
109 * if cache_sel[0] == 0: # L3 bank
110 * MMCRC[47:49] = cache_sel[1:3] (L3EVENT_SEL0)
111 * else if cache_sel[0] == 1:
112 * MMCRC[50:51] = cache_sel[2:3] (L3EVENT_SEL1)
113 * else if cache_sel[1]: # L1 event
114 * MMCR1[16] = cache_sel[2]
115  * MMCR1[17] = cache_sel[3]
116 *
117 * if mark:
118 * MMCRA[63] = 1 (SAMPLE_ENABLE)
119 * MMCRA[57:59] = sample[0:2] (RAND_SAMP_ELIG)
120  * MMCRA[61:62] = sample[3:4] (RAND_SAMP_MODE)
121 *
122 * if EBB and BHRB:
123 * MMCRA[32:33] = IFM
124 *
125 */
126
127 #define EVENT_EBB_MASK 1ull
128 #define EVENT_EBB_SHIFT PERF_EVENT_CONFIG_EBB_SHIFT
129 #define EVENT_BHRB_MASK 1ull
130 #define EVENT_BHRB_SHIFT 62
131 #define EVENT_WANTS_BHRB (EVENT_BHRB_MASK << EVENT_BHRB_SHIFT)
132 #define EVENT_IFM_MASK 3ull
133 #define EVENT_IFM_SHIFT 60
134 #define EVENT_THR_CMP_SHIFT 40 /* Threshold CMP value */
135 #define EVENT_THR_CMP_MASK 0x3ff
136 #define EVENT_THR_CTL_SHIFT 32 /* Threshold control value (start/stop) */
137 #define EVENT_THR_CTL_MASK 0xffull
138 #define EVENT_THR_SEL_SHIFT 29 /* Threshold select value */
139 #define EVENT_THR_SEL_MASK 0x7
140 #define EVENT_THRESH_SHIFT 29 /* All threshold bits */
141 #define EVENT_THRESH_MASK 0x1fffffull
142 #define EVENT_SAMPLE_SHIFT 24 /* Sampling mode & eligibility */
143 #define EVENT_SAMPLE_MASK 0x1f
144 #define EVENT_CACHE_SEL_SHIFT 20 /* L2/L3 cache select */
145 #define EVENT_CACHE_SEL_MASK 0xf
146 #define EVENT_IS_L1 (4 << EVENT_CACHE_SEL_SHIFT)
147 #define EVENT_PMC_SHIFT 16 /* PMC number (1-based) */
148 #define EVENT_PMC_MASK 0xf
149 #define EVENT_UNIT_SHIFT 12 /* Unit */
150 #define EVENT_UNIT_MASK 0xf
151 #define EVENT_COMBINE_SHIFT 11 /* Combine bit */
152 #define EVENT_COMBINE_MASK 0x1
153 #define EVENT_MARKED_SHIFT 8 /* Marked bit */
154 #define EVENT_MARKED_MASK 0x1
155 #define EVENT_IS_MARKED (EVENT_MARKED_MASK << EVENT_MARKED_SHIFT)
156 #define EVENT_PSEL_MASK 0xff /* PMCxSEL value */
157
158 /* Bits defined by Linux */
159 #define EVENT_LINUX_MASK \
160 ((EVENT_EBB_MASK << EVENT_EBB_SHIFT) | \
161 (EVENT_BHRB_MASK << EVENT_BHRB_SHIFT) | \
162 (EVENT_IFM_MASK << EVENT_IFM_SHIFT))
163
164 #define EVENT_VALID_MASK \
165 ((EVENT_THRESH_MASK << EVENT_THRESH_SHIFT) | \
166 (EVENT_SAMPLE_MASK << EVENT_SAMPLE_SHIFT) | \
167 (EVENT_CACHE_SEL_MASK << EVENT_CACHE_SEL_SHIFT) | \
168 (EVENT_PMC_MASK << EVENT_PMC_SHIFT) | \
169 (EVENT_UNIT_MASK << EVENT_UNIT_SHIFT) | \
170 (EVENT_COMBINE_MASK << EVENT_COMBINE_SHIFT) | \
171 (EVENT_MARKED_MASK << EVENT_MARKED_SHIFT) | \
172 EVENT_LINUX_MASK | \
173 EVENT_PSEL_MASK)
174
175 /* MMCRA IFM bits - POWER8 */
176 #define POWER8_MMCRA_IFM1 0x0000000040000000UL
177 #define POWER8_MMCRA_IFM2 0x0000000080000000UL
178 #define POWER8_MMCRA_IFM3 0x00000000C0000000UL
179
180 #define ONLY_PLM \
181 (PERF_SAMPLE_BRANCH_USER |\
182 PERF_SAMPLE_BRANCH_KERNEL |\
183 PERF_SAMPLE_BRANCH_HV)
184
185 /*
186 * Layout of constraint bits:
187 *
188 * 60 56 52 48 44 40 36 32
189 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
190 * [ fab_match ] [ thresh_cmp ] [ thresh_ctl ] [ ]
191 * |
192 * thresh_sel -*
193 *
194 * 28 24 20 16 12 8 4 0
195 * | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - | - - - - |
196 * [ ] | [ ] [ sample ] [ ] [6] [5] [4] [3] [2] [1]
197 * | | | |
198 * BHRB IFM -* | | | Count of events for each PMC.
