]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/powerpc/platforms/cell/spufs/file.c
Merge branch 'linux-2.6' into for-2.6.24
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / platforms / cell / spufs / file.c
1 /*
2 * SPU file system -- file contents
3 *
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5 *
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #undef DEBUG
24
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32
33 #include <asm/io.h>
34 #include <asm/semaphore.h>
35 #include <asm/spu.h>
36 #include <asm/spu_info.h>
37 #include <asm/uaccess.h>
38
39 #include "spufs.h"
40
41 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
42
43
44 static int
45 spufs_mem_open(struct inode *inode, struct file *file)
46 {
47 struct spufs_inode_info *i = SPUFS_I(inode);
48 struct spu_context *ctx = i->i_ctx;
49
50 mutex_lock(&ctx->mapping_lock);
51 file->private_data = ctx;
52 if (!i->i_openers++)
53 ctx->local_store = inode->i_mapping;
54 mutex_unlock(&ctx->mapping_lock);
55 return 0;
56 }
57
58 static int
59 spufs_mem_release(struct inode *inode, struct file *file)
60 {
61 struct spufs_inode_info *i = SPUFS_I(inode);
62 struct spu_context *ctx = i->i_ctx;
63
64 mutex_lock(&ctx->mapping_lock);
65 if (!--i->i_openers)
66 ctx->local_store = NULL;
67 mutex_unlock(&ctx->mapping_lock);
68 return 0;
69 }
70
71 static ssize_t
72 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
73 size_t size, loff_t *pos)
74 {
75 char *local_store = ctx->ops->get_ls(ctx);
76 return simple_read_from_buffer(buffer, size, pos, local_store,
77 LS_SIZE);
78 }
79
80 static ssize_t
81 spufs_mem_read(struct file *file, char __user *buffer,
82 size_t size, loff_t *pos)
83 {
84 struct spu_context *ctx = file->private_data;
85 ssize_t ret;
86
87 spu_acquire(ctx);
88 ret = __spufs_mem_read(ctx, buffer, size, pos);
89 spu_release(ctx);
90 return ret;
91 }
92
93 static ssize_t
94 spufs_mem_write(struct file *file, const char __user *buffer,
95 size_t size, loff_t *ppos)
96 {
97 struct spu_context *ctx = file->private_data;
98 char *local_store;
99 loff_t pos = *ppos;
100 int ret;
101
102 if (pos < 0)
103 return -EINVAL;
104 if (pos > LS_SIZE)
105 return -EFBIG;
106 if (size > LS_SIZE - pos)
107 size = LS_SIZE - pos;
108
109 spu_acquire(ctx);
110 local_store = ctx->ops->get_ls(ctx);
111 ret = copy_from_user(local_store + pos, buffer, size);
112 spu_release(ctx);
113
114 if (ret)
115 return -EFAULT;
116 *ppos = pos + size;
117 return size;
118 }
119
120 static unsigned long spufs_mem_mmap_nopfn(struct vm_area_struct *vma,
121 unsigned long address)
122 {
123 struct spu_context *ctx = vma->vm_file->private_data;
124 unsigned long pfn, offset, addr0 = address;
125 #ifdef CONFIG_SPU_FS_64K_LS
126 struct spu_state *csa = &ctx->csa;
127 int psize;
128
129 /* Check what page size we are using */
130 psize = get_slice_psize(vma->vm_mm, address);
131
132 /* Some sanity checking */
133 BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
134
135 /* Wow, 64K, cool, we need to align the address though */
136 if (csa->use_big_pages) {
137 BUG_ON(vma->vm_start & 0xffff);
138 address &= ~0xfffful;
139 }
140 #endif /* CONFIG_SPU_FS_64K_LS */
141
142 offset = (address - vma->vm_start) + (vma->vm_pgoff << PAGE_SHIFT);
143 if (offset >= LS_SIZE)
144 return NOPFN_SIGBUS;
145
146 pr_debug("spufs_mem_mmap_nopfn address=0x%lx -> 0x%lx, offset=0x%lx\n",
147 addr0, address, offset);
148
149 spu_acquire(ctx);
150
151 if (ctx->state == SPU_STATE_SAVED) {
152 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
153 & ~_PAGE_NO_CACHE);
154 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
155 } else {
156 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
157 | _PAGE_NO_CACHE);
158 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
159 }
160 vm_insert_pfn(vma, address, pfn);
161
162 spu_release(ctx);
163
164 return NOPFN_REFAULT;
165 }
166
167
168 static struct vm_operations_struct spufs_mem_mmap_vmops = {
169 .nopfn = spufs_mem_mmap_nopfn,
170 };
171
172 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
173 {
174 #ifdef CONFIG_SPU_FS_64K_LS
175 struct spu_context *ctx = file->private_data;
176 struct spu_state *csa = &ctx->csa;
177
178 /* Sanity check VMA alignment */
179 if (csa->use_big_pages) {
180 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
181 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
182 vma->vm_pgoff);
183 if (vma->vm_start & 0xffff)
184 return -EINVAL;
185 if (vma->vm_pgoff & 0xf)
186 return -EINVAL;
187 }
188 #endif /* CONFIG_SPU_FS_64K_LS */
189
190 if (!(vma->vm_flags & VM_SHARED))
191 return -EINVAL;
192
193 vma->vm_flags |= VM_IO | VM_PFNMAP;
194 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
195 | _PAGE_NO_CACHE);
196
197 vma->vm_ops = &spufs_mem_mmap_vmops;
198 return 0;
199 }
200
201 #ifdef CONFIG_SPU_FS_64K_LS
202 static unsigned long spufs_get_unmapped_area(struct file *file,
203 unsigned long addr, unsigned long len, unsigned long pgoff,
204 unsigned long flags)
205 {
206 struct spu_context *ctx = file->private_data;
207 struct spu_state *csa = &ctx->csa;
208
209 /* If not using big pages, fallback to normal MM g_u_a */
210 if (!csa->use_big_pages)
211 return current->mm->get_unmapped_area(file, addr, len,
212 pgoff, flags);
213
214 /* Else, try to obtain a 64K pages slice */
215 return slice_get_unmapped_area(addr, len, flags,
216 MMU_PAGE_64K, 1, 0);
217 }
218 #endif /* CONFIG_SPU_FS_64K_LS */
219
220 static const struct file_operations spufs_mem_fops = {
221 .open = spufs_mem_open,
222 .release = spufs_mem_release,
223 .read = spufs_mem_read,
224 .write = spufs_mem_write,
225 .llseek = generic_file_llseek,
226 .mmap = spufs_mem_mmap,
227 #ifdef CONFIG_SPU_FS_64K_LS
228 .get_unmapped_area = spufs_get_unmapped_area,
229 #endif
230 };
231
232 static unsigned long spufs_ps_nopfn(struct vm_area_struct *vma,
233 unsigned long address,
234 unsigned long ps_offs,
235 unsigned long ps_size)
236 {
237 struct spu_context *ctx = vma->vm_file->private_data;
238 unsigned long area, offset = address - vma->vm_start;
239 int ret;
240
241 offset += vma->vm_pgoff << PAGE_SHIFT;
242 if (offset >= ps_size)
243 return NOPFN_SIGBUS;
244
245 /* error here usually means a signal.. we might want to test
246 * the error code more precisely though
247 */
248 ret = spu_acquire_runnable(ctx, 0);
249 if (ret)
250 return NOPFN_REFAULT;
251
252 area = ctx->spu->problem_phys + ps_offs;
253 vm_insert_pfn(vma, address, (area + offset) >> PAGE_SHIFT);
254 spu_release(ctx);
255
256 return NOPFN_REFAULT;
257 }
258
259 #if SPUFS_MMAP_4K
260 static unsigned long spufs_cntl_mmap_nopfn(struct vm_area_struct *vma,
261 unsigned long address)
262 {
263 return spufs_ps_nopfn(vma, address, 0x4000, 0x1000);
264 }
265
266 static struct vm_operations_struct spufs_cntl_mmap_vmops = {
267 .nopfn = spufs_cntl_mmap_nopfn,
268 };
269
270 /*
271 * mmap support for problem state control area [0x4000 - 0x4fff].
