]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/platforms/cell/spu_base.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / platforms / cell / spu_base.c
1 /*
2 * Low-level SPU handling
3 *
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5 *
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #undef DEBUG
24
25 #include <linux/interrupt.h>
26 #include <linux/list.h>
27 #include <linux/init.h>
28 #include <linux/ptrace.h>
29 #include <linux/slab.h>
30 #include <linux/wait.h>
31 #include <linux/mm.h>
32 #include <linux/io.h>
33 #include <linux/mutex.h>
34 #include <linux/linux_logo.h>
35 #include <linux/syscore_ops.h>
36 #include <asm/spu.h>
37 #include <asm/spu_priv1.h>
38 #include <asm/spu_csa.h>
39 #include <asm/xmon.h>
40 #include <asm/prom.h>
41 #include <asm/kexec.h>
42
43 const struct spu_management_ops *spu_management_ops;
44 EXPORT_SYMBOL_GPL(spu_management_ops);
45
46 const struct spu_priv1_ops *spu_priv1_ops;
47 EXPORT_SYMBOL_GPL(spu_priv1_ops);
48
49 struct cbe_spu_info cbe_spu_info[MAX_NUMNODES];
50 EXPORT_SYMBOL_GPL(cbe_spu_info);
51
52 /*
53 * The spufs fault-handling code needs to call force_sig_info to raise signals
54 * on DMA errors. Export it here to avoid general kernel-wide access to this
55 * function
56 */
57 EXPORT_SYMBOL_GPL(force_sig_info);
58
59 /*
60 * Protects cbe_spu_info and spu->number.
61 */
62 static DEFINE_SPINLOCK(spu_lock);
63
64 /*
65 * List of all spus in the system.
66 *
67 * This list is iterated by callers from irq context and callers that
68 * want to sleep. Thus modifications need to be done with both
69 * spu_full_list_lock and spu_full_list_mutex held, while iterating
70 * through it requires either of these locks.
71 *
72 * In addition spu_full_list_lock protects all assignments to
73 * spu->mm.
74 */
75 static LIST_HEAD(spu_full_list);
76 static DEFINE_SPINLOCK(spu_full_list_lock);
77 static DEFINE_MUTEX(spu_full_list_mutex);
78
79 void spu_invalidate_slbs(struct spu *spu)
80 {
81 struct spu_priv2 __iomem *priv2 = spu->priv2;
82 unsigned long flags;
83
84 spin_lock_irqsave(&spu->register_lock, flags);
85 if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK)
86 out_be64(&priv2->slb_invalidate_all_W, 0UL);
87 spin_unlock_irqrestore(&spu->register_lock, flags);
88 }
89 EXPORT_SYMBOL_GPL(spu_invalidate_slbs);
90
91 /* This is called by the MM core when a segment size is changed, to
92 * request a flush of all the SPEs using a given mm
93 */
94 void spu_flush_all_slbs(struct mm_struct *mm)
95 {
96 struct spu *spu;
97 unsigned long flags;
98
99 spin_lock_irqsave(&spu_full_list_lock, flags);
100 list_for_each_entry(spu, &spu_full_list, full_list) {
101 if (spu->mm == mm)
102 spu_invalidate_slbs(spu);
103 }
104 spin_unlock_irqrestore(&spu_full_list_lock, flags);
105 }
106
107 /* The hack below stinks... try to do something better one of
108 * these days... Does it even work properly with NR_CPUS == 1 ?
