]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/powerpc/platforms/cell/spufs/file.c
Merge tag 'modules-for-v5.2' of git://git.kernel.org/pub/scm/linux/kernel/git/jeyu...
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / platforms / cell / spufs / file.c
1 /*
2 * SPU file system -- file contents
3 *
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5 *
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #undef DEBUG
24
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/export.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32 #include <linux/slab.h>
33
34 #include <asm/io.h>
35 #include <asm/time.h>
36 #include <asm/spu.h>
37 #include <asm/spu_info.h>
38 #include <linux/uaccess.h>
39
40 #include "spufs.h"
41 #include "sputrace.h"
42
43 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
44
45 /* Simple attribute files */
46 struct spufs_attr {
47 int (*get)(void *, u64 *);
48 int (*set)(void *, u64);
49 char get_buf[24]; /* enough to store a u64 and "\n\0" */
50 char set_buf[24];
51 void *data;
52 const char *fmt; /* format for read operation */
53 struct mutex mutex; /* protects access to these buffers */
54 };
55
56 static int spufs_attr_open(struct inode *inode, struct file *file,
57 int (*get)(void *, u64 *), int (*set)(void *, u64),
58 const char *fmt)
59 {
60 struct spufs_attr *attr;
61
62 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
63 if (!attr)
64 return -ENOMEM;
65
66 attr->get = get;
67 attr->set = set;
68 attr->data = inode->i_private;
69 attr->fmt = fmt;
70 mutex_init(&attr->mutex);
71 file->private_data = attr;
72
73 return nonseekable_open(inode, file);
74 }
75
76 static int spufs_attr_release(struct inode *inode, struct file *file)
77 {
78 kfree(file->private_data);
79 return 0;
80 }
81
82 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
83 size_t len, loff_t *ppos)
84 {
85 struct spufs_attr *attr;
86 size_t size;
87 ssize_t ret;
88
89 attr = file->private_data;
90 if (!attr->get)
91 return -EACCES;
92
93 ret = mutex_lock_interruptible(&attr->mutex);
94 if (ret)
95 return ret;
96
97 if (*ppos) { /* continued read */
98 size = strlen(attr->get_buf);
99 } else { /* first read */
100 u64 val;
101 ret = attr->get(attr->data, &val);
102 if (ret)
103 goto out;
104
105 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
106 attr->fmt, (unsigned long long)val);
107 }
108
109 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
110 out:
111 mutex_unlock(&attr->mutex);
112 return ret;
113 }
114
115 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
116 size_t len, loff_t *ppos)
117 {
118 struct spufs_attr *attr;
119 u64 val;
120 size_t size;
121 ssize_t ret;
122
123 attr = file->private_data;
124 if (!attr->set)
125 return -EACCES;
126
127 ret = mutex_lock_interruptible(&attr->mutex);
128 if (ret)
129 return ret;
130
131 ret = -EFAULT;
132 size = min(sizeof(attr->set_buf) - 1, len);
133 if (copy_from_user(attr->set_buf, buf, size))
134 goto out;
135
136 ret = len; /* claim we got the whole input */
137 attr->set_buf[size] = '\0';
138 val = simple_strtol(attr->set_buf, NULL, 0);
139 attr->set(attr->data, val);
140 out:
141 mutex_unlock(&attr->mutex);
142 return ret;
143 }
144
145 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
