]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/platforms/cell/spufs/file.c
[PATCH] mark struct file_operations const 2
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / platforms / cell / spufs / file.c
1 /*
2 * SPU file system -- file contents
3 *
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5 *
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #undef DEBUG
24
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31
32 #include <asm/io.h>
33 #include <asm/semaphore.h>
34 #include <asm/spu.h>
35 #include <asm/spu_info.h>
36 #include <asm/uaccess.h>
37
38 #include "spufs.h"
39
40 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
41
42 static int
43 spufs_mem_open(struct inode *inode, struct file *file)
44 {
45 struct spufs_inode_info *i = SPUFS_I(inode);
46 struct spu_context *ctx = i->i_ctx;
47 file->private_data = ctx;
48 file->f_mapping = inode->i_mapping;
49 ctx->local_store = inode->i_mapping;
50 return 0;
51 }
52
53 static ssize_t
54 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
55 size_t size, loff_t *pos)
56 {
57 char *local_store = ctx->ops->get_ls(ctx);
58 return simple_read_from_buffer(buffer, size, pos, local_store,
59 LS_SIZE);
60 }
61
62 static ssize_t
63 spufs_mem_read(struct file *file, char __user *buffer,
64 size_t size, loff_t *pos)
65 {
66 int ret;
67 struct spu_context *ctx = file->private_data;
68
69 spu_acquire(ctx);
70 ret = __spufs_mem_read(ctx, buffer, size, pos);
71 spu_release(ctx);
72 return ret;
73 }
74
75 static ssize_t
76 spufs_mem_write(struct file *file, const char __user *buffer,
77 size_t size, loff_t *pos)
78 {
79 struct spu_context *ctx = file->private_data;
80 char *local_store;
81 int ret;
82
83 size = min_t(ssize_t, LS_SIZE - *pos, size);
84 if (size <= 0)
85 return -EFBIG;
86 *pos += size;
87
88 spu_acquire(ctx);
89
90 local_store = ctx->ops->get_ls(ctx);
91 ret = copy_from_user(local_store + *pos - size,
92 buffer, size) ? -EFAULT : size;
93
94 spu_release(ctx);
95 return ret;
96 }
97
98 static struct page *
99 spufs_mem_mmap_nopage(struct vm_area_struct *vma,
100 unsigned long address, int *type)
101 {
102 struct page *page = NOPAGE_SIGBUS;
103
104 struct spu_context *ctx = vma->vm_file->private_data;
105 unsigned long offset = address - vma->vm_start;
106 offset += vma->vm_pgoff << PAGE_SHIFT;
107
108 spu_acquire(ctx);
109
110 if (ctx->state == SPU_STATE_SAVED) {
111 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
112 & ~_PAGE_NO_CACHE);
113 page = vmalloc_to_page(ctx->csa.lscsa->ls + offset);
114 } else {
115 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
116 | _PAGE_NO_CACHE);
117 page = pfn_to_page((ctx->spu->local_store_phys + offset)
118 >> PAGE_SHIFT);
119 }
120 spu_release(ctx);
121
122 if (type)
123 *type = VM_FAULT_MINOR;
124
125 page_cache_get(page);
126 return page;
127 }
128
129 static struct vm_operations_struct spufs_mem_mmap_vmops = {
130 .nopage = spufs_mem_mmap_nopage,
131 };
132
133 static int
134 spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
135 {
136 if (!(vma->vm_flags & VM_SHARED))
137 return -EINVAL;
138
139 vma->vm_flags |= VM_IO;
140 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
141 | _PAGE_NO_CACHE);
142
143 vma->vm_ops = &spufs_mem_mmap_vmops;
144 return 0;
145 }
146
147 static const struct file_operations spufs_mem_fops = {
148 .open = spufs_mem_open,
149 .read = spufs_mem_read,
150 .write = spufs_mem_write,
151 .llseek = generic_file_llseek,
152 .mmap = spufs_mem_mmap,
153 };
154
155 static struct page *spufs_ps_nopage(struct vm_area_struct *vma,
156 unsigned long address,
157 int *type, unsigned long ps_offs,
158 unsigned long ps_size)
159 {
160 struct page *page = NOPAGE_SIGBUS;
161 int fault_type = VM_FAULT_SIGBUS;
162 struct spu_context *ctx = vma->vm_file->private_data;
163 unsigned long offset = address - vma->vm_start;
164 unsigned long area;
165 int ret;
166
167 offset += vma->vm_pgoff << PAGE_SHIFT;
168 if (offset >= ps_size)
169 goto out;
170
171 ret = spu_acquire_runnable(ctx);
172 if (ret)
173 goto out;
174
175 area = ctx->spu->problem_phys + ps_offs;
176 page = pfn_to_page((area + offset) >> PAGE_SHIFT);
177 fault_type = VM_FAULT_MINOR;
178 page_cache_get(page);
179
180 spu_release(ctx);
181
182 out:
183 if (type)
184 *type = fault_type;
185
186 return page;
187 }
188
189 #if SPUFS_MMAP_4K
190 static struct page *spufs_cntl_mmap_nopage(struct vm_area_struct *vma,
191 unsigned long address, int *type)
192 {
193 return spufs_ps_nopage(vma, address, type, 0x4000, 0x1000);
194 }
195
196 static struct vm_operations_struct spufs_cntl_mmap_vmops = {
197 .nopage = spufs_cntl_mmap_nopage,
198 };
199
200 /*
201 * mmap support for problem state control area [0x4000 - 0x4fff].