199 * EBB -* | | p1, p2, p3, p4, p5, p6.
200 * L1 I/D qualifier -* |
201 * nc - number of counters -*
202 *
203 * The PMC fields P1..P6, and NC, are adder fields. As we accumulate constraints
204 * we want the low bit of each field to be added to any existing value.
205 *
206 * Everything else is a value field.
207 */
208
209 #define CNST_FAB_MATCH_VAL(v) (((v) & EVENT_THR_CTL_MASK) << 56)
210 #define CNST_FAB_MATCH_MASK CNST_FAB_MATCH_VAL(EVENT_THR_CTL_MASK)
211
212 /* We just throw all the threshold bits into the constraint */
213 #define CNST_THRESH_VAL(v) (((v) & EVENT_THRESH_MASK) << 32)
214 #define CNST_THRESH_MASK CNST_THRESH_VAL(EVENT_THRESH_MASK)
215
216 #define CNST_EBB_VAL(v) (((v) & EVENT_EBB_MASK) << 24)
217 #define CNST_EBB_MASK CNST_EBB_VAL(EVENT_EBB_MASK)
218
219 #define CNST_IFM_VAL(v) (((v) & EVENT_IFM_MASK) << 25)
220 #define CNST_IFM_MASK CNST_IFM_VAL(EVENT_IFM_MASK)
221
222 #define CNST_L1_QUAL_VAL(v) (((v) & 3) << 22)
223 #define CNST_L1_QUAL_MASK CNST_L1_QUAL_VAL(3)
224
225 #define CNST_SAMPLE_VAL(v) (((v) & EVENT_SAMPLE_MASK) << 16)
226 #define CNST_SAMPLE_MASK CNST_SAMPLE_VAL(EVENT_SAMPLE_MASK)
227
228 /*
229 * For NC we are counting up to 4 events. This requires three bits, and we need
230 * the fifth event to overflow and set the 4th bit. To achieve that we bias the
231 * fields by 3 in test_adder.
232 */
233 #define CNST_NC_SHIFT 12
234 #define CNST_NC_VAL (1 << CNST_NC_SHIFT)
235 #define CNST_NC_MASK (8 << CNST_NC_SHIFT)
236 #define POWER8_TEST_ADDER (3 << CNST_NC_SHIFT)
237
238 /*
239 * For the per-PMC fields we have two bits. The low bit is added, so if two
240 * events ask for the same PMC the sum will overflow, setting the high bit,
241 * indicating an error. So our mask sets the high bit.