146 static int __fops ## _open(struct inode *inode, struct file *file) \
147 { \
148 __simple_attr_check_format(__fmt, 0ull); \
149 return spufs_attr_open(inode, file, __get, __set, __fmt); \
150 } \
151 static const struct file_operations __fops = { \
152 .open = __fops ## _open, \
153 .release = spufs_attr_release, \
154 .read = spufs_attr_read, \
155 .write = spufs_attr_write, \
156 .llseek = generic_file_llseek, \
157 };
158
159
160 static int
161 spufs_mem_open(struct inode *inode, struct file *file)
162 {
163 struct spufs_inode_info *i = SPUFS_I(inode);
164 struct spu_context *ctx = i->i_ctx;
165
166 mutex_lock(&ctx->mapping_lock);
167 file->private_data = ctx;
168 if (!i->i_openers++)
169 ctx->local_store = inode->i_mapping;
170 mutex_unlock(&ctx->mapping_lock);
171 return 0;
172 }
173
174 static int
175 spufs_mem_release(struct inode *inode, struct file *file)
176 {
177 struct spufs_inode_info *i = SPUFS_I(inode);
178 struct spu_context *ctx = i->i_ctx;
179
180 mutex_lock(&ctx->mapping_lock);
181 if (!--i->i_openers)
182 ctx->local_store = NULL;
183 mutex_unlock(&ctx->mapping_lock);
184 return 0;
185 }
186
187 static ssize_t
188 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
189 size_t size, loff_t *pos)
190 {
191 char *local_store = ctx->ops->get_ls(ctx);
192 return simple_read_from_buffer(buffer, size, pos, local_store,
193 LS_SIZE);
194 }
195
196 static ssize_t
197 spufs_mem_read(struct file *file, char __user *buffer,
198 size_t size, loff_t *pos)
199 {
200 struct spu_context *ctx = file->private_data;
201 ssize_t ret;
202
203 ret = spu_acquire(ctx);
204 if (ret)
205 return ret;
206 ret = __spufs_mem_read(ctx, buffer, size, pos);
207 spu_release(ctx);
208
209 return ret;
210 }
211
212 static ssize_t
213 spufs_mem_write(struct file *file, const char __user *buffer,
214 size_t size, loff_t *ppos)
215 {
216 struct spu_context *ctx = file->private_data;
217 char *local_store;
218 loff_t pos = *ppos;
219 int ret;
220
221 if (pos > LS_SIZE)
222 return -EFBIG;
223
224 ret = spu_acquire(ctx);
225 if (ret)
226 return ret;
227
228 local_store = ctx->ops->get_ls(ctx);
229 size = simple_write_to_buffer(local_store, LS_SIZE, ppos, buffer, size);
230 spu_release(ctx);
231
232 return size;
233 }
234
235 static vm_fault_t
236 spufs_mem_mmap_fault(struct vm_fault *vmf)
237 {
238 struct vm_area_struct *vma = vmf->vma;
239 struct spu_context *ctx = vma->vm_file->private_data;
240 unsigned long pfn, offset;
241 vm_fault_t ret;
242
243 offset = vmf->pgoff << PAGE_SHIFT;
244 if (offset >= LS_SIZE)
245 return VM_FAULT_SIGBUS;
246
247 pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
248 vmf->address, offset);
249
250 if (spu_acquire(ctx))
251 return VM_FAULT_NOPAGE;
252
253 if (ctx->state == SPU_STATE_SAVED) {
254 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
255 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
256 } else {
257 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
258 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
259 }
260 ret = vmf_insert_pfn(vma, vmf->address, pfn);
261
262 spu_release(ctx);
263
264 return ret;
265 }
266
267 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
268 unsigned long address,
269 void *buf, int len, int write)
270 {