202 */
203 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
204 {
205 if (!(vma->vm_flags & VM_SHARED))
206 return -EINVAL;
207
208 vma->vm_flags |= VM_IO;
209 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
210 | _PAGE_NO_CACHE | _PAGE_GUARDED);
211
212 vma->vm_ops = &spufs_cntl_mmap_vmops;
213 return 0;
214 }
215 #else /* SPUFS_MMAP_4K */
216 #define spufs_cntl_mmap NULL
217 #endif /* !SPUFS_MMAP_4K */
218
219 static u64 spufs_cntl_get(void *data)
220 {
221 struct spu_context *ctx = data;
222 u64 val;
223
224 spu_acquire(ctx);
225 val = ctx->ops->status_read(ctx);
226 spu_release(ctx);
227
228 return val;
229 }
230
231 static void spufs_cntl_set(void *data, u64 val)
232 {
233 struct spu_context *ctx = data;
234
235 spu_acquire(ctx);
236 ctx->ops->runcntl_write(ctx, val);
237 spu_release(ctx);
238 }
239
240 static int spufs_cntl_open(struct inode *inode, struct file *file)
241 {
242 struct spufs_inode_info *i = SPUFS_I(inode);
243 struct spu_context *ctx = i->i_ctx;
244
245 file->private_data = ctx;
246 file->f_mapping = inode->i_mapping;
247 ctx->cntl = inode->i_mapping;
248 return simple_attr_open(inode, file, spufs_cntl_get,
249 spufs_cntl_set, "0x%08lx");
250 }
251
252 static const struct file_operations spufs_cntl_fops = {
253 .open = spufs_cntl_open,
254 .release = simple_attr_close,
255 .read = simple_attr_read,
256 .write = simple_attr_write,
257 .mmap = spufs_cntl_mmap,
258 };
259
260 static int
261 spufs_regs_open(struct inode *inode, struct file *file)
262 {
263 struct spufs_inode_info *i = SPUFS_I(inode);
264 file->private_data = i->i_ctx;
265 return 0;
266 }
267
268 static ssize_t
269 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
270 size_t size, loff_t *pos)
271 {
272 struct spu_lscsa *lscsa = ctx->csa.lscsa;
273 return simple_read_from_buffer(buffer, size, pos,
274 lscsa->gprs, sizeof lscsa->gprs);
275 }
276
277 static ssize_t
278 spufs_regs_read(struct file *file, char __user *buffer,
279 size_t size, loff_t *pos)
280 {
281 int ret;
282 struct spu_context *ctx = file->private_data;
283
284 spu_acquire_saved(ctx);
285 ret = __spufs_regs_read(ctx, buffer, size, pos);
286 spu_release(ctx);
287 return ret;
288 }
289
290 static ssize_t
291 spufs_regs_write(struct file *file, const char __user *buffer,
292 size_t size, loff_t *pos)
293 {
294 struct spu_context *ctx = file->private_data;
295 struct spu_lscsa *lscsa = ctx->csa.lscsa;
296 int ret;
297
298 size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
299 if (size <= 0)
300 return -EFBIG;
301 *pos += size;
302
303 spu_acquire_saved(ctx);
304
305 ret = copy_from_user(lscsa->gprs + *pos - size,
306 buffer, size) ? -EFAULT : size;
307
308 spu_release(ctx);
309 return ret;
310 }
311
312 static const struct file_operations spufs_regs_fops = {
313 .open = spufs_regs_open,
314 .read = spufs_regs_read,
315 .write = spufs_regs_write,
316 .llseek = generic_file_llseek,
317 };
318
319 static ssize_t
320 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
321 size_t size, loff_t * pos)
322 {
323 struct spu_lscsa *lscsa = ctx->csa.lscsa;
324 return simple_read_from_buffer(buffer, size, pos,
325 &lscsa->fpcr, sizeof(lscsa->fpcr));
326 }
327
328 static ssize_t
329 spufs_fpcr_read(struct file *file, char __user * buffer,
330 size_t size, loff_t * pos)
331 {
332 int ret;
333 struct spu_context *ctx = file->private_data;
334
335 spu_acquire_saved(ctx);
336 ret = __spufs_fpcr_read(ctx, buffer, size, pos);
337 spu_release(ctx);
338 return ret;
339 }
340
341 static ssize_t
342 spufs_fpcr_write(struct file *file, const char __user * buffer,
343 size_t size, loff_t * pos)
344 {
345 struct spu_context *ctx = file->private_data;
346 struct spu_lscsa *lscsa = ctx->csa.lscsa;
347 int ret;
348
349 size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
350 if (size <= 0)
351 return -EFBIG;
352 *pos += size;
353
354 spu_acquire_saved(ctx);
355
356 ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
357 buffer, size) ? -EFAULT : size;
358
359 spu_release(ctx);
360 return ret;
361 }
362
363 static const struct file_operations spufs_fpcr_fops = {
364 .open = spufs_regs_open,
365 .read = spufs_fpcr_read,
366 .write = spufs_fpcr_write,
367 .llseek = generic_file_llseek,
368 };
369
370 /* generic open function for all pipe-like files */
371 static int spufs_pipe_open(struct inode *inode, struct file *file)
372 {
373 struct spufs_inode_info *i = SPUFS_I(inode);
374 file->private_data = i->i_ctx;
375
376 return nonseekable_open(inode, file);
377 }
378
379 /*
380 * Read as many bytes from the mailbox as possible, until
381 * one of the conditions becomes true:
382 *
383 * - no more data available in the mailbox
384 * - end of the user provided buffer
385 * - end of the mapped area
386 */
387 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
388 size_t len, loff_t *pos)
389 {
390 struct spu_context *ctx = file->private_data;
391 u32 mbox_data, __user *udata;
392 ssize_t count;
393
394 if (len < 4)
395 return -EINVAL;
396
397 if (!access_ok(VERIFY_WRITE, buf, len))
398 return -EFAULT;
399
400 udata = (void __user *)buf;
401
402 spu_acquire(ctx);
403 for (count = 0; (count + 4) <= len; count += 4, udata++) {
404 int ret;
405 ret = ctx->ops->mbox_read(ctx, &mbox_data);
406 if (ret == 0)
407 break;
408
409 /*
410 * at the end of the mapped area, we can fault
411 * but still need to return the data we have
412 * read successfully so far.
413 */
414 ret = __put_user(mbox_data, udata);
415 if (ret) {
416 if (!count)
417 count = -EFAULT;
418 break;
419 }
420 }
421 spu_release(ctx);
422
423 if (!count)
424 count = -EAGAIN;
425
426 return count;
427 }
428
429 static const struct file_operations spufs_mbox_fops = {
430 .open = spufs_pipe_open,
431 .read = spufs_mbox_read,
432 };
433
434 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
435 size_t len, loff_t *pos)
436 {
437 struct spu_context *ctx = file->private_data;
438 u32 mbox_stat;
439
440 if (len < 4)
441 return -EINVAL;
442
443 spu_acquire(ctx);
444
445 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
446
447 spu_release(ctx);
448
449 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
450 return -EFAULT;
451
452 return 4;
453 }
454
455 static const struct file_operations spufs_mbox_stat_fops = {
456 .open = spufs_pipe_open,
457 .read = spufs_mbox_stat_read,
458 };
459
460 /* low-level ibox access function */
461 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
462 {
463 return ctx->ops->ibox_read(ctx, data);
464 }
465
466 static int spufs_ibox_fasync(int fd, struct file *file, int on)
467 {
468 struct spu_context *ctx = file->private_data;
469
470 return fasync_helper(fd, file, on, &ctx->ibox_fasync);
471 }
472
473 /* interrupt-level ibox callback function. */
474 void spufs_ibox_callback(struct spu *spu)
475 {
476 struct spu_context *ctx = spu->ctx;
477
478 wake_up_all(&ctx->ibox_wq);
479 kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
480 }
481
482 /*
483 * Read as many bytes from the interrupt mailbox as possible, until
484 * one of the conditions becomes true:
485 *
486 * - no more data available in the mailbox
487 * - end of the user provided buffer
488 * - end of the mapped area
489 *
490 * If the file is opened without O_NONBLOCK, we wait here until
491 * any data is available, but return when we have been able to
492 * read something.