272 */
273 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
274 {
275 if (!(vma->vm_flags & VM_SHARED))
276 return -EINVAL;
277
278 vma->vm_flags |= VM_IO | VM_PFNMAP;
279 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
280 | _PAGE_NO_CACHE | _PAGE_GUARDED);
281
282 vma->vm_ops = &spufs_cntl_mmap_vmops;
283 return 0;
284 }
285 #else /* SPUFS_MMAP_4K */
286 #define spufs_cntl_mmap NULL
287 #endif /* !SPUFS_MMAP_4K */
288
289 static u64 spufs_cntl_get(void *data)
290 {
291 struct spu_context *ctx = data;
292 u64 val;
293
294 spu_acquire(ctx);
295 val = ctx->ops->status_read(ctx);
296 spu_release(ctx);
297
298 return val;
299 }
300
301 static void spufs_cntl_set(void *data, u64 val)
302 {
303 struct spu_context *ctx = data;
304
305 spu_acquire(ctx);
306 ctx->ops->runcntl_write(ctx, val);
307 spu_release(ctx);
308 }
309
310 static int spufs_cntl_open(struct inode *inode, struct file *file)
311 {
312 struct spufs_inode_info *i = SPUFS_I(inode);
313 struct spu_context *ctx = i->i_ctx;
314
315 mutex_lock(&ctx->mapping_lock);
316 file->private_data = ctx;
317 if (!i->i_openers++)
318 ctx->cntl = inode->i_mapping;
319 mutex_unlock(&ctx->mapping_lock);
320 return simple_attr_open(inode, file, spufs_cntl_get,
321 spufs_cntl_set, "0x%08lx");
322 }
323
324 static int
325 spufs_cntl_release(struct inode *inode, struct file *file)
326 {
327 struct spufs_inode_info *i = SPUFS_I(inode);
328 struct spu_context *ctx = i->i_ctx;
329
330 simple_attr_close(inode, file);
331
332 mutex_lock(&ctx->mapping_lock);
333 if (!--i->i_openers)
334 ctx->cntl = NULL;
335 mutex_unlock(&ctx->mapping_lock);
336 return 0;
337 }
338
339 static const struct file_operations spufs_cntl_fops = {
340 .open = spufs_cntl_open,
341 .release = spufs_cntl_release,
342 .read = simple_attr_read,
343 .write = simple_attr_write,
344 .mmap = spufs_cntl_mmap,
345 };
346
347 static int
348 spufs_regs_open(struct inode *inode, struct file *file)
349 {
350 struct spufs_inode_info *i = SPUFS_I(inode);
351 file->private_data = i->i_ctx;
352 return 0;
353 }
354
355 static ssize_t
356 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
357 size_t size, loff_t *pos)
358 {
359 struct spu_lscsa *lscsa = ctx->csa.lscsa;
360 return simple_read_from_buffer(buffer, size, pos,
361 lscsa->gprs, sizeof lscsa->gprs);
362 }
363
364 static ssize_t
365 spufs_regs_read(struct file *file, char __user *buffer,
366 size_t size, loff_t *pos)
367 {
368 int ret;
369 struct spu_context *ctx = file->private_data;
370
371 spu_acquire_saved(ctx);
372 ret = __spufs_regs_read(ctx, buffer, size, pos);
373 spu_release_saved(ctx);
374 return ret;
375 }
376
377 static ssize_t
378 spufs_regs_write(struct file *file, const char __user *buffer,
379 size_t size, loff_t *pos)
380 {
381 struct spu_context *ctx = file->private_data;
382 struct spu_lscsa *lscsa = ctx->csa.lscsa;
383 int ret;
384
385 size = min_t(ssize_t, sizeof lscsa->gprs - *pos, size);
386 if (size <= 0)
387 return -EFBIG;
388 *pos += size;
389
390 spu_acquire_saved(ctx);
391
392 ret = copy_from_user(lscsa->gprs + *pos - size,
393 buffer, size) ? -EFAULT : size;
394
395 spu_release_saved(ctx);
396 return ret;
397 }
398
399 static const struct file_operations spufs_regs_fops = {
400 .open = spufs_regs_open,
401 .read = spufs_regs_read,
402 .write = spufs_regs_write,
403 .llseek = generic_file_llseek,
404 };
405
406 static ssize_t
407 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
408 size_t size, loff_t * pos)
409 {
410 struct spu_lscsa *lscsa = ctx->csa.lscsa;
411 return simple_read_from_buffer(buffer, size, pos,
412 &lscsa->fpcr, sizeof(lscsa->fpcr));
413 }
414
415 static ssize_t
416 spufs_fpcr_read(struct file *file, char __user * buffer,
417 size_t size, loff_t * pos)
418 {
419 int ret;
420 struct spu_context *ctx = file->private_data;
421
422 spu_acquire_saved(ctx);
423 ret = __spufs_fpcr_read(ctx, buffer, size, pos);
424 spu_release_saved(ctx);
425 return ret;
426 }
427
428 static ssize_t
429 spufs_fpcr_write(struct file *file, const char __user * buffer,
430 size_t size, loff_t * pos)
431 {
432 struct spu_context *ctx = file->private_data;
433 struct spu_lscsa *lscsa = ctx->csa.lscsa;
434 int ret;
435
436 size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
437 if (size <= 0)
438 return -EFBIG;
439 *pos += size;
440
441 spu_acquire_saved(ctx);
442
443 ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
444 buffer, size) ? -EFAULT : size;
445
446 spu_release_saved(ctx);
447 return ret;
448 }
449
450 static const struct file_operations spufs_fpcr_fops = {
451 .open = spufs_regs_open,
452 .read = spufs_fpcr_read,
453 .write = spufs_fpcr_write,
454 .llseek = generic_file_llseek,
455 };
456
457 /* generic open function for all pipe-like files */
458 static int spufs_pipe_open(struct inode *inode, struct file *file)
459 {
460 struct spufs_inode_info *i = SPUFS_I(inode);
461 file->private_data = i->i_ctx;
462
463 return nonseekable_open(inode, file);
464 }
465
466 /*
467 * Read as many bytes from the mailbox as possible, until
468 * one of the conditions becomes true:
469 *
470 * - no more data available in the mailbox
471 * - end of the user provided buffer
472 * - end of the mapped area
473 */
474 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
475 size_t len, loff_t *pos)
476 {
477 struct spu_context *ctx = file->private_data;
478 u32 mbox_data, __user *udata;
479 ssize_t count;
480
481 if (len < 4)
482 return -EINVAL;
483
484 if (!access_ok(VERIFY_WRITE, buf, len))
485 return -EFAULT;
486
487 udata = (void __user *)buf;
488
489 spu_acquire(ctx);
490 for (count = 0; (count + 4) <= len; count += 4, udata++) {
491 int ret;
492 ret = ctx->ops->mbox_read(ctx, &mbox_data);
493 if (ret == 0)
494 break;
495
496 /*
497 * at the end of the mapped area, we can fault
498 * but still need to return the data we have
499 * read successfully so far.
500 */
501 ret = __put_user(mbox_data, udata);
502 if (ret) {
503 if (!count)
504 count = -EFAULT;
505 break;
506 }
507 }
508 spu_release(ctx);
509
510 if (!count)
511 count = -EAGAIN;
512
513 return count;
514 }
515
516 static const struct file_operations spufs_mbox_fops = {
517 .open = spufs_pipe_open,
518 .read = spufs_mbox_read,
519 };
520
521 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
522 size_t len, loff_t *pos)
523 {
524 struct spu_context *ctx = file->private_data;
525 u32 mbox_stat;
526
527 if (len < 4)
528 return -EINVAL;
529
530 spu_acquire(ctx);
531
532 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
533
534 spu_release(ctx);
535
536 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
537 return -EFAULT;
538
539 return 4;
540 }
541
542 static const struct file_operations spufs_mbox_stat_fops = {
543 .open = spufs_pipe_open,
544 .read = spufs_mbox_stat_read,
545 };
546
547 /* low-level ibox access function */
548 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
549 {
550 return ctx->ops->ibox_read(ctx, data);
551 }
552
553 static int spufs_ibox_fasync(int fd, struct file *file, int on)
554 {
555 struct spu_context *ctx = file->private_data;
556
557 return fasync_helper(fd, file, on, &ctx->ibox_fasync);
558 }
559
560 /* interrupt-level ibox callback function. */
561 void spufs_ibox_callback(struct spu *spu)
562 {
563 struct spu_context *ctx = spu->ctx;
564
565 wake_up_all(&ctx->ibox_wq);
566 kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
567 }
568
569 /*
570 * Read as many bytes from the interrupt mailbox as possible, until
571 * one of the conditions becomes true:
572 *
573 * - no more data available in the mailbox
574 * - end of the user provided buffer
575 * - end of the mapped area
576 *
577 * If the file is opened without O_NONBLOCK, we wait here until
578 * any data is available, but return when we have been able to
579 * read something.