271 struct spu_context *ctx = vma->vm_file->private_data;
272 unsigned long offset = address - vma->vm_start;
273 char *local_store;
274
275 if (write && !(vma->vm_flags & VM_WRITE))
276 return -EACCES;
277 if (spu_acquire(ctx))
278 return -EINTR;
279 if ((offset + len) > vma->vm_end)
280 len = vma->vm_end - offset;
281 local_store = ctx->ops->get_ls(ctx);
282 if (write)
283 memcpy_toio(local_store + offset, buf, len);
284 else
285 memcpy_fromio(buf, local_store + offset, len);
286 spu_release(ctx);
287 return len;
288 }
289
290 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
291 .fault = spufs_mem_mmap_fault,
292 .access = spufs_mem_mmap_access,
293 };
294
295 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
296 {
297 if (!(vma->vm_flags & VM_SHARED))
298 return -EINVAL;
299
300 vma->vm_flags |= VM_IO | VM_PFNMAP;
301 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
302
303 vma->vm_ops = &spufs_mem_mmap_vmops;
304 return 0;
305 }
306
307 static const struct file_operations spufs_mem_fops = {
308 .open = spufs_mem_open,
309 .release = spufs_mem_release,
310 .read = spufs_mem_read,
311 .write = spufs_mem_write,
312 .llseek = generic_file_llseek,
313 .mmap = spufs_mem_mmap,
314 };
315
316 static vm_fault_t spufs_ps_fault(struct vm_fault *vmf,
317 unsigned long ps_offs,
318 unsigned long ps_size)
319 {
320 struct spu_context *ctx = vmf->vma->vm_file->private_data;
321 unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
322 int err = 0;
323 vm_fault_t ret = VM_FAULT_NOPAGE;
324
325 spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
326
327 if (offset >= ps_size)
328 return VM_FAULT_SIGBUS;
329
330 if (fatal_signal_pending(current))
331 return VM_FAULT_SIGBUS;
332
333 /*
334 * Because we release the mmap_sem, the context may be destroyed while
335 * we're in spu_wait. Grab an extra reference so it isn't destroyed
336 * in the meantime.
337 */
338 get_spu_context(ctx);
339
340 /*
341 * We have to wait for context to be loaded before we have
342 * pages to hand out to the user, but we don't want to wait
343 * with the mmap_sem held.
344 * It is possible to drop the mmap_sem here, but then we need
345 * to return VM_FAULT_NOPAGE because the mappings may have
346 * hanged.
347 */
348 if (spu_acquire(ctx))
349 goto refault;
350
351 if (ctx->state == SPU_STATE_SAVED) {
352 up_read(&current->mm->mmap_sem);
353 spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
354 err = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
355 spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
356 down_read(&current->mm->mmap_sem);
357 } else {
358 area = ctx->spu->problem_phys + ps_offs;
359 ret = vmf_insert_pfn(vmf->vma, vmf->address,
360 (area + offset) >> PAGE_SHIFT);
361 spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
362 }
363
364 if (!err)
365 spu_release(ctx);
366
367 refault:
368 put_spu_context(ctx);
369 return ret;
370 }
371
372 #if SPUFS_MMAP_4K
373 static vm_fault_t spufs_cntl_mmap_fault(struct vm_fault *vmf)
374 {
375 return spufs_ps_fault(vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
376 }
377
378 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
379 .fault = spufs_cntl_mmap_fault,
380 };
381
382 /*
383 * mmap support for problem state control area [0x4000 - 0x4fff].