493 */
494 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
495 size_t len, loff_t *pos)
496 {
497 struct spu_context *ctx = file->private_data;
498 u32 ibox_data, __user *udata;
499 ssize_t count;
500
501 if (len < 4)
502 return -EINVAL;
503
504 if (!access_ok(VERIFY_WRITE, buf, len))
505 return -EFAULT;
506
507 udata = (void __user *)buf;
508
509 spu_acquire(ctx);
510
511 /* wait only for the first element */
512 count = 0;
513 if (file->f_flags & O_NONBLOCK) {
514 if (!spu_ibox_read(ctx, &ibox_data))
515 count = -EAGAIN;
516 } else {
517 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
518 }
519 if (count)
520 goto out;
521
522 /* if we can't write at all, return -EFAULT */
523 count = __put_user(ibox_data, udata);
524 if (count)
525 goto out;
526
527 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
528 int ret;
529 ret = ctx->ops->ibox_read(ctx, &ibox_data);
530 if (ret == 0)
531 break;
532 /*
533 * at the end of the mapped area, we can fault
534 * but still need to return the data we have
535 * read successfully so far.
536 */
537 ret = __put_user(ibox_data, udata);
538 if (ret)
539 break;
540 }
541
542 out:
543 spu_release(ctx);
544
545 return count;
546 }
547
548 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
549 {
550 struct spu_context *ctx = file->private_data;
551 unsigned int mask;
552
553 poll_wait(file, &ctx->ibox_wq, wait);
554
555 spu_acquire(ctx);
556 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
557 spu_release(ctx);
558
559 return mask;
560 }
561
562 static const struct file_operations spufs_ibox_fops = {
563 .open = spufs_pipe_open,
564 .read = spufs_ibox_read,
565 .poll = spufs_ibox_poll,
566 .fasync = spufs_ibox_fasync,
567 };
568
569 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
570 size_t len, loff_t *pos)
571 {
572 struct spu_context *ctx = file->private_data;
573 u32 ibox_stat;
574
575 if (len < 4)
576 return -EINVAL;
577
578 spu_acquire(ctx);
579 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
580 spu_release(ctx);
581
582 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
583 return -EFAULT;
584
585 return 4;
586 }
587
588 static const struct file_operations spufs_ibox_stat_fops = {
589 .open = spufs_pipe_open,
590 .read = spufs_ibox_stat_read,
591 };
592
593 /* low-level mailbox write */
594 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
595 {
596 return ctx->ops->wbox_write(ctx, data);
597 }
598
599 static int spufs_wbox_fasync(int fd, struct file *file, int on)
600 {
601 struct spu_context *ctx = file->private_data;
602 int ret;
603
604 ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
605
606 return ret;
607 }
608
609 /* interrupt-level wbox callback function. */
610 void spufs_wbox_callback(struct spu *spu)
611 {
612 struct spu_context *ctx = spu->ctx;
613
614 wake_up_all(&ctx->wbox_wq);
615 kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
616 }
617
618 /*
619 * Write as many bytes to the interrupt mailbox as possible, until
620 * one of the conditions becomes true:
621 *
622 * - the mailbox is full
623 * - end of the user provided buffer
624 * - end of the mapped area
625 *
626 * If the file is opened without O_NONBLOCK, we wait here until
627 * space is availabyl, but return when we have been able to
628 * write something.
629 */
630 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
631 size_t len, loff_t *pos)
632 {
633 struct spu_context *ctx = file->private_data;
634 u32 wbox_data, __user *udata;
635 ssize_t count;
636
637 if (len < 4)
638 return -EINVAL;
639
640 udata = (void __user *)buf;
641 if (!access_ok(VERIFY_READ, buf, len))
642 return -EFAULT;
643
644 if (__get_user(wbox_data, udata))
645 return -EFAULT;
646
647 spu_acquire(ctx);
648
649 /*
650 * make sure we can at least write one element, by waiting
651 * in case of !O_NONBLOCK
652 */
653 count = 0;
654 if (file->f_flags & O_NONBLOCK) {
655 if (!spu_wbox_write(ctx, wbox_data))
656 count = -EAGAIN;
657 } else {
658 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
659 }
660
661 if (count)
662 goto out;
663
664 /* write aѕ much as possible */
665 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
666 int ret;
667 ret = __get_user(wbox_data, udata);
668 if (ret)
669 break;
670
671 ret = spu_wbox_write(ctx, wbox_data);
672 if (ret == 0)
673 break;
674 }
675
676 out:
677 spu_release(ctx);
678 return count;
679 }
680
681 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
682 {
683 struct spu_context *ctx = file->private_data;
684 unsigned int mask;
685
686 poll_wait(file, &ctx->wbox_wq, wait);
687
688 spu_acquire(ctx);
689 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
690 spu_release(ctx);
691
692 return mask;
693 }
694
695 static const struct file_operations spufs_wbox_fops = {
696 .open = spufs_pipe_open,
697 .write = spufs_wbox_write,
698 .poll = spufs_wbox_poll,
699 .fasync = spufs_wbox_fasync,
700 };
701
702 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
703 size_t len, loff_t *pos)
704 {
705 struct spu_context *ctx = file->private_data;
706 u32 wbox_stat;
707
708 if (len < 4)
709 return -EINVAL;
710
711 spu_acquire(ctx);
712 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
713 spu_release(ctx);
714
715 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
716 return -EFAULT;
717
718 return 4;
719 }
720
721 static const struct file_operations spufs_wbox_stat_fops = {
722 .open = spufs_pipe_open,
723 .read = spufs_wbox_stat_read,
724 };
725
726 static int spufs_signal1_open(struct inode *inode, struct file *file)
727 {
728 struct spufs_inode_info *i = SPUFS_I(inode);
729 struct spu_context *ctx = i->i_ctx;
730 file->private_data = ctx;
731 file->f_mapping = inode->i_mapping;
732 ctx->signal1 = inode->i_mapping;
733 return nonseekable_open(inode, file);
734 }
735
736 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
737 size_t len, loff_t *pos)
738 {
739 int ret = 0;
740 u32 data;
741
742 if (len < 4)
743 return -EINVAL;
744
745 if (ctx->csa.spu_chnlcnt_RW[3]) {
746 data = ctx->csa.spu_chnldata_RW[3];
747 ret = 4;
748 }
749
750 if (!ret)
751 goto out;
752
753 if (copy_to_user(buf, &data, 4))
754 return -EFAULT;
755
756 out:
757 return ret;
758 }
759
760 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
761 size_t len, loff_t *pos)
762 {
763 int ret;
764 struct spu_context *ctx = file->private_data;
765
766 spu_acquire_saved(ctx);
767 ret = __spufs_signal1_read(ctx, buf, len, pos);
768 spu_release(ctx);
769
770 return ret;
771 }
772
773 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
774 size_t len, loff_t *pos)
775 {
776 struct spu_context *ctx;
777 u32 data;
778
779 ctx = file->private_data;
780
781 if (len < 4)
782 return -EINVAL;
783
784 if (copy_from_user(&data, buf, 4))
785 return -EFAULT;
786
787 spu_acquire(ctx);
788 ctx->ops->signal1_write(ctx, data);