580 */
581 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
582 size_t len, loff_t *pos)
583 {
584 struct spu_context *ctx = file->private_data;
585 u32 ibox_data, __user *udata;
586 ssize_t count;
587
588 if (len < 4)
589 return -EINVAL;
590
591 if (!access_ok(VERIFY_WRITE, buf, len))
592 return -EFAULT;
593
594 udata = (void __user *)buf;
595
596 spu_acquire(ctx);
597
598 /* wait only for the first element */
599 count = 0;
600 if (file->f_flags & O_NONBLOCK) {
601 if (!spu_ibox_read(ctx, &ibox_data))
602 count = -EAGAIN;
603 } else {
604 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
605 }
606 if (count)
607 goto out;
608
609 /* if we can't write at all, return -EFAULT */
610 count = __put_user(ibox_data, udata);
611 if (count)
612 goto out;
613
614 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
615 int ret;
616 ret = ctx->ops->ibox_read(ctx, &ibox_data);
617 if (ret == 0)
618 break;
619 /*
620 * at the end of the mapped area, we can fault
621 * but still need to return the data we have
622 * read successfully so far.
623 */
624 ret = __put_user(ibox_data, udata);
625 if (ret)
626 break;
627 }
628
629 out:
630 spu_release(ctx);
631
632 return count;
633 }
634
635 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
636 {
637 struct spu_context *ctx = file->private_data;
638 unsigned int mask;
639
640 poll_wait(file, &ctx->ibox_wq, wait);
641
642 spu_acquire(ctx);
643 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
644 spu_release(ctx);
645
646 return mask;
647 }
648
649 static const struct file_operations spufs_ibox_fops = {
650 .open = spufs_pipe_open,
651 .read = spufs_ibox_read,
652 .poll = spufs_ibox_poll,
653 .fasync = spufs_ibox_fasync,
654 };
655
656 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
657 size_t len, loff_t *pos)
658 {
659 struct spu_context *ctx = file->private_data;
660 u32 ibox_stat;
661
662 if (len < 4)
663 return -EINVAL;
664
665 spu_acquire(ctx);
666 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
667 spu_release(ctx);
668
669 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
670 return -EFAULT;
671
672 return 4;
673 }
674
675 static const struct file_operations spufs_ibox_stat_fops = {
676 .open = spufs_pipe_open,
677 .read = spufs_ibox_stat_read,
678 };
679
680 /* low-level mailbox write */
681 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
682 {
683 return ctx->ops->wbox_write(ctx, data);
684 }
685
686 static int spufs_wbox_fasync(int fd, struct file *file, int on)
687 {
688 struct spu_context *ctx = file->private_data;
689 int ret;
690
691 ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
692
693 return ret;
694 }
695
696 /* interrupt-level wbox callback function. */
697 void spufs_wbox_callback(struct spu *spu)
698 {
699 struct spu_context *ctx = spu->ctx;
700
701 wake_up_all(&ctx->wbox_wq);
702 kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
703 }
704
705 /*
706 * Write as many bytes to the interrupt mailbox as possible, until
707 * one of the conditions becomes true:
708 *
709 * - the mailbox is full
710 * - end of the user provided buffer
711 * - end of the mapped area
712 *
713 * If the file is opened without O_NONBLOCK, we wait here until
714 * space is availabyl, but return when we have been able to
715 * write something.
716 */
717 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
718 size_t len, loff_t *pos)
719 {
720 struct spu_context *ctx = file->private_data;
721 u32 wbox_data, __user *udata;
722 ssize_t count;
723
724 if (len < 4)
725 return -EINVAL;
726
727 udata = (void __user *)buf;
728 if (!access_ok(VERIFY_READ, buf, len))
729 return -EFAULT;
730
731 if (__get_user(wbox_data, udata))
732 return -EFAULT;
733
734 spu_acquire(ctx);
735
736 /*
737 * make sure we can at least write one element, by waiting
738 * in case of !O_NONBLOCK
739 */
740 count = 0;
741 if (file->f_flags & O_NONBLOCK) {
742 if (!spu_wbox_write(ctx, wbox_data))
743 count = -EAGAIN;
744 } else {
745 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
746 }
747
748 if (count)
749 goto out;
750
751 /* write aѕ much as possible */
752 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
753 int ret;
754 ret = __get_user(wbox_data, udata);
755 if (ret)
756 break;
757
758 ret = spu_wbox_write(ctx, wbox_data);
759 if (ret == 0)
760 break;
761 }
762
763 out:
764 spu_release(ctx);
765 return count;
766 }
767
768 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
769 {
770 struct spu_context *ctx = file->private_data;
771 unsigned int mask;
772
773 poll_wait(file, &ctx->wbox_wq, wait);
774
775 spu_acquire(ctx);
776 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
777 spu_release(ctx);
778
779 return mask;
780 }
781
782 static const struct file_operations spufs_wbox_fops = {
783 .open = spufs_pipe_open,
784 .write = spufs_wbox_write,
785 .poll = spufs_wbox_poll,
786 .fasync = spufs_wbox_fasync,
787 };
788
789 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
790 size_t len, loff_t *pos)
791 {
792 struct spu_context *ctx = file->private_data;
793 u32 wbox_stat;
794
795 if (len < 4)
796 return -EINVAL;
797
798 spu_acquire(ctx);
799 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
800 spu_release(ctx);
801
802 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
803 return -EFAULT;
804
805 return 4;
806 }
807
808 static const struct file_operations spufs_wbox_stat_fops = {
809 .open = spufs_pipe_open,
810 .read = spufs_wbox_stat_read,
811 };
812
813 static int spufs_signal1_open(struct inode *inode, struct file *file)
814 {
815 struct spufs_inode_info *i = SPUFS_I(inode);
816 struct spu_context *ctx = i->i_ctx;
817
818 mutex_lock(&ctx->mapping_lock);
819 file->private_data = ctx;
820 if (!i->i_openers++)
821 ctx->signal1 = inode->i_mapping;
822 mutex_unlock(&ctx->mapping_lock);
823 return nonseekable_open(inode, file);
824 }
825
826 static int
827 spufs_signal1_release(struct inode *inode, struct file *file)
828 {
829 struct spufs_inode_info *i = SPUFS_I(inode);
830 struct spu_context *ctx = i->i_ctx;
831
832 mutex_lock(&ctx->mapping_lock);
833 if (!--i->i_openers)
834 ctx->signal1 = NULL;
835 mutex_unlock(&ctx->mapping_lock);
836 return 0;
837 }
838
839 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
840 size_t len, loff_t *pos)
841 {
842 int ret = 0;
843 u32 data;
844
845 if (len < 4)
846 return -EINVAL;
847
848 if (ctx->csa.spu_chnlcnt_RW[3]) {
849 data = ctx->csa.spu_chnldata_RW[3];
850 ret = 4;
851 }
852
853 if (!ret)
854 goto out;
855
856 if (copy_to_user(buf, &data, 4))
857 return -EFAULT;
858
859 out:
860 return ret;
861 }
862
863 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
864 size_t len, loff_t *pos)
865 {
866 int ret;
867 struct spu_context *ctx = file->private_data;
868
869 spu_acquire_saved(ctx);
870 ret = __spufs_signal1_read(ctx, buf, len, pos);
871 spu_release_saved(ctx);
872
873 return ret;
874 }
875
876 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
877 size_t len, loff_t *pos)
878 {
879 struct spu_context *ctx;
880 u32 data;
881
882 ctx = file->private_data;
883
884 if (len < 4)
885 return -EINVAL;
886
887 if (copy_from_user(&data, buf, 4))
888 return -EFAULT;
889
890 spu_acquire(ctx);
891 ctx->ops->signal1_write(ctx, data);
892 spu_release(ctx);
893
894 return 4;
895 }
896
897 static unsigned long spufs_signal1_mmap_nopfn(struct vm_area_struct *vma,
898 unsigned long address)
899 {
900 #if PAGE_SIZE == 0x1000
901 return spufs_ps_nopfn(vma, address, 0x14000, 0x1000);
902 #elif PAGE_SIZE == 0x10000
903 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
904 * signal 1 and 2 area
905 */
906 return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
907 #else
908 #error unsupported page size
909 #endif
910 }
911
912 static struct vm_operations_struct spufs_signal1_mmap_vmops = {
913 .nopfn = spufs_signal1_mmap_nopfn,
914 };
915
916 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
917 {
918 if (!(vma->vm_flags & VM_SHARED))
919 return -EINVAL;
920
921 vma->vm_flags |= VM_IO | VM_PFNMAP;