109 */
110 static inline void mm_needs_global_tlbie(struct mm_struct *mm)
111 {
112 int nr = (NR_CPUS > 1) ? NR_CPUS : NR_CPUS + 1;
113
114 /* Global TLBIE broadcast required with SPEs. */
115 bitmap_fill(cpumask_bits(mm_cpumask(mm)), nr);
116 }
117
118 void spu_associate_mm(struct spu *spu, struct mm_struct *mm)
119 {
120 unsigned long flags;
121
122 spin_lock_irqsave(&spu_full_list_lock, flags);
123 spu->mm = mm;
124 spin_unlock_irqrestore(&spu_full_list_lock, flags);
125 if (mm)
126 mm_needs_global_tlbie(mm);
127 }
128 EXPORT_SYMBOL_GPL(spu_associate_mm);
129
130 int spu_64k_pages_available(void)
131 {
132 return mmu_psize_defs[MMU_PAGE_64K].shift != 0;
133 }
134 EXPORT_SYMBOL_GPL(spu_64k_pages_available);
135
136 static void spu_restart_dma(struct spu *spu)
137 {
138 struct spu_priv2 __iomem *priv2 = spu->priv2;
139
140 if (!test_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags))
141 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
142 else {
143 set_bit(SPU_CONTEXT_FAULT_PENDING, &spu->flags);
144 mb();
145 }
146 }
147
148 static inline void spu_load_slb(struct spu *spu, int slbe, struct copro_slb *slb)
149 {
150 struct spu_priv2 __iomem *priv2 = spu->priv2;
151
152 pr_debug("%s: adding SLB[%d] 0x%016llx 0x%016llx\n",
153 __func__, slbe, slb->vsid, slb->esid);
154
155 out_be64(&priv2->slb_index_W, slbe);
156 /* set invalid before writing vsid */
157 out_be64(&priv2->slb_esid_RW, 0);
158 /* now it's safe to write the vsid */
159 out_be64(&priv2->slb_vsid_RW, slb->vsid);
160 /* setting the new esid makes the entry valid again */
161 out_be64(&priv2->slb_esid_RW, slb->esid);
162 }
163
164 static int __spu_trap_data_seg(struct spu *spu, unsigned long ea)
165 {
166 struct copro_slb slb;
167 int ret;
168
169 ret = copro_calculate_slb(spu->mm, ea, &slb);
170 if (ret)
171 return ret;
172
173 spu_load_slb(spu, spu->slb_replace, &slb);
174
175 spu->slb_replace++;
176 if (spu->slb_replace >= 8)
177 spu->slb_replace = 0;
178
179 spu_restart_dma(spu);
180 spu->stats.slb_flt++;
181 return 0;
182 }
183
184 extern int hash_page(unsigned long ea, unsigned long access,
185 unsigned long trap, unsigned long dsisr); //XXX
186 static int __spu_trap_data_map(struct spu *spu, unsigned long ea, u64 dsisr)
187 {
188 int ret;
189
190 pr_debug("%s, %llx, %lx\n", __func__, dsisr, ea);
191
192 /*
193 * Handle kernel space hash faults immediately. User hash
194 * faults need to be deferred to process context.
195 */
196 if ((dsisr & MFC_DSISR_PTE_NOT_FOUND) &&
197 (REGION_ID(ea) != USER_REGION_ID)) {
198
199 spin_unlock(&spu->register_lock);
200 ret = hash_page(ea,
201 _PAGE_PRESENT | _PAGE_READ | _PAGE_PRIVILEGED,
202 0x300, dsisr);
203 spin_lock(&spu->register_lock);
204
205 if (!ret) {
206 spu_restart_dma(spu);
207 return 0;
208 }
209 }
210
211 spu->class_1_dar = ea;
212 spu->class_1_dsisr = dsisr;
213
214 spu->stop_callback(spu, 1);
215
216 spu->class_1_dar = 0;
217 spu->class_1_dsisr = 0;
218
219 return 0;
220 }
221
222 static void __spu_kernel_slb(void *addr, struct copro_slb *slb)
223 {
224 unsigned long ea = (unsigned long)addr;
225 u64 llp;
226
227 if (REGION_ID(ea) == KERNEL_REGION_ID)
228 llp = mmu_psize_defs[mmu_linear_psize].sllp;
229 else
230 llp = mmu_psize_defs[mmu_virtual_psize].sllp;
231
232 slb->vsid = (get_kernel_vsid(ea, MMU_SEGSIZE_256M) << SLB_VSID_SHIFT) |
233 SLB_VSID_KERNEL | llp;
234 slb->esid = (ea & ESID_MASK) | SLB_ESID_V;
235 }
236
237 /**
238 * Given an array of @nr_slbs SLB entries, @slbs, return non-zero if the
239 * address @new_addr is present.