789 spu_release(ctx);
790
791 return 4;
792 }
793
794 static struct page *spufs_signal1_mmap_nopage(struct vm_area_struct *vma,
795 unsigned long address, int *type)
796 {
797 #if PAGE_SIZE == 0x1000
798 return spufs_ps_nopage(vma, address, type, 0x14000, 0x1000);
799 #elif PAGE_SIZE == 0x10000
800 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
801 * signal 1 and 2 area
802 */
803 return spufs_ps_nopage(vma, address, type, 0x10000, 0x10000);
804 #else
805 #error unsupported page size
806 #endif
807 }
808
809 static struct vm_operations_struct spufs_signal1_mmap_vmops = {
810 .nopage = spufs_signal1_mmap_nopage,
811 };
812
813 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
814 {
815 if (!(vma->vm_flags & VM_SHARED))
816 return -EINVAL;
817
818 vma->vm_flags |= VM_IO;
819 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
820 | _PAGE_NO_CACHE | _PAGE_GUARDED);
821
822 vma->vm_ops = &spufs_signal1_mmap_vmops;
823 return 0;
824 }
825
826 static const struct file_operations spufs_signal1_fops = {
827 .open = spufs_signal1_open,
828 .read = spufs_signal1_read,
829 .write = spufs_signal1_write,
830 .mmap = spufs_signal1_mmap,
831 };
832
833 static int spufs_signal2_open(struct inode *inode, struct file *file)
834 {
835 struct spufs_inode_info *i = SPUFS_I(inode);
836 struct spu_context *ctx = i->i_ctx;
837 file->private_data = ctx;
838 file->f_mapping = inode->i_mapping;
839 ctx->signal2 = inode->i_mapping;
840 return nonseekable_open(inode, file);
841 }
842
843 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
844 size_t len, loff_t *pos)
845 {
846 int ret = 0;
847 u32 data;
848
849 if (len < 4)
850 return -EINVAL;
851
852 if (ctx->csa.spu_chnlcnt_RW[4]) {
853 data = ctx->csa.spu_chnldata_RW[4];
854 ret = 4;
855 }
856
857 if (!ret)
858 goto out;
859
860 if (copy_to_user(buf, &data, 4))
861 return -EFAULT;
862
863 out:
864 return ret;
865 }
866
867 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
868 size_t len, loff_t *pos)
869 {
870 struct spu_context *ctx = file->private_data;
871 int ret;
872
873 spu_acquire_saved(ctx);
874 ret = __spufs_signal2_read(ctx, buf, len, pos);
875 spu_release(ctx);
876
877 return ret;
878 }
879
880 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
881 size_t len, loff_t *pos)
882 {
883 struct spu_context *ctx;
884 u32 data;
885
886 ctx = file->private_data;
887
888 if (len < 4)
889 return -EINVAL;
890
891 if (copy_from_user(&data, buf, 4))
892 return -EFAULT;
893
894 spu_acquire(ctx);
895 ctx->ops->signal2_write(ctx, data);
896 spu_release(ctx);
897
898 return 4;
899 }
900
901 #if SPUFS_MMAP_4K
902 static struct page *spufs_signal2_mmap_nopage(struct vm_area_struct *vma,
903 unsigned long address, int *type)
904 {
905 #if PAGE_SIZE == 0x1000
906 return spufs_ps_nopage(vma, address, type, 0x1c000, 0x1000);
907 #elif PAGE_SIZE == 0x10000
908 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
909 * signal 1 and 2 area
910 */
911 return spufs_ps_nopage(vma, address, type, 0x10000, 0x10000);
912 #else
913 #error unsupported page size
914 #endif
915 }
916
917 static struct vm_operations_struct spufs_signal2_mmap_vmops = {
918 .nopage = spufs_signal2_mmap_nopage,
919 };
920
921 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
922 {
923 if (!(vma->vm_flags & VM_SHARED))
924 return -EINVAL;
925
926 vma->vm_flags |= VM_IO;
927 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
928 | _PAGE_NO_CACHE | _PAGE_GUARDED);
929
930 vma->vm_ops = &spufs_signal2_mmap_vmops;
931 return 0;
932 }
933 #else /* SPUFS_MMAP_4K */
934 #define spufs_signal2_mmap NULL
935 #endif /* !SPUFS_MMAP_4K */
936
937 static const struct file_operations spufs_signal2_fops = {
938 .open = spufs_signal2_open,
939 .read = spufs_signal2_read,
940 .write = spufs_signal2_write,
941 .mmap = spufs_signal2_mmap,
942 };
943
944 static void spufs_signal1_type_set(void *data, u64 val)
945 {
946 struct spu_context *ctx = data;
947
948 spu_acquire(ctx);
949 ctx->ops->signal1_type_set(ctx, val);
950 spu_release(ctx);
951 }
952
953 static u64 __spufs_signal1_type_get(void *data)
954 {
955 struct spu_context *ctx = data;
956 return ctx->ops->signal1_type_get(ctx);
957 }
958
959 static u64 spufs_signal1_type_get(void *data)
960 {
961 struct spu_context *ctx = data;
962 u64 ret;
963
964 spu_acquire(ctx);
965 ret = __spufs_signal1_type_get(data);
966 spu_release(ctx);
967
968 return ret;
969 }
970 DEFINE_SIMPLE_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
971 spufs_signal1_type_set, "%llu");
972
973 static void spufs_signal2_type_set(void *data, u64 val)
974 {
975 struct spu_context *ctx = data;
976
977 spu_acquire(ctx);
978 ctx->ops->signal2_type_set(ctx, val);
979 spu_release(ctx);
980 }
981
982 static u64 __spufs_signal2_type_get(void *data)
983 {
984 struct spu_context *ctx = data;
985 return ctx->ops->signal2_type_get(ctx);
986 }
987
988 static u64 spufs_signal2_type_get(void *data)
989 {
990 struct spu_context *ctx = data;
991 u64 ret;
992
993 spu_acquire(ctx);
994 ret = __spufs_signal2_type_get(data);
995 spu_release(ctx);
996
997 return ret;
998 }
999 DEFINE_SIMPLE_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1000 spufs_signal2_type_set, "%llu");
1001
1002 #if SPUFS_MMAP_4K
1003 static struct page *spufs_mss_mmap_nopage(struct vm_area_struct *vma,
1004 unsigned long address, int *type)
1005 {
1006 return spufs_ps_nopage(vma, address, type, 0x0000, 0x1000);
1007 }
1008
1009 static struct vm_operations_struct spufs_mss_mmap_vmops = {
1010 .nopage = spufs_mss_mmap_nopage,
1011 };
1012
1013 /*
1014 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1015 */
1016 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1017 {
1018 if (!(vma->vm_flags & VM_SHARED))
1019 return -EINVAL;
1020
1021 vma->vm_flags |= VM_IO;
1022 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1023 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1024
1025 vma->vm_ops = &spufs_mss_mmap_vmops;
1026 return 0;
1027 }
1028 #else /* SPUFS_MMAP_4K */
1029 #define spufs_mss_mmap NULL
1030 #endif /* !SPUFS_MMAP_4K */
1031
1032 static int spufs_mss_open(struct inode *inode, struct file *file)
1033 {
1034 struct spufs_inode_info *i = SPUFS_I(inode);
1035
1036 file->private_data = i->i_ctx;
1037 return nonseekable_open(inode, file);
1038 }
1039
1040 static const struct file_operations spufs_mss_fops = {
1041 .open = spufs_mss_open,
1042 .mmap = spufs_mss_mmap,
1043 };
1044
1045 static struct page *spufs_psmap_mmap_nopage(struct vm_area_struct *vma,
1046 unsigned long address, int *type)
1047 {
1048 return spufs_ps_nopage(vma, address, type, 0x0000, 0x20000);
1049 }
1050
1051 static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1052 .nopage = spufs_psmap_mmap_nopage,
1053 };
1054
1055 /*
1056 * mmap support for full problem state area [0x00000 - 0x1ffff].