242 */
243 #define CNST_PMC_SHIFT(pmc) ((pmc - 1) * 2)
244 #define CNST_PMC_VAL(pmc) (1 << CNST_PMC_SHIFT(pmc))
245 #define CNST_PMC_MASK(pmc) (2 << CNST_PMC_SHIFT(pmc))
246
247 /* Our add_fields is defined as: */
248 #define POWER8_ADD_FIELDS \
249 CNST_PMC_VAL(1) | CNST_PMC_VAL(2) | CNST_PMC_VAL(3) | \
250 CNST_PMC_VAL(4) | CNST_PMC_VAL(5) | CNST_PMC_VAL(6) | CNST_NC_VAL
251
252
253 /* Bits in MMCR1 for POWER8 */
254 #define MMCR1_UNIT_SHIFT(pmc) (60 - (4 * ((pmc) - 1)))
255 #define MMCR1_COMBINE_SHIFT(pmc) (35 - ((pmc) - 1))
256 #define MMCR1_PMCSEL_SHIFT(pmc) (24 - (((pmc) - 1)) * 8)
257 #define MMCR1_FAB_SHIFT 36
258 #define MMCR1_DC_QUAL_SHIFT 47
259 #define MMCR1_IC_QUAL_SHIFT 46
260
261 /* Bits in MMCRA for POWER8 */
262 #define MMCRA_SAMP_MODE_SHIFT 1
263 #define MMCRA_SAMP_ELIG_SHIFT 4
264 #define MMCRA_THR_CTL_SHIFT 8
265 #define MMCRA_THR_SEL_SHIFT 16
266 #define MMCRA_THR_CMP_SHIFT 32
267 #define MMCRA_SDAR_MODE_TLB (1ull << 42)
268 #define MMCRA_IFM_SHIFT 30
269
270 /* Bits in MMCR2 for POWER8 */
271 #define MMCR2_FCS(pmc) (1ull << (63 - (((pmc) - 1) * 9)))
272 #define MMCR2_FCP(pmc) (1ull << (62 - (((pmc) - 1) * 9)))
273 #define MMCR2_FCH(pmc) (1ull << (57 - (((pmc) - 1) * 9)))
274
275
276 static inline bool event_is_fab_match(u64 event)
277 {
278 /* Only check pmc, unit and pmcxsel, ignore the edge bit (0) */
279 event &= 0xff0fe;
280
281 /* PM_MRK_FAB_RSP_MATCH & PM_MRK_FAB_RSP_MATCH_CYC */
282 return (event == 0x30056 || event == 0x4f052);
283 }
284
285 static int power8_get_constraint(u64 event, unsigned long *maskp, unsigned long *valp)
286 {
287 unsigned int unit, pmc, cache, ebb;
288 unsigned long mask, value;
289
290 mask = value = 0;
291
292 if (event & ~EVENT_VALID_MASK)
293 return -1;
294
295 pmc = (event >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
296 unit = (event >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
297 cache = (event >> EVENT_CACHE_SEL_SHIFT) & EVENT_CACHE_SEL_MASK;
298 ebb = (event >> EVENT_EBB_SHIFT) & EVENT_EBB_MASK;
299
300 if (pmc) {
301 u64 base_event;
302
303 if (pmc > 6)
304 return -1;
305
306 /* Ignore Linux defined bits when checking event below */
307 base_event = event & ~EVENT_LINUX_MASK;
308
309 if (pmc >= 5 && base_event != 0x500fa && base_event != 0x600f4)
310 return -1;
311
312 mask |= CNST_PMC_MASK(pmc);
313 value |= CNST_PMC_VAL(pmc);
314 }
315
316 if (pmc <= 4) {
317 /*
318 * Add to number of counters in use. Note this includes events with
319 * a PMC of 0 - they still need a PMC, it's just assigned later.
320 * Don't count events on PMC 5 & 6, there is only one valid event
321 * on each of those counters, and they are handled above.
322 */
323 mask |= CNST_NC_MASK;
324 value |= CNST_NC_VAL;
325 }
326
327 if (unit >= 6 && unit <= 9) {
328 /*
329 * L2/L3 events contain a cache selector field, which is
330 * supposed to be programmed into MMCRC. However MMCRC is only
331 * HV writable, and there is no API for guest kernels to modify
332 * it. The solution is for the hypervisor to initialise the
333 * field to zeroes, and for us to only ever allow events that
334 * have a cache selector of zero. The bank selector (bit 3) is
335 * irrelevant, as long as the rest of the value is 0.
336 */
337 if (cache & 0x7)
338 return -1;
339
340 } else if (event & EVENT_IS_L1) {
341 mask |= CNST_L1_QUAL_MASK;
342 value |= CNST_L1_QUAL_VAL(cache);
343 }
344
345 if (event & EVENT_IS_MARKED) {
346 mask |= CNST_SAMPLE_MASK;
347 value |= CNST_SAMPLE_VAL(event >> EVENT_SAMPLE_SHIFT);
348 }
349
350 /*
351 * Special case for PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
352 * the threshold control bits are used for the match value.