922 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
923 | _PAGE_NO_CACHE | _PAGE_GUARDED);
924
925 vma->vm_ops = &spufs_signal1_mmap_vmops;
926 return 0;
927 }
928
929 static const struct file_operations spufs_signal1_fops = {
930 .open = spufs_signal1_open,
931 .release = spufs_signal1_release,
932 .read = spufs_signal1_read,
933 .write = spufs_signal1_write,
934 .mmap = spufs_signal1_mmap,
935 };
936
937 static const struct file_operations spufs_signal1_nosched_fops = {
938 .open = spufs_signal1_open,
939 .release = spufs_signal1_release,
940 .write = spufs_signal1_write,
941 .mmap = spufs_signal1_mmap,
942 };
943
944 static int spufs_signal2_open(struct inode *inode, struct file *file)
945 {
946 struct spufs_inode_info *i = SPUFS_I(inode);
947 struct spu_context *ctx = i->i_ctx;
948
949 mutex_lock(&ctx->mapping_lock);
950 file->private_data = ctx;
951 if (!i->i_openers++)
952 ctx->signal2 = inode->i_mapping;
953 mutex_unlock(&ctx->mapping_lock);
954 return nonseekable_open(inode, file);
955 }
956
957 static int
958 spufs_signal2_release(struct inode *inode, struct file *file)
959 {
960 struct spufs_inode_info *i = SPUFS_I(inode);
961 struct spu_context *ctx = i->i_ctx;
962
963 mutex_lock(&ctx->mapping_lock);
964 if (!--i->i_openers)
965 ctx->signal2 = NULL;
966 mutex_unlock(&ctx->mapping_lock);
967 return 0;
968 }
969
970 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
971 size_t len, loff_t *pos)
972 {
973 int ret = 0;
974 u32 data;
975
976 if (len < 4)
977 return -EINVAL;
978
979 if (ctx->csa.spu_chnlcnt_RW[4]) {
980 data = ctx->csa.spu_chnldata_RW[4];
981 ret = 4;
982 }
983
984 if (!ret)
985 goto out;
986
987 if (copy_to_user(buf, &data, 4))
988 return -EFAULT;
989
990 out:
991 return ret;
992 }
993
994 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
995 size_t len, loff_t *pos)
996 {
997 struct spu_context *ctx = file->private_data;
998 int ret;
999
1000 spu_acquire_saved(ctx);
1001 ret = __spufs_signal2_read(ctx, buf, len, pos);
1002 spu_release_saved(ctx);
1003
1004 return ret;
1005 }
1006
1007 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1008 size_t len, loff_t *pos)
1009 {
1010 struct spu_context *ctx;
1011 u32 data;
1012
1013 ctx = file->private_data;
1014
1015 if (len < 4)
1016 return -EINVAL;
1017
1018 if (copy_from_user(&data, buf, 4))
1019 return -EFAULT;
1020
1021 spu_acquire(ctx);
1022 ctx->ops->signal2_write(ctx, data);
1023 spu_release(ctx);
1024
1025 return 4;
1026 }
1027
1028 #if SPUFS_MMAP_4K
1029 static unsigned long spufs_signal2_mmap_nopfn(struct vm_area_struct *vma,
1030 unsigned long address)
1031 {
1032 #if PAGE_SIZE == 0x1000
1033 return spufs_ps_nopfn(vma, address, 0x1c000, 0x1000);
1034 #elif PAGE_SIZE == 0x10000
1035 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1036 * signal 1 and 2 area
1037 */
1038 return spufs_ps_nopfn(vma, address, 0x10000, 0x10000);
1039 #else
1040 #error unsupported page size
1041 #endif
1042 }
1043
1044 static struct vm_operations_struct spufs_signal2_mmap_vmops = {
1045 .nopfn = spufs_signal2_mmap_nopfn,
1046 };
1047
1048 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1049 {
1050 if (!(vma->vm_flags & VM_SHARED))
1051 return -EINVAL;
1052
1053 vma->vm_flags |= VM_IO | VM_PFNMAP;
1054 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1055 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1056
1057 vma->vm_ops = &spufs_signal2_mmap_vmops;
1058 return 0;
1059 }
1060 #else /* SPUFS_MMAP_4K */
1061 #define spufs_signal2_mmap NULL
1062 #endif /* !SPUFS_MMAP_4K */
1063
1064 static const struct file_operations spufs_signal2_fops = {
1065 .open = spufs_signal2_open,
1066 .release = spufs_signal2_release,
1067 .read = spufs_signal2_read,
1068 .write = spufs_signal2_write,
1069 .mmap = spufs_signal2_mmap,
1070 };
1071
1072 static const struct file_operations spufs_signal2_nosched_fops = {
1073 .open = spufs_signal2_open,
1074 .release = spufs_signal2_release,
1075 .write = spufs_signal2_write,
1076 .mmap = spufs_signal2_mmap,
1077 };
1078
1079 /*
1080 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1081 * work of acquiring (or not) the SPU context before calling through
1082 * to the actual get routine. The set routine is called directly.
1083 */
1084 #define SPU_ATTR_NOACQUIRE 0
1085 #define SPU_ATTR_ACQUIRE 1
1086 #define SPU_ATTR_ACQUIRE_SAVED 2
1087
1088 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \
1089 static u64 __##__get(void *data) \
1090 { \
1091 struct spu_context *ctx = data; \
1092 u64 ret; \
1093 \
1094 if (__acquire == SPU_ATTR_ACQUIRE) { \
1095 spu_acquire(ctx); \
1096 ret = __get(ctx); \
1097 spu_release(ctx); \
1098 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \
1099 spu_acquire_saved(ctx); \
1100 ret = __get(ctx); \
1101 spu_release_saved(ctx); \
1102 } else \
1103 ret = __get(ctx); \
1104 \
1105 return ret; \
1106 } \
1107 DEFINE_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1108
1109 static void spufs_signal1_type_set(void *data, u64 val)
1110 {
1111 struct spu_context *ctx = data;
1112
1113 spu_acquire(ctx);
1114 ctx->ops->signal1_type_set(ctx, val);
1115 spu_release(ctx);
1116 }
1117
1118 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1119 {
1120 return ctx->ops->signal1_type_get(ctx);
1121 }
1122 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1123 spufs_signal1_type_set, "%llu", SPU_ATTR_ACQUIRE);
1124
1125
1126 static void spufs_signal2_type_set(void *data, u64 val)
1127 {
1128 struct spu_context *ctx = data;
1129
1130 spu_acquire(ctx);
1131 ctx->ops->signal2_type_set(ctx, val);
1132 spu_release(ctx);
1133 }
1134
1135 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1136 {
1137 return ctx->ops->signal2_type_get(ctx);
1138 }
1139 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1140 spufs_signal2_type_set, "%llu", SPU_ATTR_ACQUIRE);
1141
1142 #if SPUFS_MMAP_4K
1143 static unsigned long spufs_mss_mmap_nopfn(struct vm_area_struct *vma,
1144 unsigned long address)
1145 {
1146 return spufs_ps_nopfn(vma, address, 0x0000, 0x1000);
1147 }
1148
1149 static struct vm_operations_struct spufs_mss_mmap_vmops = {
1150 .nopfn = spufs_mss_mmap_nopfn,
1151 };
1152
1153 /*
1154 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1155 */
1156 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1157 {
1158 if (!(vma->vm_flags & VM_SHARED))
1159 return -EINVAL;
1160
1161 vma->vm_flags |= VM_IO | VM_PFNMAP;
1162 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1163 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1164
1165 vma->vm_ops = &spufs_mss_mmap_vmops;
1166 return 0;
1167 }
1168 #else /* SPUFS_MMAP_4K */
1169 #define spufs_mss_mmap NULL
1170 #endif /* !SPUFS_MMAP_4K */
1171
1172 static int spufs_mss_open(struct inode *inode, struct file *file)
1173 {
1174 struct spufs_inode_info *i = SPUFS_I(inode);
1175 struct spu_context *ctx = i->i_ctx;
1176
1177 file->private_data = i->i_ctx;
1178
1179 mutex_lock(&ctx->mapping_lock);
1180 if (!i->i_openers++)
1181 ctx->mss = inode->i_mapping;
1182 mutex_unlock(&ctx->mapping_lock);
1183 return nonseekable_open(inode, file);
1184 }
1185
1186 static int
1187 spufs_mss_release(struct inode *inode, struct file *file)
1188 {
1189 struct spufs_inode_info *i = SPUFS_I(inode);
1190 struct spu_context *ctx = i->i_ctx;
1191
1192 mutex_lock(&ctx->mapping_lock);
1193 if (!--i->i_openers)
1194 ctx->mss = NULL;
1195 mutex_unlock(&ctx->mapping_lock);
1196 return 0;
1197 }
1198
1199 static const struct file_operations spufs_mss_fops = {
1200 .open = spufs_mss_open,
1201 .release = spufs_mss_release,
1202 .mmap = spufs_mss_mmap,
1203 };
1204
1205 static unsigned long spufs_psmap_mmap_nopfn(struct vm_area_struct *vma,
1206 unsigned long address)
1207 {
1208 return spufs_ps_nopfn(vma, address, 0x0000, 0x20000);
1209 }
1210
1211 static struct vm_operations_struct spufs_psmap_mmap_vmops = {
1212 .nopfn = spufs_psmap_mmap_nopfn,
1213 };
1214
1215 /*
1216 * mmap support for full problem state area [0x00000 - 0x1ffff].