240 */
241 static inline int __slb_present(struct copro_slb *slbs, int nr_slbs,
242 void *new_addr)
243 {
244 unsigned long ea = (unsigned long)new_addr;
245 int i;
246
247 for (i = 0; i < nr_slbs; i++)
248 if (!((slbs[i].esid ^ ea) & ESID_MASK))
249 return 1;
250
251 return 0;
252 }
253
254 /**
255 * Setup the SPU kernel SLBs, in preparation for a context save/restore. We
256 * need to map both the context save area, and the save/restore code.
257 *
258 * Because the lscsa and code may cross segment boundaries, we check to see
259 * if mappings are required for the start and end of each range. We currently
260 * assume that the mappings are smaller that one segment - if not, something
261 * is seriously wrong.
262 */
263 void spu_setup_kernel_slbs(struct spu *spu, struct spu_lscsa *lscsa,
264 void *code, int code_size)
265 {
266 struct copro_slb slbs[4];
267 int i, nr_slbs = 0;
268 /* start and end addresses of both mappings */
269 void *addrs[] = {
270 lscsa, (void *)lscsa + sizeof(*lscsa) - 1,
271 code, code + code_size - 1
272 };
273
274 /* check the set of addresses, and create a new entry in the slbs array
275 * if there isn't already a SLB for that address */
276 for (i = 0; i < ARRAY_SIZE(addrs); i++) {
277 if (__slb_present(slbs, nr_slbs, addrs[i]))
278 continue;
279
280 __spu_kernel_slb(addrs[i], &slbs[nr_slbs]);
281 nr_slbs++;
282 }
283
284 spin_lock_irq(&spu->register_lock);
285 /* Add the set of SLBs */
286 for (i = 0; i < nr_slbs; i++)
287 spu_load_slb(spu, i, &slbs[i]);
288 spin_unlock_irq(&spu->register_lock);
289 }
290 EXPORT_SYMBOL_GPL(spu_setup_kernel_slbs);
291
292 static irqreturn_t
293 spu_irq_class_0(int irq, void *data)
294 {
295 struct spu *spu;
296 unsigned long stat, mask;
297
298 spu = data;
299
300 spin_lock(&spu->register_lock);
301 mask = spu_int_mask_get(spu, 0);
302 stat = spu_int_stat_get(spu, 0) & mask;
303
304 spu->class_0_pending |= stat;
305 spu->class_0_dar = spu_mfc_dar_get(spu);
306 spu->stop_callback(spu, 0);
307 spu->class_0_pending = 0;
308 spu->class_0_dar = 0;
309
310 spu_int_stat_clear(spu, 0, stat);
311 spin_unlock(&spu->register_lock);
312
313 return IRQ_HANDLED;
314 }
315
316 static irqreturn_t
317 spu_irq_class_1(int irq, void *data)
318 {
319 struct spu *spu;
320 unsigned long stat, mask, dar, dsisr;
321
322 spu = data;
323
324 /* atomically read & clear class1 status. */
325 spin_lock(&spu->register_lock);
326 mask = spu_int_mask_get(spu, 1);
327 stat = spu_int_stat_get(spu, 1) & mask;
328 dar = spu_mfc_dar_get(spu);
329 dsisr = spu_mfc_dsisr_get(spu);
330 if (stat & CLASS1_STORAGE_FAULT_INTR)
331 spu_mfc_dsisr_set(spu, 0ul);
332 spu_int_stat_clear(spu, 1, stat);
333
334 pr_debug("%s: %lx %lx %lx %lx\n", __func__, mask, stat,
335 dar, dsisr);
336
337 if (stat & CLASS1_SEGMENT_FAULT_INTR)
338 __spu_trap_data_seg(spu, dar);
339
340 if (stat & CLASS1_STORAGE_FAULT_INTR)
341 __spu_trap_data_map(spu, dar, dsisr);
342
343 if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_GET_INTR)