353 */
354 if (event_is_fab_match(event)) {
355 mask |= CNST_FAB_MATCH_MASK;
356 value |= CNST_FAB_MATCH_VAL(event >> EVENT_THR_CTL_SHIFT);
357 } else {
358 /*
359 * Check the mantissa upper two bits are not zero, unless the
360 * exponent is also zero. See the THRESH_CMP_MANTISSA doc.
361 */
362 unsigned int cmp, exp;
363
364 cmp = (event >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
365 exp = cmp >> 7;
366
367 if (exp && (cmp & 0x60) == 0)
368 return -1;
369
370 mask |= CNST_THRESH_MASK;
371 value |= CNST_THRESH_VAL(event >> EVENT_THRESH_SHIFT);
372 }
373
374 if (!pmc && ebb)
375 /* EBB events must specify the PMC */
376 return -1;
377
378 if (event & EVENT_WANTS_BHRB) {
379 if (!ebb)
380 /* Only EBB events can request BHRB */
381 return -1;
382
383 mask |= CNST_IFM_MASK;
384 value |= CNST_IFM_VAL(event >> EVENT_IFM_SHIFT);
385 }
386
387 /*
388 * All events must agree on EBB, either all request it or none.
389 * EBB events are pinned & exclusive, so this should never actually
390 * hit, but we leave it as a fallback in case.
391 */
392 mask |= CNST_EBB_VAL(ebb);
393 value |= CNST_EBB_MASK;
394
395 *maskp = mask;
396 *valp = value;
397
398 return 0;
399 }
400
401 static int power8_compute_mmcr(u64 event[], int n_ev,
402 unsigned int hwc[], unsigned long mmcr[],
403 struct perf_event *pevents[])
404 {
405 unsigned long mmcra, mmcr1, mmcr2, unit, combine, psel, cache, val;
406 unsigned int pmc, pmc_inuse;
407 int i;
408
409 pmc_inuse = 0;
410
411 /* First pass to count resource use */
412 for (i = 0; i < n_ev; ++i) {
413 pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
414 if (pmc)
415 pmc_inuse |= 1 << pmc;
416 }
417
418 /* In continous sampling mode, update SDAR on TLB miss */
419 mmcra = MMCRA_SDAR_MODE_TLB;
420 mmcr1 = mmcr2 = 0;
421
422 /* Second pass: assign PMCs, set all MMCR1 fields */
423 for (i = 0; i < n_ev; ++i) {
424 pmc = (event[i] >> EVENT_PMC_SHIFT) & EVENT_PMC_MASK;
425 unit = (event[i] >> EVENT_UNIT_SHIFT) & EVENT_UNIT_MASK;
426 combine = (event[i] >> EVENT_COMBINE_SHIFT) & EVENT_COMBINE_MASK;
427 psel = event[i] & EVENT_PSEL_MASK;
428
429 if (!pmc) {
430 for (pmc = 1; pmc <= 4; ++pmc) {
431 if (!(pmc_inuse & (1 << pmc)))
432 break;
433 }
434
435 pmc_inuse |= 1 << pmc;
436 }
437
438 if (pmc <= 4) {
439 mmcr1 |= unit << MMCR1_UNIT_SHIFT(pmc);
440 mmcr1 |= combine << MMCR1_COMBINE_SHIFT(pmc);
441 mmcr1 |= psel << MMCR1_PMCSEL_SHIFT(pmc);
442 }
443
444 if (event[i] & EVENT_IS_L1) {
445 cache = event[i] >> EVENT_CACHE_SEL_SHIFT;
446 mmcr1 |= (cache & 1) << MMCR1_IC_QUAL_SHIFT;
447 cache >>= 1;
448 mmcr1 |= (cache & 1) << MMCR1_DC_QUAL_SHIFT;
449 }
450
451 if (event[i] & EVENT_IS_MARKED) {
452 mmcra |= MMCRA_SAMPLE_ENABLE;
453
454 val = (event[i] >> EVENT_SAMPLE_SHIFT) & EVENT_SAMPLE_MASK;
455 if (val) {
456 mmcra |= (val & 3) << MMCRA_SAMP_MODE_SHIFT;
457 mmcra |= (val >> 2) << MMCRA_SAMP_ELIG_SHIFT;
458 }
459 }
460
461 /*
462 * PM_MRK_FAB_RSP_MATCH and PM_MRK_FAB_RSP_MATCH_CYC,
463 * the threshold bits are used for the match value.