1217 */
1218 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1219 {
1220 if (!(vma->vm_flags & VM_SHARED))
1221 return -EINVAL;
1222
1223 vma->vm_flags |= VM_IO | VM_PFNMAP;
1224 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1225 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1226
1227 vma->vm_ops = &spufs_psmap_mmap_vmops;
1228 return 0;
1229 }
1230
1231 static int spufs_psmap_open(struct inode *inode, struct file *file)
1232 {
1233 struct spufs_inode_info *i = SPUFS_I(inode);
1234 struct spu_context *ctx = i->i_ctx;
1235
1236 mutex_lock(&ctx->mapping_lock);
1237 file->private_data = i->i_ctx;
1238 if (!i->i_openers++)
1239 ctx->psmap = inode->i_mapping;
1240 mutex_unlock(&ctx->mapping_lock);
1241 return nonseekable_open(inode, file);
1242 }
1243
1244 static int
1245 spufs_psmap_release(struct inode *inode, struct file *file)
1246 {
1247 struct spufs_inode_info *i = SPUFS_I(inode);
1248 struct spu_context *ctx = i->i_ctx;
1249
1250 mutex_lock(&ctx->mapping_lock);
1251 if (!--i->i_openers)
1252 ctx->psmap = NULL;
1253 mutex_unlock(&ctx->mapping_lock);
1254 return 0;
1255 }
1256
1257 static const struct file_operations spufs_psmap_fops = {
1258 .open = spufs_psmap_open,
1259 .release = spufs_psmap_release,
1260 .mmap = spufs_psmap_mmap,
1261 };
1262
1263
1264 #if SPUFS_MMAP_4K
1265 static unsigned long spufs_mfc_mmap_nopfn(struct vm_area_struct *vma,
1266 unsigned long address)
1267 {
1268 return spufs_ps_nopfn(vma, address, 0x3000, 0x1000);
1269 }
1270
1271 static struct vm_operations_struct spufs_mfc_mmap_vmops = {
1272 .nopfn = spufs_mfc_mmap_nopfn,
1273 };
1274
1275 /*
1276 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1277 */
1278 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1279 {
1280 if (!(vma->vm_flags & VM_SHARED))
1281 return -EINVAL;
1282
1283 vma->vm_flags |= VM_IO | VM_PFNMAP;
1284 vma->vm_page_prot = __pgprot(pgprot_val(vma->vm_page_prot)
1285 | _PAGE_NO_CACHE | _PAGE_GUARDED);
1286
1287 vma->vm_ops = &spufs_mfc_mmap_vmops;
1288 return 0;
1289 }
1290 #else /* SPUFS_MMAP_4K */
1291 #define spufs_mfc_mmap NULL
1292 #endif /* !SPUFS_MMAP_4K */
1293
1294 static int spufs_mfc_open(struct inode *inode, struct file *file)
1295 {
1296 struct spufs_inode_info *i = SPUFS_I(inode);
1297 struct spu_context *ctx = i->i_ctx;
1298
1299 /* we don't want to deal with DMA into other processes */
1300 if (ctx->owner != current->mm)
1301 return -EINVAL;
1302
1303 if (atomic_read(&inode->i_count) != 1)
1304 return -EBUSY;
1305
1306 mutex_lock(&ctx->mapping_lock);
1307 file->private_data = ctx;
1308 if (!i->i_openers++)
1309 ctx->mfc = inode->i_mapping;
1310 mutex_unlock(&ctx->mapping_lock);
1311 return nonseekable_open(inode, file);
1312 }
1313
1314 static int
1315 spufs_mfc_release(struct inode *inode, struct file *file)
1316 {
1317 struct spufs_inode_info *i = SPUFS_I(inode);
1318 struct spu_context *ctx = i->i_ctx;
1319
1320 mutex_lock(&ctx->mapping_lock);
1321 if (!--i->i_openers)
1322 ctx->mfc = NULL;
1323 mutex_unlock(&ctx->mapping_lock);
1324 return 0;
1325 }
1326
1327 /* interrupt-level mfc callback function. */
1328 void spufs_mfc_callback(struct spu *spu)
1329 {
1330 struct spu_context *ctx = spu->ctx;
1331
1332 wake_up_all(&ctx->mfc_wq);
1333
1334 pr_debug("%s %s\n", __FUNCTION__, spu->name);
1335 if (ctx->mfc_fasync) {
1336 u32 free_elements, tagstatus;
1337 unsigned int mask;
1338
1339 /* no need for spu_acquire in interrupt context */
1340 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1341 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1342
1343 mask = 0;
1344 if (free_elements & 0xffff)
1345 mask |= POLLOUT;
1346 if (tagstatus & ctx->tagwait)
1347 mask |= POLLIN;
1348
1349 kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1350 }
1351 }
1352
1353 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1354 {
1355 /* See if there is one tag group is complete */
1356 /* FIXME we need locking around tagwait */
1357 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1358 ctx->tagwait &= ~*status;
1359 if (*status)
1360 return 1;
1361
1362 /* enable interrupt waiting for any tag group,
1363 may silently fail if interrupts are already enabled */
1364 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1365 return 0;
1366 }
1367
1368 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1369 size_t size, loff_t *pos)
1370 {
1371 struct spu_context *ctx = file->private_data;
1372 int ret = -EINVAL;
1373 u32 status;
1374
1375 if (size != 4)
1376 goto out;
1377
1378 spu_acquire(ctx);
1379 if (file->f_flags & O_NONBLOCK) {
1380 status = ctx->ops->read_mfc_tagstatus(ctx);
1381 if (!(status & ctx->tagwait))
1382 ret = -EAGAIN;
1383 else
1384 ctx->tagwait &= ~status;
1385 } else {
1386 ret = spufs_wait(ctx->mfc_wq,
1387 spufs_read_mfc_tagstatus(ctx, &status));
1388 }
1389 spu_release(ctx);
1390
1391 if (ret)
1392 goto out;
1393
1394 ret = 4;
1395 if (copy_to_user(buffer, &status, 4))
1396 ret = -EFAULT;
1397
1398 out:
1399 return ret;
1400 }
1401
1402 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1403 {
1404 pr_debug("queueing DMA %x %lx %x %x %x\n", cmd->lsa,
1405 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1406
1407 switch (cmd->cmd) {
1408 case MFC_PUT_CMD:
1409 case MFC_PUTF_CMD:
1410 case MFC_PUTB_CMD:
1411 case MFC_GET_CMD:
1412 case MFC_GETF_CMD:
1413 case MFC_GETB_CMD:
1414 break;
1415 default:
1416 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1417 return -EIO;
1418 }
1419
1420 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1421 pr_debug("invalid DMA alignment, ea %lx lsa %x\n",
1422 cmd->ea, cmd->lsa);
1423 return -EIO;
1424 }
1425
1426 switch (cmd->size & 0xf) {
1427 case 1:
1428 break;
1429 case 2:
1430 if (cmd->lsa & 1)
1431 goto error;
1432 break;
1433 case 4:
1434 if (cmd->lsa & 3)
1435 goto error;
1436 break;
1437 case 8:
1438 if (cmd->lsa & 7)
1439 goto error;
1440 break;
1441 case 0:
1442 if (cmd->lsa & 15)
1443 goto error;
1444 break;
1445 error:
1446 default:
1447 pr_debug("invalid DMA alignment %x for size %x\n",
1448 cmd->lsa & 0xf, cmd->size);
1449 return -EIO;
1450 }
1451
1452 if (cmd->size > 16 * 1024) {
1453 pr_debug("invalid DMA size %x\n", cmd->size);
1454 return -EIO;
1455 }
1456
1457 if (cmd->tag & 0xfff0) {
1458 /* we reserve the higher tag numbers for kernel use */
1459 pr_debug("invalid DMA tag\n");
1460 return -EIO;
1461 }
1462
1463 if (cmd->class) {
1464 /* not supported in this version */
1465 pr_debug("invalid DMA class\n");
1466 return -EIO;
1467 }
1468
1469 return 0;
1470 }
1471
1472 static int spu_send_mfc_command(struct spu_context *ctx,
1473 struct mfc_dma_command cmd,
1474 int *error)
1475 {
1476 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1477 if (*error == -EAGAIN) {
1478 /* wait for any tag group to complete
1479 so we have space for the new command */
1480 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1481 /* try again, because the queue might be
1482 empty again */
1483 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1484 if (*error == -EAGAIN)
1485 return 0;
1486 }
1487 return 1;
1488 }
1489
1490 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1491 size_t size, loff_t *pos)
1492 {
1493 struct spu_context *ctx = file->private_data;
1494 struct mfc_dma_command cmd;
1495 int ret = -EINVAL;
1496
1497 if (size != sizeof cmd)
1498 goto out;
1499
1500 ret = -EFAULT;
1501 if (copy_from_user(&cmd, buffer, sizeof cmd))
1502 goto out;
1503