344 ;
345
346 if (stat & CLASS1_LS_COMPARE_SUSPEND_ON_PUT_INTR)
347 ;
348
349 spu->class_1_dsisr = 0;
350 spu->class_1_dar = 0;
351
352 spin_unlock(&spu->register_lock);
353
354 return stat ? IRQ_HANDLED : IRQ_NONE;
355 }
356
357 static irqreturn_t
358 spu_irq_class_2(int irq, void *data)
359 {
360 struct spu *spu;
361 unsigned long stat;
362 unsigned long mask;
363 const int mailbox_intrs =
364 CLASS2_MAILBOX_THRESHOLD_INTR | CLASS2_MAILBOX_INTR;
365
366 spu = data;
367 spin_lock(&spu->register_lock);
368 stat = spu_int_stat_get(spu, 2);
369 mask = spu_int_mask_get(spu, 2);
370 /* ignore interrupts we're not waiting for */
371 stat &= mask;
372 /* mailbox interrupts are level triggered. mask them now before
373 * acknowledging */
374 if (stat & mailbox_intrs)
375 spu_int_mask_and(spu, 2, ~(stat & mailbox_intrs));
376 /* acknowledge all interrupts before the callbacks */
377 spu_int_stat_clear(spu, 2, stat);
378
379 pr_debug("class 2 interrupt %d, %lx, %lx\n", irq, stat, mask);
380
381 if (stat & CLASS2_MAILBOX_INTR)
382 spu->ibox_callback(spu);
383
384 if (stat & CLASS2_SPU_STOP_INTR)
385 spu->stop_callback(spu, 2);
386
387 if (stat & CLASS2_SPU_HALT_INTR)
388 spu->stop_callback(spu, 2);
389
390 if (stat & CLASS2_SPU_DMA_TAG_GROUP_COMPLETE_INTR)
391 spu->mfc_callback(spu);
392
393 if (stat & CLASS2_MAILBOX_THRESHOLD_INTR)
394 spu->wbox_callback(spu);
395
396 spu->stats.class2_intr++;
397
398 spin_unlock(&spu->register_lock);
399
400 return stat ? IRQ_HANDLED : IRQ_NONE;
401 }
402
403 static int spu_request_irqs(struct spu *spu)
404 {
405 int ret = 0;
406
407 if (spu->irqs[0]) {
408 snprintf(spu->irq_c0, sizeof (spu->irq_c0), "spe%02d.0",
409 spu->number);
410 ret = request_irq(spu->irqs[0], spu_irq_class_0,
411 0, spu->irq_c0, spu);
412 if (ret)
413 goto bail0;
414 }
415 if (spu->irqs[1]) {
416 snprintf(spu->irq_c1, sizeof (spu->irq_c1), "spe%02d.1",
417 spu->number);
418 ret = request_irq(spu->irqs[1], spu_irq_class_1,
419 0, spu->irq_c1, spu);
420 if (ret)
421 goto bail1;
422 }
423 if (spu->irqs[2]) {
424 snprintf(spu->irq_c2, sizeof (spu->irq_c2), "spe%02d.2",
425 spu->number);
426 ret = request_irq(spu->irqs[2], spu_irq_class_2,
427 0, spu->irq_c2, spu);
428 if (ret)
429 goto bail2;
430 }
431 return 0;
432
433 bail2:
434 if (spu->irqs[1])
435 free_irq(spu->irqs[1], spu);
436 bail1:
437 if (spu->irqs[0])
438 free_irq(spu->irqs[0], spu);
439 bail0:
440 return ret;
441 }
442
443 static void spu_free_irqs(struct spu *spu)
444 {
445 if (spu->irqs[0])
446 free_irq(spu->irqs[0], spu);
447 if (spu->irqs[1])
448 free_irq(spu->irqs[1], spu);
449 if (spu->irqs[2])
450 free_irq(spu->irqs[2], spu);
451 }
452
453 void spu_init_channels(struct spu *spu)
454 {
455 static const struct {
456 unsigned channel;
457 unsigned count;
458 } zero_list[] = {
459 { 0x00, 1, }, { 0x01, 1, }, { 0x03, 1, }, { 0x04, 1, },
460 { 0x18, 1, }, { 0x19, 1, }, { 0x1b, 1, }, { 0x1d, 1, },
461 }, count_list[] = {