384 */
385 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
386 {
387 if (!(vma->vm_flags & VM_SHARED))
388 return -EINVAL;
389
390 vma->vm_flags |= VM_IO | VM_PFNMAP;
391 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
392
393 vma->vm_ops = &spufs_cntl_mmap_vmops;
394 return 0;
395 }
396 #else /* SPUFS_MMAP_4K */
397 #define spufs_cntl_mmap NULL
398 #endif /* !SPUFS_MMAP_4K */
399
400 static int spufs_cntl_get(void *data, u64 *val)
401 {
402 struct spu_context *ctx = data;
403 int ret;
404
405 ret = spu_acquire(ctx);
406 if (ret)
407 return ret;
408 *val = ctx->ops->status_read(ctx);
409 spu_release(ctx);
410
411 return 0;
412 }
413
414 static int spufs_cntl_set(void *data, u64 val)
415 {
416 struct spu_context *ctx = data;
417 int ret;
418
419 ret = spu_acquire(ctx);
420 if (ret)
421 return ret;
422 ctx->ops->runcntl_write(ctx, val);
423 spu_release(ctx);
424
425 return 0;
426 }
427
428 static int spufs_cntl_open(struct inode *inode, struct file *file)
429 {
430 struct spufs_inode_info *i = SPUFS_I(inode);
431 struct spu_context *ctx = i->i_ctx;
432
433 mutex_lock(&ctx->mapping_lock);
434 file->private_data = ctx;
435 if (!i->i_openers++)
436 ctx->cntl = inode->i_mapping;
437 mutex_unlock(&ctx->mapping_lock);
438 return simple_attr_open(inode, file, spufs_cntl_get,
439 spufs_cntl_set, "0x%08lx");
440 }
441
442 static int
443 spufs_cntl_release(struct inode *inode, struct file *file)
444 {
445 struct spufs_inode_info *i = SPUFS_I(inode);
446 struct spu_context *ctx = i->i_ctx;
447
448 simple_attr_release(inode, file);
449
450 mutex_lock(&ctx->mapping_lock);
451 if (!--i->i_openers)
452 ctx->cntl = NULL;
453 mutex_unlock(&ctx->mapping_lock);
454 return 0;
455 }
456
457 static const struct file_operations spufs_cntl_fops = {
458 .open = spufs_cntl_open,
459 .release = spufs_cntl_release,
460 .read = simple_attr_read,
461 .write = simple_attr_write,
462 .llseek = generic_file_llseek,
463 .mmap = spufs_cntl_mmap,
464 };
465
466 static int
467 spufs_regs_open(struct inode *inode, struct file *file)
468 {
469 struct spufs_inode_info *i = SPUFS_I(inode);
470 file->private_data = i->i_ctx;
471 return 0;
472 }
473
474 static ssize_t
475 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
476 size_t size, loff_t *pos)
477 {
478 struct spu_lscsa *lscsa = ctx->csa.lscsa;
479 return simple_read_from_buffer(buffer, size, pos,
480 lscsa->gprs, sizeof lscsa->gprs);
481 }
482
483 static ssize_t
484 spufs_regs_read(struct file *file, char __user *buffer,
485 size_t size, loff_t *pos)
486 {
487 int ret;
488 struct spu_context *ctx = file->private_data;
489
490 /* pre-check for file position: if we'd return EOF, there's no point
491 * causing a deschedule */
492 if (*pos >= sizeof(ctx->csa.lscsa->gprs))
493 return 0;
494
495 ret = spu_acquire_saved(ctx);
496 if (ret)
497 return ret;
498 ret = __spufs_regs_read(ctx, buffer, size, pos);
499 spu_release_saved(ctx);
500 return ret;
501 }
502
503 static ssize_t
504 spufs_regs_write(struct file *file, const char __user *buffer,
505 size_t size, loff_t *pos)
506 {
507 struct spu_context *ctx = file->private_data;
508 struct spu_lscsa *lscsa = ctx->csa.lscsa;
509 int ret;
510
511 if (*pos >= sizeof(lscsa->gprs))
512 return -EFBIG;
513
514 ret = spu_acquire_saved(ctx);
515 if (ret)
516 return ret;
517
518 size = simple_write_to_buffer(lscsa->gprs, sizeof(lscsa->gprs), pos,
519 buffer, size);
520
521 spu_release_saved(ctx);
522 return size;
523 }
524
525 static const struct file_operations spufs_regs_fops = {
526 .open = spufs_regs_open,
527 .read = spufs_regs_read,
528 .write = spufs_regs_write,
529 .llseek = generic_file_llseek,
530 };
531
532 static ssize_t
533 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
534 size_t size, loff_t * pos)
535 {
536 struct spu_lscsa *lscsa = ctx->csa.lscsa;
537 return simple_read_from_buffer(buffer, size, pos,
538 &lscsa->fpcr, sizeof(lscsa->fpcr));
539 }
540
541 static ssize_t
542 spufs_fpcr_read(struct file *file, char __user * buffer,