1504 ret = spufs_check_valid_dma(&cmd);
1505 if (ret)
1506 goto out;
1507
1508 ret = spu_acquire_runnable(ctx, 0);
1509 if (ret)
1510 goto out;
1511
1512 if (file->f_flags & O_NONBLOCK) {
1513 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1514 } else {
1515 int status;
1516 ret = spufs_wait(ctx->mfc_wq,
1517 spu_send_mfc_command(ctx, cmd, &status));
1518 if (status)
1519 ret = status;
1520 }
1521
1522 if (ret)
1523 goto out_unlock;
1524
1525 ctx->tagwait |= 1 << cmd.tag;
1526 ret = size;
1527
1528 out_unlock:
1529 spu_release(ctx);
1530 out:
1531 return ret;
1532 }
1533
1534 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1535 {
1536 struct spu_context *ctx = file->private_data;
1537 u32 free_elements, tagstatus;
1538 unsigned int mask;
1539
1540 poll_wait(file, &ctx->mfc_wq, wait);
1541
1542 spu_acquire(ctx);
1543 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1544 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1545 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1546 spu_release(ctx);
1547
1548 mask = 0;
1549 if (free_elements & 0xffff)
1550 mask |= POLLOUT | POLLWRNORM;
1551 if (tagstatus & ctx->tagwait)
1552 mask |= POLLIN | POLLRDNORM;
1553
1554 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __FUNCTION__,
1555 free_elements, tagstatus, ctx->tagwait);
1556
1557 return mask;
1558 }
1559
1560 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1561 {
1562 struct spu_context *ctx = file->private_data;
1563 int ret;
1564
1565 spu_acquire(ctx);
1566 #if 0
1567 /* this currently hangs */
1568 ret = spufs_wait(ctx->mfc_wq,
1569 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1570 if (ret)
1571 goto out;
1572 ret = spufs_wait(ctx->mfc_wq,
1573 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1574 out:
1575 #else
1576 ret = 0;
1577 #endif
1578 spu_release(ctx);
1579
1580 return ret;
1581 }
1582
1583 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1584 int datasync)
1585 {
1586 return spufs_mfc_flush(file, NULL);
1587 }
1588
1589 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1590 {
1591 struct spu_context *ctx = file->private_data;
1592
1593 return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1594 }
1595
1596 static const struct file_operations spufs_mfc_fops = {
1597 .open = spufs_mfc_open,
1598 .release = spufs_mfc_release,
1599 .read = spufs_mfc_read,
1600 .write = spufs_mfc_write,
1601 .poll = spufs_mfc_poll,
1602 .flush = spufs_mfc_flush,
1603 .fsync = spufs_mfc_fsync,
1604 .fasync = spufs_mfc_fasync,
1605 .mmap = spufs_mfc_mmap,
1606 };
1607
1608 static void spufs_npc_set(void *data, u64 val)
1609 {
1610 struct spu_context *ctx = data;
1611 spu_acquire(ctx);
1612 ctx->ops->npc_write(ctx, val);
1613 spu_release(ctx);
1614 }
1615
1616 static u64 spufs_npc_get(struct spu_context *ctx)
1617 {
1618 return ctx->ops->npc_read(ctx);
1619 }
1620 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1621 "0x%llx\n", SPU_ATTR_ACQUIRE);
1622
1623 static void spufs_decr_set(void *data, u64 val)
1624 {
1625 struct spu_context *ctx = data;
1626 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1627 spu_acquire_saved(ctx);
1628 lscsa->decr.slot[0] = (u32) val;
1629 spu_release_saved(ctx);
1630 }
1631
1632 static u64 spufs_decr_get(struct spu_context *ctx)
1633 {
1634 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1635 return lscsa->decr.slot[0];
1636 }
1637 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1638 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1639
1640 static void spufs_decr_status_set(void *data, u64 val)
1641 {
1642 struct spu_context *ctx = data;
1643 spu_acquire_saved(ctx);
1644 if (val)
1645 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1646 else
1647 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1648 spu_release_saved(ctx);
1649 }
1650
1651 static u64 spufs_decr_status_get(struct spu_context *ctx)
1652 {
1653 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1654 return SPU_DECR_STATUS_RUNNING;
1655 else
1656 return 0;
1657 }
1658 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1659 spufs_decr_status_set, "0x%llx\n",
1660 SPU_ATTR_ACQUIRE_SAVED);
1661
1662 static void spufs_event_mask_set(void *data, u64 val)
1663 {
1664 struct spu_context *ctx = data;
1665 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1666 spu_acquire_saved(ctx);
1667 lscsa->event_mask.slot[0] = (u32) val;
1668 spu_release_saved(ctx);
1669 }
1670
1671 static u64 spufs_event_mask_get(struct spu_context *ctx)
1672 {
1673 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1674 return lscsa->event_mask.slot[0];
1675 }
1676
1677 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1678 spufs_event_mask_set, "0x%llx\n",
1679 SPU_ATTR_ACQUIRE_SAVED);
1680
1681 static u64 spufs_event_status_get(struct spu_context *ctx)
1682 {
1683 struct spu_state *state = &ctx->csa;
1684 u64 stat;
1685 stat = state->spu_chnlcnt_RW[0];
1686 if (stat)
1687 return state->spu_chnldata_RW[0];
1688 return 0;
1689 }
1690 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1691 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1692
1693 static void spufs_srr0_set(void *data, u64 val)
1694 {
1695 struct spu_context *ctx = data;
1696 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1697 spu_acquire_saved(ctx);
1698 lscsa->srr0.slot[0] = (u32) val;
1699 spu_release_saved(ctx);
1700 }
1701
1702 static u64 spufs_srr0_get(struct spu_context *ctx)
1703 {
1704 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1705 return lscsa->srr0.slot[0];
1706 }
1707 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1708 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1709
1710 static u64 spufs_id_get(struct spu_context *ctx)
1711 {
1712 u64 num;
1713
1714 if (ctx->state == SPU_STATE_RUNNABLE)
1715 num = ctx->spu->number;
1716 else
1717 num = (unsigned int)-1;
1718
1719 return num;
1720 }
1721 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1722 SPU_ATTR_ACQUIRE)
1723
1724 static u64 spufs_object_id_get(struct spu_context *ctx)
1725 {
1726 /* FIXME: Should there really be no locking here? */
1727 return ctx->object_id;
1728 }
1729
1730 static void spufs_object_id_set(void *data, u64 id)
1731 {
1732 struct spu_context *ctx = data;
1733 ctx->object_id = id;
1734 }
1735
1736 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1737 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1738
1739 static u64 spufs_lslr_get(struct spu_context *ctx)
1740 {
1741 return ctx->csa.priv2.spu_lslr_RW;
1742 }
1743 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
1744 SPU_ATTR_ACQUIRE_SAVED);
1745
1746 static int spufs_info_open(struct inode *inode, struct file *file)
1747 {
1748 struct spufs_inode_info *i = SPUFS_I(inode);
1749 struct spu_context *ctx = i->i_ctx;
1750 file->private_data = ctx;
1751 return 0;
1752 }
1753
1754 static int spufs_caps_show(struct seq_file *s, void *private)
1755 {
1756 struct spu_context *ctx = s->private;
1757
1758 if (!(ctx->flags & SPU_CREATE_NOSCHED))
1759 seq_puts(s, "sched\n");
1760 if (!(ctx->flags & SPU_CREATE_ISOLATE))
1761 seq_puts(s, "step\n");
1762 return 0;
1763 }
1764
1765 static int spufs_caps_open(struct inode *inode, struct file *file)
1766 {
1767 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
1768 }
1769
1770 static const struct file_operations spufs_caps_fops = {
1771 .open = spufs_caps_open,
1772 .read = seq_read,
1773 .llseek = seq_lseek,
1774 .release = single_release,
1775 };
1776