464 */
465 if (event_is_fab_match(event[i])) {
466 mmcr1 |= ((event[i] >> EVENT_THR_CTL_SHIFT) &
467 EVENT_THR_CTL_MASK) << MMCR1_FAB_SHIFT;
468 } else {
469 val = (event[i] >> EVENT_THR_CTL_SHIFT) & EVENT_THR_CTL_MASK;
470 mmcra |= val << MMCRA_THR_CTL_SHIFT;
471 val = (event[i] >> EVENT_THR_SEL_SHIFT) & EVENT_THR_SEL_MASK;
472 mmcra |= val << MMCRA_THR_SEL_SHIFT;
473 val = (event[i] >> EVENT_THR_CMP_SHIFT) & EVENT_THR_CMP_MASK;
474 mmcra |= val << MMCRA_THR_CMP_SHIFT;
475 }
476
477 if (event[i] & EVENT_WANTS_BHRB) {
478 val = (event[i] >> EVENT_IFM_SHIFT) & EVENT_IFM_MASK;
479 mmcra |= val << MMCRA_IFM_SHIFT;
480 }
481
482 if (pevents[i]->attr.exclude_user)
483 mmcr2 |= MMCR2_FCP(pmc);
484
485 if (pevents[i]->attr.exclude_hv)
486 mmcr2 |= MMCR2_FCH(pmc);
487
488 if (pevents[i]->attr.exclude_kernel) {
489 if (cpu_has_feature(CPU_FTR_HVMODE))
490 mmcr2 |= MMCR2_FCH(pmc);
491 else
492 mmcr2 |= MMCR2_FCS(pmc);
493 }
494
495 hwc[i] = pmc - 1;
496 }
497
498 /* Return MMCRx values */
499 mmcr[0] = 0;
500
501 /* pmc_inuse is 1-based */
502 if (pmc_inuse & 2)
503 mmcr[0] = MMCR0_PMC1CE;
504
505 if (pmc_inuse & 0x7c)
506 mmcr[0] |= MMCR0_PMCjCE;
507
508 /* If we're not using PMC 5 or 6, freeze them */
509 if (!(pmc_inuse & 0x60))
510 mmcr[0] |= MMCR0_FC56;
511
512 mmcr[1] = mmcr1;
513 mmcr[2] = mmcra;
514 mmcr[3] = mmcr2;
515
516 return 0;
517 }
518
519 #define MAX_ALT 2
520
521 /* Table of alternatives, sorted by column 0 */
522 static const unsigned int event_alternatives[][MAX_ALT] = {
523 { 0x10134, 0x301e2 }, /* PM_MRK_ST_CMPL */
524 { 0x10138, 0x40138 }, /* PM_BR_MRK_2PATH */
525 { 0x18082, 0x3e05e }, /* PM_L3_CO_MEPF */
526 { 0x1d14e, 0x401e8 }, /* PM_MRK_DATA_FROM_L2MISS */
527 { 0x1e054, 0x4000a }, /* PM_CMPLU_STALL */
528 { 0x20036, 0x40036 }, /* PM_BR_2PATH */
529 { 0x200f2, 0x300f2 }, /* PM_INST_DISP */
530 { 0x200f4, 0x600f4 }, /* PM_RUN_CYC */
531 { 0x2013c, 0x3012e }, /* PM_MRK_FILT_MATCH */
532 { 0x3e054, 0x400f0 }, /* PM_LD_MISS_L1 */
533 { 0x400fa, 0x500fa }, /* PM_RUN_INST_CMPL */
534 };
535
536 /*
537 * Scan the alternatives table for a match and return the
538 * index into the alternatives table if found, else -1.