1057 */
1058 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1059 {
1060 if (!(vma->vm_flags & VM_SHARED))
1061 return -EINVAL;
1062
1063 vma->vm_flags |= VM_IO;
1064 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1065 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1066
1067 vma->vm_ops = &spufs_psmap_mmap_vmops;
1068 return 0;
1069 }
1070
1071 static int spufs_psmap_open(struct inode *inode, struct file *file)
1072 {
1073 struct spufs_inode_info *i = SPUFS_I(inode);
1074
1075 file->private_data = i->i_ctx;
1076 return nonseekable_open(inode, file);
1077 }
1078
1079 static const struct file_operations spufs_psmap_fops = {
1080 .open = spufs_psmap_open,
1081 .mmap = spufs_psmap_mmap,
1082 };
1083
1084
1085 #if SPUFS_MMAP_4K
1086 static struct page *spufs_mfc_mmap_nopage(struct vm_area_struct *vma,
1087 unsigned long address, int *type)
1088 {
1089 return spufs_ps_nopage(vma, address, type, 0x3000, 0x1000);
1090 }
1091
1092 static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1093 .nopage = spufs_mfc_mmap_nopage,
1094 };
1095
1096 /*
1097 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1098 */
1099 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1100 {
1101 if (!(vma->vm_flags & VM_SHARED))
1102 return -EINVAL;
1103
1104 vma->vm_flags |= VM_IO;
1105 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1106 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1107
1108 vma->vm_ops = &spufs_mfc_mmap_vmops;
1109 return 0;
1110 }
1111 #else /* SPUFS_MMAP_4K */
1112 #define spufs_mfc_mmap NULL
1113 #endif /* !SPUFS_MMAP_4K */
1114
1115 static int spufs_mfc_open(struct inode *inode, struct file *file)
1116 {
1117 struct spufs_inode_info *i = SPUFS_I(inode);
1118 struct spu_context *ctx = i->i_ctx;
1119
1120 /* we don't want to deal with DMA into other processes */
1121 if (ctx->owner != current->mm)
1122 return -EINVAL;
1123
1124 if (atomic_read(&inode->i_count) != 1)
1125 return -EBUSY;
1126
1127 file->private_data = ctx;
1128 return nonseekable_open(inode, file);
1129 }
1130
1131 /* interrupt-level mfc callback function. */
1132 void spufs_mfc_callback(struct spu *spu)
1133 {
1134 struct spu_context *ctx = spu->ctx;
1135
1136 wake_up_all(&ctx->mfc_wq);
1137
1138 pr_debug("%s %s\n", __FUNCTION__, spu->name);
1139 if (ctx->mfc_fasync) {
1140 u32 free_elements, tagstatus;
1141 unsigned int mask;
1142
1143 /* no need for spu_acquire in interrupt context */
1144 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1145 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1146
1147 mask = 0;
1148 if (free_elements & 0xffff)
1149 mask |= POLLOUT;
1150 if (tagstatus & ctx->tagwait)
1151 mask |= POLLIN;
1152
1153 kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1154 }
1155 }
1156
1157 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1158 {
1159 /* See if there is one tag group is complete */
1160 /* FIXME we need locking around tagwait */
1161 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1162 ctx->tagwait &= ~*status;
1163 if (*status)
1164 return 1;
1165
1166 /* enable interrupt waiting for any tag group,
1167 may silently fail if interrupts are already enabled */
1168 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1169 return 0;
1170 }
1171
1172 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1173 size_t size, loff_t *pos)
1174 {
1175 struct spu_context *ctx = file->private_data;
1176 int ret = -EINVAL;
1177 u32 status;
1178
1179 if (size != 4)
1180 goto out;
1181
1182 spu_acquire(ctx);
1183 if (file->f_flags & O_NONBLOCK) {
1184 status = ctx->ops->read_mfc_tagstatus(ctx);
1185 if (!(status & ctx->tagwait))
1186 ret = -EAGAIN;
1187 else
1188 ctx->tagwait &= ~status;
1189 } else {
1190 ret = spufs_wait(ctx->mfc_wq,
1191 spufs_read_mfc_tagstatus(ctx, &status));
1192 }
1193 spu_release(ctx);
1194
1195 if (ret)
1196 goto out;
1197
1198 ret = 4;
1199 if (copy_to_user(buffer, &status, 4))
1200 ret = -EFAULT;
1201
1202 out:
1203 return ret;
1204 }
1205
1206 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1207 {
1208 pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
1209 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1210
1211 switch (cmd->cmd) {
1212 case MFC_PUT_CMD:
1213 case MFC_PUTF_CMD:
1214 case MFC_PUTB_CMD:
1215 case MFC_GET_CMD:
1216 case MFC_GETF_CMD:
1217 case MFC_GETB_CMD:
1218 break;
1219 default:
1220 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1221 return -EIO;
1222 }
1223
1224 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1225 pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1226 cmd->ea, cmd->lsa);
1227 return -EIO;
1228 }
1229
1230 switch (cmd->size & 0xf) {
1231 case 1:
1232 break;
1233 case 2:
1234 if (cmd->lsa & 1)
1235 goto error;
1236 break;
1237 case 4:
1238 if (cmd->lsa & 3)
1239 goto error;
1240 break;
1241 case 8:
1242 if (cmd->lsa & 7)
1243 goto error;
1244 break;
1245 case 0:
1246 if (cmd->lsa & 15)
1247 goto error;
1248 break;
1249 error:
1250 default:
1251 pr_debug("invalid DMA alignment %x for size %x\n",
1252 cmd->lsa & 0xf, cmd->size);
1253 return -EIO;
1254 }
1255
1256 if (cmd->size > 16 * 1024) {
1257 pr_debug("invalid DMA size %x\n", cmd->size);
1258 return -EIO;
1259 }
1260
1261 if (cmd->tag & 0xfff0) {
1262 /* we reserve the higher tag numbers for kernel use */
1263 pr_debug("invalid DMA tag\n");
1264 return -EIO;
1265 }
1266
1267 if (cmd->class) {
1268 /* not supported in this version */
1269 pr_debug("invalid DMA class\n");
1270 return -EIO;
1271 }
1272
1273 return 0;
1274 }
1275
1276 static int spu_send_mfc_command(struct spu_context *ctx,
1277 struct mfc_dma_command cmd,
1278 int *error)
1279 {
1280 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1281 if (*error == -EAGAIN) {
1282 /* wait for any tag group to complete
1283 so we have space for the new command */
1284 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1285 /* try again, because the queue might be
1286 empty again */
1287 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1288 if (*error == -EAGAIN)
1289 return 0;
1290 }
1291 return 1;
1292 }
1293