462 { 0x00, 0, }, { 0x03, 0, }, { 0x04, 0, }, { 0x15, 16, },
463 { 0x17, 1, }, { 0x18, 0, }, { 0x19, 0, }, { 0x1b, 0, },
464 { 0x1c, 1, }, { 0x1d, 0, }, { 0x1e, 1, },
465 };
466 struct spu_priv2 __iomem *priv2;
467 int i;
468
469 priv2 = spu->priv2;
470
471 /* initialize all channel data to zero */
472 for (i = 0; i < ARRAY_SIZE(zero_list); i++) {
473 int count;
474
475 out_be64(&priv2->spu_chnlcntptr_RW, zero_list[i].channel);
476 for (count = 0; count < zero_list[i].count; count++)
477 out_be64(&priv2->spu_chnldata_RW, 0);
478 }
479
480 /* initialize channel counts to meaningful values */
481 for (i = 0; i < ARRAY_SIZE(count_list); i++) {
482 out_be64(&priv2->spu_chnlcntptr_RW, count_list[i].channel);
483 out_be64(&priv2->spu_chnlcnt_RW, count_list[i].count);
484 }
485 }
486 EXPORT_SYMBOL_GPL(spu_init_channels);
487
488 static struct bus_type spu_subsys = {
489 .name = "spu",
490 .dev_name = "spu",
491 };
492
493 int spu_add_dev_attr(struct device_attribute *attr)
494 {
495 struct spu *spu;
496
497 mutex_lock(&spu_full_list_mutex);
498 list_for_each_entry(spu, &spu_full_list, full_list)
499 device_create_file(&spu->dev, attr);
500 mutex_unlock(&spu_full_list_mutex);
501
502 return 0;
503 }
504 EXPORT_SYMBOL_GPL(spu_add_dev_attr);
505
506 int spu_add_dev_attr_group(struct attribute_group *attrs)
507 {
508 struct spu *spu;
509 int rc = 0;
510
511 mutex_lock(&spu_full_list_mutex);
512 list_for_each_entry(spu, &spu_full_list, full_list) {
513 rc = sysfs_create_group(&spu->dev.kobj, attrs);
514
515 /* we're in trouble here, but try unwinding anyway */
516 if (rc) {
517 printk(KERN_ERR "%s: can't create sysfs group '%s'\n",
518 __func__, attrs->name);
519
520 list_for_each_entry_continue_reverse(spu,
521 &spu_full_list, full_list)
522 sysfs_remove_group(&spu->dev.kobj, attrs);
523 break;
524 }
525 }
526
527 mutex_unlock(&spu_full_list_mutex);
528
529 return rc;
530 }
531 EXPORT_SYMBOL_GPL(spu_add_dev_attr_group);
532
533
534 void spu_remove_dev_attr(struct device_attribute *attr)
535 {
536 struct spu *spu;
537
538 mutex_lock(&spu_full_list_mutex);
539 list_for_each_entry(spu, &spu_full_list, full_list)
540 device_remove_file(&spu->dev, attr);
541 mutex_unlock(&spu_full_list_mutex);
542 }
543 EXPORT_SYMBOL_GPL(spu_remove_dev_attr);
544
545 void spu_remove_dev_attr_group(struct attribute_group *attrs)
546 {
547 struct spu *spu;
548
549 mutex_lock(&spu_full_list_mutex);
550 list_for_each_entry(spu, &spu_full_list, full_list)
551 sysfs_remove_group(&spu->dev.kobj, attrs);
552 mutex_unlock(&spu_full_list_mutex);
553 }
554 EXPORT_SYMBOL_GPL(spu_remove_dev_attr_group);
555
556 static int spu_create_dev(struct spu *spu)
557 {
558 int ret;
559
560 spu->dev.id = spu->number;
561 spu->dev.bus = &spu_subsys;
562 ret = device_register(&spu->dev);
563 if (ret) {
564 printk(KERN_ERR "Can't register SPU %d with sysfs\n",
565 spu->number);
566 return ret;
567 }
568
569 sysfs_add_device_to_node(&spu->dev, spu->node);
570
571 return 0;