539 */
540 static int find_alternative(u64 event)
541 {
542 int i, j;
543
544 for (i = 0; i < ARRAY_SIZE(event_alternatives); ++i) {
545 if (event < event_alternatives[i][0])
546 break;
547
548 for (j = 0; j < MAX_ALT && event_alternatives[i][j]; ++j)
549 if (event == event_alternatives[i][j])
550 return i;
551 }
552
553 return -1;
554 }
555
556 static int power8_get_alternatives(u64 event, unsigned int flags, u64 alt[])
557 {
558 int i, j, num_alt = 0;
559 u64 alt_event;
560
561 alt[num_alt++] = event;
562
563 i = find_alternative(event);
564 if (i >= 0) {
565 /* Filter out the original event, it's already in alt[0] */
566 for (j = 0; j < MAX_ALT; ++j) {
567 alt_event = event_alternatives[i][j];
568 if (alt_event && alt_event != event)
569 alt[num_alt++] = alt_event;
570 }
571 }
572
573 if (flags & PPMU_ONLY_COUNT_RUN) {
574 /*
575 * We're only counting in RUN state, so PM_CYC is equivalent to
576 * PM_RUN_CYC and PM_INST_CMPL === PM_RUN_INST_CMPL.
577 */
578 j = num_alt;
579 for (i = 0; i < num_alt; ++i) {
580 switch (alt[i]) {
581 case 0x1e: /* PM_CYC */
582 alt[j++] = 0x600f4; /* PM_RUN_CYC */
583 break;
584 case 0x600f4: /* PM_RUN_CYC */
585 alt[j++] = 0x1e;
586 break;
587 case 0x2: /* PM_PPC_CMPL */
588 alt[j++] = 0x500fa; /* PM_RUN_INST_CMPL */
589 break;
590 case 0x500fa: /* PM_RUN_INST_CMPL */
591 alt[j++] = 0x2; /* PM_PPC_CMPL */
592 break;
593 }
594 }
595 num_alt = j;
596 }
597
598 return num_alt;
599 }
600
601 static void power8_disable_pmc(unsigned int pmc, unsigned long mmcr[])
602 {
603 if (pmc <= 3)
604 mmcr[1] &= ~(0xffUL << MMCR1_PMCSEL_SHIFT(pmc + 1));
605 }
606
607 PMU_FORMAT_ATTR(event, "config:0-49");
608 PMU_FORMAT_ATTR(pmcxsel, "config:0-7");
609 PMU_FORMAT_ATTR(mark, "config:8");
610 PMU_FORMAT_ATTR(combine, "config:11");
611 PMU_FORMAT_ATTR(unit, "config:12-15");
612 PMU_FORMAT_ATTR(pmc, "config:16-19");
613 PMU_FORMAT_ATTR(cache_sel, "config:20-23");
614 PMU_FORMAT_ATTR(sample_mode, "config:24-28");
615 PMU_FORMAT_ATTR(thresh_sel, "config:29-31");
616 PMU_FORMAT_ATTR(thresh_stop, "config:32-35");
617 PMU_FORMAT_ATTR(thresh_start, "config:36-39");
618 PMU_FORMAT_ATTR(thresh_cmp, "config:40-49");
619
620 static struct attribute *power8_pmu_format_attr[] = {
621 &format_attr_event.attr,
622 &format_attr_pmcxsel.attr,
623 &format_attr_mark.attr,
624 &format_attr_combine.attr,
625 &format_attr_unit.attr,
626 &format_attr_pmc.attr,
627 &format_attr_cache_sel.attr,
628 &format_attr_sample_mode.attr,
629 &format_attr_thresh_sel.attr,
630 &format_attr_thresh_stop.attr,
631 &format_attr_thresh_start.attr,
632 &format_attr_thresh_cmp.attr,
633 NULL,
634 };
635
636 struct attribute_group power8_pmu_format_group = {
637 .name = "format",
638 .attrs = power8_pmu_format_attr,
639 };
640
641 static const struct attribute_group *power8_pmu_attr_groups[] = {
642 &power8_pmu_format_group,
643 NULL,
644 };
645
646 static int power8_generic_events[] = {
647 [PERF_COUNT_HW_CPU_CYCLES] = PM_CYC,
648 [PERF_COUNT_HW_STALLED_CYCLES_FRONTEND] = PM_GCT_NOSLOT_CYC,
649 [PERF_COUNT_HW_STALLED_CYCLES_BACKEND] = PM_CMPLU_STALL,
650 [PERF_COUNT_HW_INSTRUCTIONS] = PM_INST_CMPL,
651 [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = PM_BRU_FIN,
652 [PERF_COUNT_HW_BRANCH_MISSES] = PM_BR_MPRED_CMPL,
653 [PERF_COUNT_HW_CACHE_REFERENCES] = PM_LD_REF_L1,
654 [PERF_COUNT_HW_CACHE_MISSES] = PM_LD_MISS_L1,
655 };
656
657 static u64 power8_bhrb_filter_map(u64 branch_sample_type)
658 {
659 u64 pmu_bhrb_filter = 0;
660
661 /* BHRB and regular PMU events share the same privilege state
662 * filter configuration. BHRB is always recorded along with a
663 * regular PMU event. As the privilege state filter is handled
664 * in the basic PMC configuration of the accompanying regular
665 * PMU event, we ignore any separate BHRB specific request.