1294 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1295 size_t size, loff_t *pos)
1296 {
1297 struct spu_context *ctx = file->private_data;
1298 struct mfc_dma_command cmd;
1299 int ret = -EINVAL;
1300
1301 if (size != sizeof cmd)
1302 goto out;
1303
1304 ret = -EFAULT;
1305 if (copy_from_user(&cmd, buffer, sizeof cmd))
1306 goto out;
1307
1308 ret = spufs_check_valid_dma(&cmd);
1309 if (ret)
1310 goto out;
1311
1312 spu_acquire_runnable(ctx);
1313 if (file->f_flags & O_NONBLOCK) {
1314 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1315 } else {
1316 int status;
1317 ret = spufs_wait(ctx->mfc_wq,
1318 spu_send_mfc_command(ctx, cmd, &status));
1319 if (status)
1320 ret = status;
1321 }
1322 spu_release(ctx);
1323
1324 if (ret)
1325 goto out;
1326
1327 ctx->tagwait |= 1 << cmd.tag;
1328 ret = size;
1329
1330 out:
1331 return ret;
1332 }
1333
1334 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1335 {
1336 struct spu_context *ctx = file->private_data;
1337 u32 free_elements, tagstatus;
1338 unsigned int mask;
1339
1340 spu_acquire(ctx);
1341 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1342 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1343 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1344 spu_release(ctx);
1345
1346 poll_wait(file, &ctx->mfc_wq, wait);
1347
1348 mask = 0;
1349 if (free_elements & 0xffff)
1350 mask |= POLLOUT | POLLWRNORM;
1351 if (tagstatus & ctx->tagwait)
1352 mask |= POLLIN | POLLRDNORM;
1353
1354 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
1355 free_elements, tagstatus, ctx->tagwait);
1356
1357 return mask;
1358 }
1359
1360 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1361 {
1362 struct spu_context *ctx = file->private_data;
1363 int ret;
1364
1365 spu_acquire(ctx);
1366 #if 0
1367 /* this currently hangs */
1368 ret = spufs_wait(ctx->mfc_wq,
1369 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1370 if (ret)
1371 goto out;
1372 ret = spufs_wait(ctx->mfc_wq,
1373 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1374 out:
1375 #else
1376 ret = 0;
1377 #endif
1378 spu_release(ctx);
1379
1380 return ret;
1381 }
1382
1383 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1384 int datasync)
1385 {
1386 return spufs_mfc_flush(file, NULL);
1387 }
1388
1389 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1390 {
1391 struct spu_context *ctx = file->private_data;
1392
1393 return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1394 }
1395
1396 static const struct file_operations spufs_mfc_fops = {
1397 .open = spufs_mfc_open,
1398 .read = spufs_mfc_read,
1399 .write = spufs_mfc_write,
1400 .poll = spufs_mfc_poll,
1401 .flush = spufs_mfc_flush,
1402 .fsync = spufs_mfc_fsync,
1403 .fasync = spufs_mfc_fasync,
1404 .mmap = spufs_mfc_mmap,
1405 };
1406
1407 static void spufs_npc_set(void *data, u64 val)
1408 {
1409 struct spu_context *ctx = data;
1410 spu_acquire(ctx);
1411 ctx->ops->npc_write(ctx, val);
1412 spu_release(ctx);
1413 }
1414
1415 static u64 spufs_npc_get(void *data)
1416 {
1417 struct spu_context *ctx = data;
1418 u64 ret;
1419 spu_acquire(ctx);
1420 ret = ctx->ops->npc_read(ctx);
1421 spu_release(ctx);
1422 return ret;
1423 }
1424 DEFINE_SIMPLE_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1425 "0x%llx\n")
1426
1427 static void spufs_decr_set(void *data, u64 val)
1428 {
1429 struct spu_context *ctx = data;
1430 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1431 spu_acquire_saved(ctx);
1432 lscsa->decr.slot[0] = (u32) val;
1433 spu_release(ctx);
1434 }
1435
1436 static u64 __spufs_decr_get(void *data)
1437 {
1438 struct spu_context *ctx = data;
1439 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1440 return lscsa->decr.slot[0];
1441 }
1442
1443 static u64 spufs_decr_get(void *data)
1444 {
1445 struct spu_context *ctx = data;
1446 u64 ret;
1447 spu_acquire_saved(ctx);
1448 ret = __spufs_decr_get(data);
1449 spu_release(ctx);
1450 return ret;
1451 }
1452 DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1453 "0x%llx\n")
1454
1455 static void spufs_decr_status_set(void *data, u64 val)
1456 {
1457 struct spu_context *ctx = data;
1458 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1459 spu_acquire_saved(ctx);
1460 lscsa->decr_status.slot[0] = (u32) val;
1461 spu_release(ctx);
1462 }
1463
1464 static u64 __spufs_decr_status_get(void *data)
1465 {
1466 struct spu_context *ctx = data;
1467 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1468 return lscsa->decr_status.slot[0];
1469 }
1470
1471 static u64 spufs_decr_status_get(void *data)
1472 {
1473 struct spu_context *ctx = data;
1474 u64 ret;
1475 spu_acquire_saved(ctx);
1476 ret = __spufs_decr_status_get(data);
1477 spu_release(ctx);
1478 return ret;
1479 }
1480 DEFINE_SIMPLE_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1481 spufs_decr_status_set, "0x%llx\n")
1482
1483 static void spufs_event_mask_set(void *data, u64 val)
1484 {
1485 struct spu_context *ctx = data;
1486 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1487 spu_acquire_saved(ctx);
1488 lscsa->event_mask.slot[0] = (u32) val;
1489 spu_release(ctx);
1490 }
1491
1492 static u64 __spufs_event_mask_get(void *data)
1493 {
1494 struct spu_context *ctx = data;
1495 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1496 return lscsa->event_mask.slot[0];
1497 }
1498
1499 static u64 spufs_event_mask_get(void *data)
1500 {
1501 struct spu_context *ctx = data;
1502 u64 ret;
1503 spu_acquire_saved(ctx);
1504 ret = __spufs_event_mask_get(data);
1505 spu_release(ctx);
1506 return ret;
1507 }
1508 DEFINE_SIMPLE_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1509 spufs_event_mask_set, "0x%llx\n")
1510
1511 static u64 __spufs_event_status_get(void *data)
1512 {
1513 struct spu_context *ctx = data;
1514 struct spu_state *state = &ctx->csa;
1515 u64 stat;
1516 stat = state->spu_chnlcnt_RW[0];
1517 if (stat)
1518 return state->spu_chnldata_RW[0];
1519 return 0;
1520 }
1521
1522 static u64 spufs_event_status_get(void *data)
1523 {
1524 struct spu_context *ctx = data;
1525 u64 ret = 0;
1526
1527 spu_acquire_saved(ctx);