1777 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
1778 char __user *buf, size_t len, loff_t *pos)
1779 {
1780 u32 mbox_stat;
1781 u32 data;
1782
1783 mbox_stat = ctx->csa.prob.mb_stat_R;
1784 if (mbox_stat & 0x0000ff) {
1785 data = ctx->csa.prob.pu_mb_R;
1786 }
1787
1788 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1789 }
1790
1791 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1792 size_t len, loff_t *pos)
1793 {
1794 int ret;
1795 struct spu_context *ctx = file->private_data;
1796
1797 if (!access_ok(VERIFY_WRITE, buf, len))
1798 return -EFAULT;
1799
1800 spu_acquire_saved(ctx);
1801 spin_lock(&ctx->csa.register_lock);
1802 ret = __spufs_mbox_info_read(ctx, buf, len, pos);
1803 spin_unlock(&ctx->csa.register_lock);
1804 spu_release_saved(ctx);
1805
1806 return ret;
1807 }
1808
1809 static const struct file_operations spufs_mbox_info_fops = {
1810 .open = spufs_info_open,
1811 .read = spufs_mbox_info_read,
1812 .llseek = generic_file_llseek,
1813 };
1814
1815 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
1816 char __user *buf, size_t len, loff_t *pos)
1817 {
1818 u32 ibox_stat;
1819 u32 data;
1820
1821 ibox_stat = ctx->csa.prob.mb_stat_R;
1822 if (ibox_stat & 0xff0000) {
1823 data = ctx->csa.priv2.puint_mb_R;
1824 }
1825
1826 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1827 }
1828
1829 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
1830 size_t len, loff_t *pos)
1831 {
1832 struct spu_context *ctx = file->private_data;
1833 int ret;
1834
1835 if (!access_ok(VERIFY_WRITE, buf, len))
1836 return -EFAULT;
1837
1838 spu_acquire_saved(ctx);
1839 spin_lock(&ctx->csa.register_lock);
1840 ret = __spufs_ibox_info_read(ctx, buf, len, pos);
1841 spin_unlock(&ctx->csa.register_lock);
1842 spu_release_saved(ctx);
1843
1844 return ret;
1845 }
1846
1847 static const struct file_operations spufs_ibox_info_fops = {
1848 .open = spufs_info_open,
1849 .read = spufs_ibox_info_read,
1850 .llseek = generic_file_llseek,
1851 };
1852
1853 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
1854 char __user *buf, size_t len, loff_t *pos)
1855 {
1856 int i, cnt;
1857 u32 data[4];
1858 u32 wbox_stat;
1859
1860 wbox_stat = ctx->csa.prob.mb_stat_R;
1861 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
1862 for (i = 0; i < cnt; i++) {
1863 data[i] = ctx->csa.spu_mailbox_data[i];
1864 }
1865
1866 return simple_read_from_buffer(buf, len, pos, &data,
1867 cnt * sizeof(u32));
1868 }
1869
1870 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
1871 size_t len, loff_t *pos)
1872 {
1873 struct spu_context *ctx = file->private_data;
1874 int ret;
1875
1876 if (!access_ok(VERIFY_WRITE, buf, len))
1877 return -EFAULT;
1878
1879 spu_acquire_saved(ctx);
1880 spin_lock(&ctx->csa.register_lock);
1881 ret = __spufs_wbox_info_read(ctx, buf, len, pos);
1882 spin_unlock(&ctx->csa.register_lock);
1883 spu_release_saved(ctx);
1884
1885 return ret;
1886 }
1887
1888 static const struct file_operations spufs_wbox_info_fops = {
1889 .open = spufs_info_open,
1890 .read = spufs_wbox_info_read,
1891 .llseek = generic_file_llseek,
1892 };
1893
1894 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
1895 char __user *buf, size_t len, loff_t *pos)
1896 {
1897 struct spu_dma_info info;
1898 struct mfc_cq_sr *qp, *spuqp;
1899 int i;
1900
1901 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
1902 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
1903 info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
1904 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
1905 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
1906 for (i = 0; i < 16; i++) {
1907 qp = &info.dma_info_command_data[i];
1908 spuqp = &ctx->csa.priv2.spuq[i];
1909
1910 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
1911 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
1912 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
1913 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
1914 }
1915
1916 return simple_read_from_buffer(buf, len, pos, &info,
1917 sizeof info);
1918 }
1919
1920 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
1921 size_t len, loff_t *pos)
1922 {
1923 struct spu_context *ctx = file->private_data;
1924 int ret;
1925
1926 if (!access_ok(VERIFY_WRITE, buf, len))
1927 return -EFAULT;
1928
1929 spu_acquire_saved(ctx);
1930 spin_lock(&ctx->csa.register_lock);
1931 ret = __spufs_dma_info_read(ctx, buf, len, pos);
1932 spin_unlock(&ctx->csa.register_lock);
1933 spu_release_saved(ctx);
1934
1935 return ret;
1936 }
1937
1938 static const struct file_operations spufs_dma_info_fops = {
1939 .open = spufs_info_open,
1940 .read = spufs_dma_info_read,
1941 };
1942
1943 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
1944 char __user *buf, size_t len, loff_t *pos)
1945 {
1946 struct spu_proxydma_info info;
1947 struct mfc_cq_sr *qp, *puqp;
1948 int ret = sizeof info;
1949 int i;
1950
1951 if (len < ret)
1952 return -EINVAL;
1953
1954 if (!access_ok(VERIFY_WRITE, buf, len))
1955 return -EFAULT;
1956
1957 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
1958 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
1959 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
1960 for (i = 0; i < 8; i++) {
1961 qp = &info.proxydma_info_command_data[i];
1962 puqp = &ctx->csa.priv2.puq[i];
1963
1964 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
1965 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
1966 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
1967 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
1968 }
1969
1970 return simple_read_from_buffer(buf, len, pos, &info,
1971 sizeof info);
1972 }
1973
1974 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
1975 size_t len, loff_t *pos)
1976 {
1977 struct spu_context *ctx = file->private_data;
1978 int ret;
1979
1980 spu_acquire_saved(ctx);
1981 spin_lock(&ctx->csa.register_lock);
1982 ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
1983 spin_unlock(&ctx->csa.register_lock);
1984 spu_release_saved(ctx);
1985
1986 return ret;
1987 }
1988
1989 static const struct file_operations spufs_proxydma_info_fops = {
1990 .open = spufs_info_open,
1991 .read = spufs_proxydma_info_read,
1992 };
1993
1994 static int spufs_show_tid(struct seq_file *s, void *private)
1995 {
1996 struct spu_context *ctx = s->private;
1997
1998 seq_printf(s, "%d\n", ctx->tid);
1999 return 0;
2000 }
2001
2002 static int spufs_tid_open(struct inode *inode, struct file *file)
2003 {
2004 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2005 }
2006
2007 static const struct file_operations spufs_tid_fops = {
2008 .open = spufs_tid_open,
2009 .read = seq_read,
2010 .llseek = seq_lseek,
2011 .release = single_release,
2012 };
2013
2014 static const char *ctx_state_names[] = {
2015 "user", "system", "iowait", "loaded"
2016 };
2017
2018 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2019 enum spu_utilization_state state)
2020 {
2021 struct timespec ts;
2022 unsigned long long time = ctx->stats.times[state];
2023
2024 /*
2025 * In general, utilization statistics are updated by the controlling
2026 * thread as the spu context moves through various well defined
2027 * state transitions, but if the context is lazily loaded its
2028 * utilization statistics are not updated as the controlling thread
2029 * is not tightly coupled with the execution of the spu context. We
2030 * calculate and apply the time delta from the last recorded state
2031 * of the spu context.