572 }
573
574 static int __init create_spu(void *data)
575 {
576 struct spu *spu;
577 int ret;
578 static int number;
579 unsigned long flags;
580
581 ret = -ENOMEM;
582 spu = kzalloc(sizeof (*spu), GFP_KERNEL);
583 if (!spu)
584 goto out;
585
586 spu->alloc_state = SPU_FREE;
587
588 spin_lock_init(&spu->register_lock);
589 spin_lock(&spu_lock);
590 spu->number = number++;
591 spin_unlock(&spu_lock);
592
593 ret = spu_create_spu(spu, data);
594
595 if (ret)
596 goto out_free;
597
598 spu_mfc_sdr_setup(spu);
599 spu_mfc_sr1_set(spu, 0x33);
600 ret = spu_request_irqs(spu);
601 if (ret)
602 goto out_destroy;
603
604 ret = spu_create_dev(spu);
605 if (ret)
606 goto out_free_irqs;
607
608 mutex_lock(&cbe_spu_info[spu->node].list_mutex);
609 list_add(&spu->cbe_list, &cbe_spu_info[spu->node].spus);
610 cbe_spu_info[spu->node].n_spus++;
611 mutex_unlock(&cbe_spu_info[spu->node].list_mutex);
612
613 mutex_lock(&spu_full_list_mutex);
614 spin_lock_irqsave(&spu_full_list_lock, flags);
615 list_add(&spu->full_list, &spu_full_list);
616 spin_unlock_irqrestore(&spu_full_list_lock, flags);
617 mutex_unlock(&spu_full_list_mutex);
618
619 spu->stats.util_state = SPU_UTIL_IDLE_LOADED;
620 spu->stats.tstamp = ktime_get_ns();
621
622 INIT_LIST_HEAD(&spu->aff_list);
623
624 goto out;
625
626 out_free_irqs:
627 spu_free_irqs(spu);
628 out_destroy:
629 spu_destroy_spu(spu);
630 out_free:
631 kfree(spu);
632 out:
633 return ret;
634 }
635
636 static const char *spu_state_names[] = {
637 "user", "system", "iowait", "idle"
638 };
639
640 static unsigned long long spu_acct_time(struct spu *spu,
641 enum spu_utilization_state state)
642 {
643 unsigned long long time = spu->stats.times[state];
644
645 /*
646 * If the spu is idle or the context is stopped, utilization
647 * statistics are not updated. Apply the time delta from the
648 * last recorded state of the spu.
649 */
650 if (spu->stats.util_state == state)
651 time += ktime_get_ns() - spu->stats.tstamp;
652
653 return time / NSEC_PER_MSEC;
654 }
655
656
657 static ssize_t spu_stat_show(struct device *dev,
658 struct device_attribute *attr, char *buf)
659 {
660 struct spu *spu = container_of(dev, struct spu, dev);
661
662 return sprintf(buf, "%s %llu %llu %llu %llu "
663 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
664 spu_state_names[spu->stats.util_state],
665 spu_acct_time(spu, SPU_UTIL_USER),
666 spu_acct_time(spu, SPU_UTIL_SYSTEM),
667 spu_acct_time(spu, SPU_UTIL_IOWAIT),
668 spu_acct_time(spu, SPU_UTIL_IDLE_LOADED),
669 spu->stats.vol_ctx_switch,
670 spu->stats.invol_ctx_switch,
671 spu->stats.slb_flt,
672 spu->stats.hash_flt,
673 spu->stats.min_flt,
674 spu->stats.maj_flt,
675 spu->stats.class2_intr,
676 spu->stats.libassist);
677 }
678
679 static DEVICE_ATTR(stat, 0444, spu_stat_show, NULL);
680
681 #ifdef CONFIG_KEXEC_CORE
682
683 struct crash_spu_info {
684 struct spu *spu;
685 u32 saved_spu_runcntl_RW;
686 u32 saved_spu_status_R;
687 u32 saved_spu_npc_RW;