1528 ret = __spufs_event_status_get(data);
1529 spu_release(ctx);
1530 return ret;
1531 }
1532 DEFINE_SIMPLE_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1533 NULL, "0x%llx\n")
1534
1535 static void spufs_srr0_set(void *data, u64 val)
1536 {
1537 struct spu_context *ctx = data;
1538 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1539 spu_acquire_saved(ctx);
1540 lscsa->srr0.slot[0] = (u32) val;
1541 spu_release(ctx);
1542 }
1543
1544 static u64 spufs_srr0_get(void *data)
1545 {
1546 struct spu_context *ctx = data;
1547 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1548 u64 ret;
1549 spu_acquire_saved(ctx);
1550 ret = lscsa->srr0.slot[0];
1551 spu_release(ctx);
1552 return ret;
1553 }
1554 DEFINE_SIMPLE_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1555 "0x%llx\n")
1556
1557 static u64 spufs_id_get(void *data)
1558 {
1559 struct spu_context *ctx = data;
1560 u64 num;
1561
1562 spu_acquire(ctx);
1563 if (ctx->state == SPU_STATE_RUNNABLE)
1564 num = ctx->spu->number;
1565 else
1566 num = (unsigned int)-1;
1567 spu_release(ctx);
1568
1569 return num;
1570 }
1571 DEFINE_SIMPLE_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n")
1572
1573 static u64 __spufs_object_id_get(void *data)
1574 {
1575 struct spu_context *ctx = data;
1576 return ctx->object_id;
1577 }
1578
1579 static u64 spufs_object_id_get(void *data)
1580 {
1581 /* FIXME: Should there really be no locking here? */
1582 return __spufs_object_id_get(data);
1583 }
1584
1585 static void spufs_object_id_set(void *data, u64 id)
1586 {
1587 struct spu_context *ctx = data;
1588 ctx->object_id = id;
1589 }
1590
1591 DEFINE_SIMPLE_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1592 spufs_object_id_set, "0x%llx\n");
1593
1594 static u64 __spufs_lslr_get(void *data)
1595 {
1596 struct spu_context *ctx = data;
1597 return ctx->csa.priv2.spu_lslr_RW;
1598 }
1599
1600 static u64 spufs_lslr_get(void *data)
1601 {
1602 struct spu_context *ctx = data;
1603 u64 ret;
1604
1605 spu_acquire_saved(ctx);
1606 ret = __spufs_lslr_get(data);
1607 spu_release(ctx);
1608
1609 return ret;
1610 }
1611 DEFINE_SIMPLE_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n")
1612
1613 static int spufs_info_open(struct inode *inode, struct file *file)
1614 {
1615 struct spufs_inode_info *i = SPUFS_I(inode);
1616 struct spu_context *ctx = i->i_ctx;
1617 file->private_data = ctx;
1618 return 0;
1619 }
1620
1621 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
1622 char __user *buf, size_t len, loff_t *pos)
1623 {
1624 u32 mbox_stat;
1625 u32 data;
1626
1627 mbox_stat = ctx->csa.prob.mb_stat_R;
1628 if (mbox_stat & 0x0000ff) {
1629 data = ctx->csa.prob.pu_mb_R;
1630 }
1631
1632 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1633 }
1634
1635 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1636 size_t len, loff_t *pos)
1637 {
1638 int ret;
1639 struct spu_context *ctx = file->private_data;
1640
1641 if (!access_ok(VERIFY_WRITE, buf, len))
1642 return -EFAULT;
1643
1644 spu_acquire_saved(ctx);
1645 spin_lock(&ctx->csa.register_lock);
1646 ret = __spufs_mbox_info_read(ctx, buf, len, pos);
1647 spin_unlock(&ctx->csa.register_lock);
1648 spu_release(ctx);
1649
1650 return ret;
1651 }
1652
1653 static const struct file_operations spufs_mbox_info_fops = {
1654 .open = spufs_info_open,
1655 .read = spufs_mbox_info_read,
1656 .llseek = generic_file_llseek,
1657 };
1658
1659 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
1660 char __user *buf, size_t len, loff_t *pos)
1661 {
1662 u32 ibox_stat;
1663 u32 data;
1664
1665 ibox_stat = ctx->csa.prob.mb_stat_R;
1666 if (ibox_stat & 0xff0000) {
1667 data = ctx->csa.priv2.puint_mb_R;
1668 }
1669
1670 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1671 }
1672
1673 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
1674 size_t len, loff_t *pos)
1675 {
1676 struct spu_context *ctx = file->private_data;
1677 int ret;
1678
1679 if (!access_ok(VERIFY_WRITE, buf, len))
1680 return -EFAULT;
1681
1682 spu_acquire_saved(ctx);
1683 spin_lock(&ctx->csa.register_lock);
1684 ret = __spufs_ibox_info_read(ctx, buf, len, pos);
1685 spin_unlock(&ctx->csa.register_lock);
1686 spu_release(ctx);
1687
1688 return ret;
1689 }
1690
1691 static const struct file_operations spufs_ibox_info_fops = {
1692 .open = spufs_info_open,
1693 .read = spufs_ibox_info_read,
1694 .llseek = generic_file_llseek,
1695 };
1696
1697 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
1698 char __user *buf, size_t len, loff_t *pos)
1699 {
1700 int i, cnt;
1701 u32 data[4];
1702 u32 wbox_stat;
1703
1704 wbox_stat = ctx->csa.prob.mb_stat_R;
1705 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
1706 for (i = 0; i < cnt; i++) {
1707 data[i] = ctx->csa.spu_mailbox_data[i];
1708 }
1709
1710 return simple_read_from_buffer(buf, len, pos, &data,
1711 cnt * sizeof(u32));
1712 }
1713
1714 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
1715 size_t len, loff_t *pos)
1716 {
1717 struct spu_context *ctx = file->private_data;
1718 int ret;
1719
1720 if (!access_ok(VERIFY_WRITE, buf, len))
1721 return -EFAULT;
1722
1723 spu_acquire_saved(ctx);
1724 spin_lock(&ctx->csa.register_lock);
1725 ret = __spufs_wbox_info_read(ctx, buf, len, pos);
1726 spin_unlock(&ctx->csa.register_lock);
1727 spu_release(ctx);
1728
1729 return ret;
1730 }
1731
1732 static const struct file_operations spufs_wbox_info_fops = {
1733 .open = spufs_info_open,
1734 .read = spufs_wbox_info_read,
1735 .llseek = generic_file_llseek,
1736 };
1737
1738 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
1739 char __user *buf, size_t len, loff_t *pos)
1740 {
1741 struct spu_dma_info info;
1742 struct mfc_cq_sr *qp, *spuqp;
1743 int i;
1744
1745 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
1746 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
1747 info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
1748 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
1749 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
1750 for (i = 0; i < 16; i++) {
1751 qp = &info.dma_info_command_data[i];