2032 */
2033 if (ctx->spu && ctx->stats.util_state == state) {
2034 ktime_get_ts(&ts);
2035 time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2036 }
2037
2038 return time / NSEC_PER_MSEC;
2039 }
2040
2041 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2042 {
2043 unsigned long long slb_flts = ctx->stats.slb_flt;
2044
2045 if (ctx->state == SPU_STATE_RUNNABLE) {
2046 slb_flts += (ctx->spu->stats.slb_flt -
2047 ctx->stats.slb_flt_base);
2048 }
2049
2050 return slb_flts;
2051 }
2052
2053 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2054 {
2055 unsigned long long class2_intrs = ctx->stats.class2_intr;
2056
2057 if (ctx->state == SPU_STATE_RUNNABLE) {
2058 class2_intrs += (ctx->spu->stats.class2_intr -
2059 ctx->stats.class2_intr_base);
2060 }
2061
2062 return class2_intrs;
2063 }
2064
2065
2066 static int spufs_show_stat(struct seq_file *s, void *private)
2067 {
2068 struct spu_context *ctx = s->private;
2069
2070 spu_acquire(ctx);
2071 seq_printf(s, "%s %llu %llu %llu %llu "
2072 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2073 ctx_state_names[ctx->stats.util_state],
2074 spufs_acct_time(ctx, SPU_UTIL_USER),
2075 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2076 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2077 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2078 ctx->stats.vol_ctx_switch,
2079 ctx->stats.invol_ctx_switch,
2080 spufs_slb_flts(ctx),
2081 ctx->stats.hash_flt,
2082 ctx->stats.min_flt,
2083 ctx->stats.maj_flt,
2084 spufs_class2_intrs(ctx),
2085 ctx->stats.libassist);
2086 spu_release(ctx);
2087 return 0;
2088 }
2089
2090 static int spufs_stat_open(struct inode *inode, struct file *file)
2091 {
2092 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2093 }
2094
2095 static const struct file_operations spufs_stat_fops = {
2096 .open = spufs_stat_open,
2097 .read = seq_read,
2098 .llseek = seq_lseek,
2099 .release = single_release,
2100 };
2101
2102
2103 struct tree_descr spufs_dir_contents[] = {
2104 { "capabilities", &spufs_caps_fops, 0444, },
2105 { "mem", &spufs_mem_fops, 0666, },
2106 { "regs", &spufs_regs_fops, 0666, },
2107 { "mbox", &spufs_mbox_fops, 0444, },
2108 { "ibox", &spufs_ibox_fops, 0444, },
2109 { "wbox", &spufs_wbox_fops, 0222, },
2110 { "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2111 { "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2112 { "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2113 { "signal1", &spufs_signal1_fops, 0666, },
2114 { "signal2", &spufs_signal2_fops, 0666, },
2115 { "signal1_type", &spufs_signal1_type, 0666, },
2116 { "signal2_type", &spufs_signal2_type, 0666, },
2117 { "cntl", &spufs_cntl_fops, 0666, },
2118 { "fpcr", &spufs_fpcr_fops, 0666, },
2119 { "lslr", &spufs_lslr_ops, 0444, },
2120 { "mfc", &spufs_mfc_fops, 0666, },
2121 { "mss", &spufs_mss_fops, 0666, },
2122 { "npc", &spufs_npc_ops, 0666, },
2123 { "srr0", &spufs_srr0_ops, 0666, },
2124 { "decr", &spufs_decr_ops, 0666, },
2125 { "decr_status", &spufs_decr_status_ops, 0666, },
2126 { "event_mask", &spufs_event_mask_ops, 0666, },
2127 { "event_status", &spufs_event_status_ops, 0444, },
2128 { "psmap", &spufs_psmap_fops, 0666, },
2129 { "phys-id", &spufs_id_ops, 0666, },
2130 { "object-id", &spufs_object_id_ops, 0666, },
2131 { "mbox_info", &spufs_mbox_info_fops, 0444, },
2132 { "ibox_info", &spufs_ibox_info_fops, 0444, },
2133 { "wbox_info", &spufs_wbox_info_fops, 0444, },
2134 { "dma_info", &spufs_dma_info_fops, 0444, },
2135 { "proxydma_info", &spufs_proxydma_info_fops, 0444, },
2136 { "tid", &spufs_tid_fops, 0444, },
2137 { "stat", &spufs_stat_fops, 0444, },
2138 {},
2139 };
2140
2141 struct tree_descr spufs_dir_nosched_contents[] = {
2142 { "capabilities", &spufs_caps_fops, 0444, },
2143 { "mem", &spufs_mem_fops, 0666, },
2144 { "mbox", &spufs_mbox_fops, 0444, },
2145 { "ibox", &spufs_ibox_fops, 0444, },
2146 { "wbox", &spufs_wbox_fops, 0222, },
2147 { "mbox_stat", &spufs_mbox_stat_fops, 0444, },
2148 { "ibox_stat", &spufs_ibox_stat_fops, 0444, },
2149 { "wbox_stat", &spufs_wbox_stat_fops, 0444, },
2150 { "signal1", &spufs_signal1_nosched_fops, 0222, },
2151 { "signal2", &spufs_signal2_nosched_fops, 0222, },
2152 { "signal1_type", &spufs_signal1_type, 0666, },
2153 { "signal2_type", &spufs_signal2_type, 0666, },
2154 { "mss", &spufs_mss_fops, 0666, },
2155 { "mfc", &spufs_mfc_fops, 0666, },
2156 { "cntl", &spufs_cntl_fops, 0666, },
2157 { "npc", &spufs_npc_ops, 0666, },
2158 { "psmap", &spufs_psmap_fops, 0666, },
2159 { "phys-id", &spufs_id_ops, 0666, },
2160 { "object-id", &spufs_object_id_ops, 0666, },
2161 { "tid", &spufs_tid_fops, 0444, },
2162 { "stat", &spufs_stat_fops, 0444, },
2163 {},
2164 };
2165
2166 struct spufs_coredump_reader spufs_coredump_read[] = {
2167 { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2168 { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2169 { "lslr", NULL, spufs_lslr_get, 19 },
2170 { "decr", NULL, spufs_decr_get, 19 },
2171 { "decr_status", NULL, spufs_decr_status_get, 19 },
2172 { "mem", __spufs_mem_read, NULL, LS_SIZE, },
2173 { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2174 { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2175 { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2176 { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2177 { "event_mask", NULL, spufs_event_mask_get, 19 },
2178 { "event_status", NULL, spufs_event_status_get, 19 },
2179 { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2180 { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2181 { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2182 { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2183 { "proxydma_info", __spufs_proxydma_info_read,
2184 NULL, sizeof(struct spu_proxydma_info)},
2185 { "object-id", NULL, spufs_object_id_get, 19 },
2186 { "npc", NULL, spufs_npc_get, 19 },
2187 { NULL },
2188 };