543 size_t size, loff_t * pos)
544 {
545 int ret;
546 struct spu_context *ctx = file->private_data;
547
548 ret = spu_acquire_saved(ctx);
549 if (ret)
550 return ret;
551 ret = __spufs_fpcr_read(ctx, buffer, size, pos);
552 spu_release_saved(ctx);
553 return ret;
554 }
555
556 static ssize_t
557 spufs_fpcr_write(struct file *file, const char __user * buffer,
558 size_t size, loff_t * pos)
559 {
560 struct spu_context *ctx = file->private_data;
561 struct spu_lscsa *lscsa = ctx->csa.lscsa;
562 int ret;
563
564 if (*pos >= sizeof(lscsa->fpcr))
565 return -EFBIG;
566
567 ret = spu_acquire_saved(ctx);
568 if (ret)
569 return ret;
570
571 size = simple_write_to_buffer(&lscsa->fpcr, sizeof(lscsa->fpcr), pos,
572 buffer, size);
573
574 spu_release_saved(ctx);
575 return size;
576 }
577
578 static const struct file_operations spufs_fpcr_fops = {
579 .open = spufs_regs_open,
580 .read = spufs_fpcr_read,
581 .write = spufs_fpcr_write,
582 .llseek = generic_file_llseek,
583 };
584
585 /* generic open function for all pipe-like files */
586 static int spufs_pipe_open(struct inode *inode, struct file *file)
587 {
588 struct spufs_inode_info *i = SPUFS_I(inode);
589 file->private_data = i->i_ctx;
590
591 return stream_open(inode, file);
592 }
593
594 /*
595 * Read as many bytes from the mailbox as possible, until
596 * one of the conditions becomes true:
597 *
598 * - no more data available in the mailbox
599 * - end of the user provided buffer
600 * - end of the mapped area
601 */
602 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
603 size_t len, loff_t *pos)
604 {
605 struct spu_context *ctx = file->private_data;
606 u32 mbox_data, __user *udata;
607 ssize_t count;
608
609 if (len < 4)
610 return -EINVAL;
611
612 if (!access_ok(buf, len))
613 return -EFAULT;
614
615 udata = (void __user *)buf;
616
617 count = spu_acquire(ctx);
618 if (count)
619 return count;
620
621 for (count = 0; (count + 4) <= len; count += 4, udata++) {
622 int ret;
623 ret = ctx->ops->mbox_read(ctx, &mbox_data);
624 if (ret == 0)
625 break;
626
627 /*
628 * at the end of the mapped area, we can fault
629 * but still need to return the data we have
630 * read successfully so far.
631 */
632 ret = __put_user(mbox_data, udata);
633 if (ret) {
634 if (!count)
635 count = -EFAULT;
636 break;
637 }
638 }
639 spu_release(ctx);
640
641 if (!count)
642 count = -EAGAIN;
643
644 return count;
645 }
646
647 static const struct file_operations spufs_mbox_fops = {
648 .open = spufs_pipe_open,
649 .read = spufs_mbox_read,
650 .llseek = no_llseek,
651 };
652
653 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
654 size_t len, loff_t *pos)
655 {
656 struct spu_context *ctx = file->private_data;
657 ssize_t ret;
658 u32 mbox_stat;
659
660 if (len < 4)
661 return -EINVAL;
662
663 ret = spu_acquire(ctx);
664 if (ret)
665 return ret;
666
667 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
668
669 spu_release(ctx);
670
671 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
672 return -EFAULT;
673
674 return 4;
675 }
676
677 static const struct file_operations spufs_mbox_stat_fops = {
678 .open = spufs_pipe_open,
679 .read = spufs_mbox_stat_read,
680 .llseek = no_llseek,
681 };
682
683 /* low-level ibox access function */
684 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
685 {
686 return ctx->ops->ibox_read(ctx, data);
687 }
688
689 /* interrupt-level ibox callback function. */
690 void spufs_ibox_callback(struct spu *spu)
691 {
692 struct spu_context *ctx = spu->ctx;
693
694 if (ctx)
695 wake_up_all(&ctx->ibox_wq);
696 }
697
698 /*
699 * Read as many bytes from the interrupt mailbox as possible, until
700 * one of the conditions becomes true:
701 *
702 * - no more data available in the mailbox
703 * - end of the user provided buffer
704 * - end of the mapped area
705 *
706 * If the file is opened without O_NONBLOCK, we wait here until
707 * any data is available, but return when we have been able to
708 * read something.