1752 spuqp = &ctx->csa.priv2.spuq[i];
1753
1754 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
1755 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
1756 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
1757 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
1758 }
1759
1760 return simple_read_from_buffer(buf, len, pos, &info,
1761 sizeof info);
1762 }
1763
1764 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
1765 size_t len, loff_t *pos)
1766 {
1767 struct spu_context *ctx = file->private_data;
1768 int ret;
1769
1770 if (!access_ok(VERIFY_WRITE, buf, len))
1771 return -EFAULT;
1772
1773 spu_acquire_saved(ctx);
1774 spin_lock(&ctx->csa.register_lock);
1775 ret = __spufs_dma_info_read(ctx, buf, len, pos);
1776 spin_unlock(&ctx->csa.register_lock);
1777 spu_release(ctx);
1778
1779 return ret;
1780 }
1781
1782 static const struct file_operations spufs_dma_info_fops = {
1783 .open = spufs_info_open,
1784 .read = spufs_dma_info_read,
1785 };
1786
1787 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
1788 char __user *buf, size_t len, loff_t *pos)
1789 {
1790 struct spu_proxydma_info info;
1791 struct mfc_cq_sr *qp, *puqp;
1792 int ret = sizeof info;
1793 int i;
1794
1795 if (len < ret)
1796 return -EINVAL;
1797
1798 if (!access_ok(VERIFY_WRITE, buf, len))
1799 return -EFAULT;
1800
1801 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
1802 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
1803 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
1804 for (i = 0; i < 8; i++) {
1805 qp = &info.proxydma_info_command_data[i];
1806 puqp = &ctx->csa.priv2.puq[i];
1807
1808 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
1809 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
1810 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
1811 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
1812 }
1813
1814 return simple_read_from_buffer(buf, len, pos, &info,
1815 sizeof info);
1816 }
1817
1818 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
1819 size_t len, loff_t *pos)
1820 {
1821 struct spu_context *ctx = file->private_data;
1822 int ret;
1823
1824 spu_acquire_saved(ctx);
1825 spin_lock(&ctx->csa.register_lock);
1826 ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
1827 spin_unlock(&ctx->csa.register_lock);
1828 spu_release(ctx);
1829
1830 return ret;
1831 }
1832
1833 static const struct file_operations spufs_proxydma_info_fops = {
1834 .open = spufs_info_open,
1835 .read = spufs_proxydma_info_read,
1836 };
1837
1838 struct tree_descr spufs_dir_contents[] = {
1839 { "mem", &spufs_mem_fops, 0666, },
1840 { "regs", &spufs_regs_fops, 0666, },
1841 { "mbox", &spufs_mbox_fops, 0444, },
1842 { "ibox", &spufs_ibox_fops, 0444, },
1843 { "wbox", &spufs_wbox_fops, 0222, },
1844 { "mbox_stat", &spufs_mbox_stat_fops, 0444, },
1845 { "ibox_stat", &spufs_ibox_stat_fops, 0444, },
1846 { "wbox_stat", &spufs_wbox_stat_fops, 0444, },
1847 { "signal1", &spufs_signal1_fops, 0666, },
1848 { "signal2", &spufs_signal2_fops, 0666, },
1849 { "signal1_type", &spufs_signal1_type, 0666, },
1850 { "signal2_type", &spufs_signal2_type, 0666, },
1851 { "cntl", &spufs_cntl_fops, 0666, },
1852 { "fpcr", &spufs_fpcr_fops, 0666, },
1853 { "lslr", &spufs_lslr_ops, 0444, },
1854 { "mfc", &spufs_mfc_fops, 0666, },
1855 { "mss", &spufs_mss_fops, 0666, },
1856 { "npc", &spufs_npc_ops, 0666, },
1857 { "srr0", &spufs_srr0_ops, 0666, },
1858 { "decr", &spufs_decr_ops, 0666, },
1859 { "decr_status", &spufs_decr_status_ops, 0666, },
1860 { "event_mask", &spufs_event_mask_ops, 0666, },
1861 { "event_status", &spufs_event_status_ops, 0444, },
1862 { "psmap", &spufs_psmap_fops, 0666, },
1863 { "phys-id", &spufs_id_ops, 0666, },
1864 { "object-id", &spufs_object_id_ops, 0666, },
1865 { "mbox_info", &spufs_mbox_info_fops, 0444, },
1866 { "ibox_info", &spufs_ibox_info_fops, 0444, },
1867 { "wbox_info", &spufs_wbox_info_fops, 0444, },
1868 { "dma_info", &spufs_dma_info_fops, 0444, },
1869 { "proxydma_info", &spufs_proxydma_info_fops, 0444, },
1870 {},
1871 };
1872
1873 struct tree_descr spufs_dir_nosched_contents[] = {
1874 { "mem", &spufs_mem_fops, 0666, },
1875 { "mbox", &spufs_mbox_fops, 0444, },
1876 { "ibox", &spufs_ibox_fops, 0444, },
1877 { "wbox", &spufs_wbox_fops, 0222, },
1878 { "mbox_stat", &spufs_mbox_stat_fops, 0444, },
1879 { "ibox_stat", &spufs_ibox_stat_fops, 0444, },
1880 { "wbox_stat", &spufs_wbox_stat_fops, 0444, },
1881 { "signal1", &spufs_signal1_fops, 0666, },
1882 { "signal2", &spufs_signal2_fops, 0666, },
1883 { "signal1_type", &spufs_signal1_type, 0666, },
1884 { "signal2_type", &spufs_signal2_type, 0666, },
1885 { "mss", &spufs_mss_fops, 0666, },
1886 { "mfc", &spufs_mfc_fops, 0666, },
1887 { "cntl", &spufs_cntl_fops, 0666, },
1888 { "npc", &spufs_npc_ops, 0666, },
1889 { "psmap", &spufs_psmap_fops, 0666, },
1890 { "phys-id", &spufs_id_ops, 0666, },
1891 { "object-id", &spufs_object_id_ops, 0666, },
1892 {},
1893 };
1894
1895 struct spufs_coredump_reader spufs_coredump_read[] = {
1896 { "regs", __spufs_regs_read, NULL, 128 * 16 },
1897 { "fpcr", __spufs_fpcr_read, NULL, 16 },
1898 { "lslr", NULL, __spufs_lslr_get, 11 },
1899 { "decr", NULL, __spufs_decr_get, 11 },
1900 { "decr_status", NULL, __spufs_decr_status_get, 11 },
1901 { "mem", __spufs_mem_read, NULL, 256 * 1024, },
1902 { "signal1", __spufs_signal1_read, NULL, 4 },
1903 { "signal1_type", NULL, __spufs_signal1_type_get, 2 },
1904 { "signal2", __spufs_signal2_read, NULL, 4 },
1905 { "signal2_type", NULL, __spufs_signal2_type_get, 2 },
1906 { "event_mask", NULL, __spufs_event_mask_get, 8 },
1907 { "event_status", NULL, __spufs_event_status_get, 8 },
1908 { "mbox_info", __spufs_mbox_info_read, NULL, 4 },
1909 { "ibox_info", __spufs_ibox_info_read, NULL, 4 },
1910 { "wbox_info", __spufs_wbox_info_read, NULL, 16 },
1911 { "dma_info", __spufs_dma_info_read, NULL, 69 * 8 },
1912 { "proxydma_info", __spufs_proxydma_info_read, NULL, 35 * 8 },
1913 { "object-id", NULL, __spufs_object_id_get, 19 },
1914 { },
1915 };
1916 int spufs_coredump_num_notes = ARRAY_SIZE(spufs_coredump_read) - 1;
1917