666 */
667
668 /* No branch filter requested */
669 if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY)
670 return pmu_bhrb_filter;
671
672 /* Invalid branch filter options - HW does not support */
673 if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY_RETURN)
674 return -1;
675
676 if (branch_sample_type & PERF_SAMPLE_BRANCH_IND_CALL)
677 return -1;
678
679 if (branch_sample_type & PERF_SAMPLE_BRANCH_CALL)
680 return -1;
681
682 if (branch_sample_type & PERF_SAMPLE_BRANCH_ANY_CALL) {
683 pmu_bhrb_filter |= POWER8_MMCRA_IFM1;
684 return pmu_bhrb_filter;
685 }
686
687 /* Every thing else is unsupported */
688 return -1;
689 }
690
691 static void power8_config_bhrb(u64 pmu_bhrb_filter)
692 {
693 /* Enable BHRB filter in PMU */
694 mtspr(SPRN_MMCRA, (mfspr(SPRN_MMCRA) | pmu_bhrb_filter));
695 }
696
697 #define C(x) PERF_COUNT_HW_CACHE_##x
698
699 /*
700 * Table of generalized cache-related events.
701 * 0 means not supported, -1 means nonsensical, other values
702 * are event codes.
703 */
704 static int power8_cache_events[C(MAX)][C(OP_MAX)][C(RESULT_MAX)] = {
705 [ C(L1D) ] = {
706 [ C(OP_READ) ] = {
707 [ C(RESULT_ACCESS) ] = PM_LD_REF_L1,
708 [ C(RESULT_MISS) ] = PM_LD_MISS_L1,
709 },
710 [ C(OP_WRITE) ] = {
711 [ C(RESULT_ACCESS) ] = 0,
712 [ C(RESULT_MISS) ] = PM_ST_MISS_L1,
713 },
714 [ C(OP_PREFETCH) ] = {
715 [ C(RESULT_ACCESS) ] = PM_L1_PREF,
716 [ C(RESULT_MISS) ] = 0,
717 },
718 },
719 [ C(L1I) ] = {
720 [ C(OP_READ) ] = {
721 [ C(RESULT_ACCESS) ] = PM_INST_FROM_L1,
722 [ C(RESULT_MISS) ] = PM_L1_ICACHE_MISS,
723 },
724 [ C(OP_WRITE) ] = {
725 [ C(RESULT_ACCESS) ] = PM_L1_DEMAND_WRITE,
726 [ C(RESULT_MISS) ] = -1,
727 },
728 [ C(OP_PREFETCH) ] = {
729 [ C(RESULT_ACCESS) ] = PM_IC_PREF_WRITE,
730 [ C(RESULT_MISS) ] = 0,
731 },
732 },
733 [ C(LL) ] = {
734 [ C(OP_READ) ] = {
735 [ C(RESULT_ACCESS) ] = PM_DATA_FROM_L3,
736 [ C(RESULT_MISS) ] = PM_DATA_FROM_L3MISS,
737 },
738 [ C(OP_WRITE) ] = {
739 [ C(RESULT_ACCESS) ] = PM_L2_ST,
740 [ C(RESULT_MISS) ] = PM_L2_ST_MISS,
741 },
742 [ C(OP_PREFETCH) ] = {
743 [ C(RESULT_ACCESS) ] = PM_L3_PREF_ALL,
744 [ C(RESULT_MISS) ] = 0,
745 },
746 },
747 [ C(DTLB) ] = {
748 [ C(OP_READ) ] = {
749 [ C(RESULT_ACCESS) ] = 0,
750 [ C(RESULT_MISS) ] = PM_DTLB_MISS,
751 },
752 [ C(OP_WRITE) ] = {
753 [ C(RESULT_ACCESS) ] = -1,