688 u64 saved_mfc_sr1_RW;
689 u64 saved_mfc_dar;
690 u64 saved_mfc_dsisr;
691 };
692
693 #define CRASH_NUM_SPUS 16 /* Enough for current hardware */
694 static struct crash_spu_info crash_spu_info[CRASH_NUM_SPUS];
695
696 static void crash_kexec_stop_spus(void)
697 {
698 struct spu *spu;
699 int i;
700 u64 tmp;
701
702 for (i = 0; i < CRASH_NUM_SPUS; i++) {
703 if (!crash_spu_info[i].spu)
704 continue;
705
706 spu = crash_spu_info[i].spu;
707
708 crash_spu_info[i].saved_spu_runcntl_RW =
709 in_be32(&spu->problem->spu_runcntl_RW);
710 crash_spu_info[i].saved_spu_status_R =
711 in_be32(&spu->problem->spu_status_R);
712 crash_spu_info[i].saved_spu_npc_RW =
713 in_be32(&spu->problem->spu_npc_RW);
714
715 crash_spu_info[i].saved_mfc_dar = spu_mfc_dar_get(spu);
716 crash_spu_info[i].saved_mfc_dsisr = spu_mfc_dsisr_get(spu);
717 tmp = spu_mfc_sr1_get(spu);
718 crash_spu_info[i].saved_mfc_sr1_RW = tmp;
719
720 tmp &= ~MFC_STATE1_MASTER_RUN_CONTROL_MASK;
721 spu_mfc_sr1_set(spu, tmp);
722
723 __delay(200);
724 }
725 }
726
727 static void crash_register_spus(struct list_head *list)
728 {
729 struct spu *spu;
730 int ret;
731
732 list_for_each_entry(spu, list, full_list) {
733 if (WARN_ON(spu->number >= CRASH_NUM_SPUS))
734 continue;
735
736 crash_spu_info[spu->number].spu = spu;
737 }
738
739 ret = crash_shutdown_register(&crash_kexec_stop_spus);
740 if (ret)
741 printk(KERN_ERR "Could not register SPU crash handler");
742 }
743
744 #else
745 static inline void crash_register_spus(struct list_head *list)
746 {
747 }
748 #endif
749
750 static void spu_shutdown(void)
751 {
752 struct spu *spu;
753
754 mutex_lock(&spu_full_list_mutex);
755 list_for_each_entry(spu, &spu_full_list, full_list) {
756 spu_free_irqs(spu);
757 spu_destroy_spu(spu);
758 }
759 mutex_unlock(&spu_full_list_mutex);
760 }
761
762 static struct syscore_ops spu_syscore_ops = {
763 .shutdown = spu_shutdown,
764 };
765
766 static int __init init_spu_base(void)
767 {
768 int i, ret = 0;
769
770 for (i = 0; i < MAX_NUMNODES; i++) {
771 mutex_init(&cbe_spu_info[i].list_mutex);
772 INIT_LIST_HEAD(&cbe_spu_info[i].spus);
773 }
774
775 if (!spu_management_ops)
776 goto out;
777
778 /* create system subsystem for spus */
779 ret = subsys_system_register(&spu_subsys, NULL);
780 if (ret)
781 goto out;
782
783 ret = spu_enumerate_spus(create_spu);
784
785 if (ret < 0) {
786 printk(KERN_WARNING "%s: Error initializing spus\n",
787 __func__);
788 goto out_unregister_subsys;
789 }
790
791 if (ret > 0)
792 fb_append_extra_logo(&logo_spe_clut224, ret);
793
794 mutex_lock(&spu_full_list_mutex);
795 xmon_register_spus(&spu_full_list);
796 crash_register_spus(&spu_full_list);
797 mutex_unlock(&spu_full_list_mutex);
798 spu_add_dev_attr(&dev_attr_stat);
799 register_syscore_ops(&spu_syscore_ops);
800
801 spu_init_affinity();
802
803 return 0;
804
805 out_unregister_subsys:
806 bus_unregister(&spu_subsys);
807 out:
808 return ret;
809 }
810 device_initcall(init_spu_base);