754 [ C(RESULT_MISS) ] = -1,
755 },
756 [ C(OP_PREFETCH) ] = {
757 [ C(RESULT_ACCESS) ] = -1,
758 [ C(RESULT_MISS) ] = -1,
759 },
760 },
761 [ C(ITLB) ] = {
762 [ C(OP_READ) ] = {
763 [ C(RESULT_ACCESS) ] = 0,
764 [ C(RESULT_MISS) ] = PM_ITLB_MISS,
765 },
766 [ C(OP_WRITE) ] = {
767 [ C(RESULT_ACCESS) ] = -1,
768 [ C(RESULT_MISS) ] = -1,
769 },
770 [ C(OP_PREFETCH) ] = {
771 [ C(RESULT_ACCESS) ] = -1,
772 [ C(RESULT_MISS) ] = -1,
773 },
774 },
775 [ C(BPU) ] = {
776 [ C(OP_READ) ] = {
777 [ C(RESULT_ACCESS) ] = PM_BRU_FIN,
778 [ C(RESULT_MISS) ] = PM_BR_MPRED_CMPL,
779 },
780 [ C(OP_WRITE) ] = {
781 [ C(RESULT_ACCESS) ] = -1,
782 [ C(RESULT_MISS) ] = -1,
783 },
784 [ C(OP_PREFETCH) ] = {
785 [ C(RESULT_ACCESS) ] = -1,
786 [ C(RESULT_MISS) ] = -1,
787 },
788 },
789 [ C(NODE) ] = {
790 [ C(OP_READ) ] = {
791 [ C(RESULT_ACCESS) ] = -1,
792 [ C(RESULT_MISS) ] = -1,
793 },
794 [ C(OP_WRITE) ] = {
795 [ C(RESULT_ACCESS) ] = -1,
796 [ C(RESULT_MISS) ] = -1,
797 },
798 [ C(OP_PREFETCH) ] = {
799 [ C(RESULT_ACCESS) ] = -1,
800 [ C(RESULT_MISS) ] = -1,
801 },
802 },
803 };
804
805 #undef C
806
807 static struct power_pmu power8_pmu = {
808 .name = "POWER8",
809 .n_counter = 6,
810 .max_alternatives = MAX_ALT + 1,
811 .add_fields = POWER8_ADD_FIELDS,
812 .test_adder = POWER8_TEST_ADDER,
813 .compute_mmcr = power8_compute_mmcr,
814 .config_bhrb = power8_config_bhrb,
815 .bhrb_filter_map = power8_bhrb_filter_map,
816 .get_constraint = power8_get_constraint,
817 .get_alternatives = power8_get_alternatives,
818 .disable_pmc = power8_disable_pmc,
819 .flags = PPMU_HAS_SIER | PPMU_ARCH_207S,
820 .n_generic = ARRAY_SIZE(power8_generic_events),
821 .generic_events = power8_generic_events,
822 .cache_events = &power8_cache_events,
823 .attr_groups = power8_pmu_attr_groups,
824 .bhrb_nr = 32,
825 };
826
827 static int __init init_power8_pmu(void)
828 {
829 int rc;
830
831 if (!cur_cpu_spec->oprofile_cpu_type ||
832 strcmp(cur_cpu_spec->oprofile_cpu_type, "ppc64/power8"))
833 return -ENODEV;
834
835 rc = register_power_pmu(&power8_pmu);
836 if (rc)
837 return rc;
838
839 /* Tell userspace that EBB is supported */
840 cur_cpu_spec->cpu_user_features2 |= PPC_FEATURE2_EBB;
841
842 if (cpu_has_feature(CPU_FTR_PMAO_BUG))
843 pr_info("PMAO restore workaround active.\n");
844
845 return 0;
846 }
847 early_initcall(init_power8_pmu);