709 */
710 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
711 size_t len, loff_t *pos)
712 {
713 struct spu_context *ctx = file->private_data;
714 u32 ibox_data, __user *udata;
715 ssize_t count;
716
717 if (len < 4)
718 return -EINVAL;
719
720 if (!access_ok(buf, len))
721 return -EFAULT;
722
723 udata = (void __user *)buf;
724
725 count = spu_acquire(ctx);
726 if (count)
727 goto out;
728
729 /* wait only for the first element */
730 count = 0;
731 if (file->f_flags & O_NONBLOCK) {
732 if (!spu_ibox_read(ctx, &ibox_data)) {
733 count = -EAGAIN;
734 goto out_unlock;
735 }
736 } else {
737 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
738 if (count)
739 goto out;
740 }
741
742 /* if we can't write at all, return -EFAULT */
743 count = __put_user(ibox_data, udata);
744 if (count)
745 goto out_unlock;
746
747 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
748 int ret;
749 ret = ctx->ops->ibox_read(ctx, &ibox_data);
750 if (ret == 0)
751 break;
752 /*
753 * at the end of the mapped area, we can fault
754 * but still need to return the data we have
755 * read successfully so far.
756 */
757 ret = __put_user(ibox_data, udata);
758 if (ret)
759 break;
760 }
761
762 out_unlock:
763 spu_release(ctx);
764 out:
765 return count;
766 }
767
768 static __poll_t spufs_ibox_poll(struct file *file, poll_table *wait)
769 {
770 struct spu_context *ctx = file->private_data;
771 __poll_t mask;
772
773 poll_wait(file, &ctx->ibox_wq, wait);
774
775 /*
776 * For now keep this uninterruptible and also ignore the rule
777 * that poll should not sleep. Will be fixed later.
778 */
779 mutex_lock(&ctx->state_mutex);
780 mask = ctx->ops->mbox_stat_poll(ctx, EPOLLIN | EPOLLRDNORM);
781 spu_release(ctx);
782
783 return mask;
784 }
785
786 static const struct file_operations spufs_ibox_fops = {
787 .open = spufs_pipe_open,
788 .read = spufs_ibox_read,
789 .poll = spufs_ibox_poll,
790 .llseek = no_llseek,
791 };
792
793 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
794 size_t len, loff_t *pos)
795 {
796 struct spu_context *ctx = file->private_data;
797 ssize_t ret;
798 u32 ibox_stat;
799
800 if (len < 4)
801 return -EINVAL;
802
803 ret = spu_acquire(ctx);
804 if (ret)
805 return ret;
806 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
807 spu_release(ctx);
808
809 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
810 return -EFAULT;
811
812 return 4;
813 }
814
815 static const struct file_operations spufs_ibox_stat_fops = {
816 .open = spufs_pipe_open,
817 .read = spufs_ibox_stat_read,
818 .llseek = no_llseek,
819 };
820
821 /* low-level mailbox write */
822 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
823 {
824 return ctx->ops->wbox_write(ctx, data);
825 }
826
827 /* interrupt-level wbox callback function. */
828 void spufs_wbox_callback(struct spu *spu)
829 {
830 struct spu_context *ctx = spu->ctx;
831
832 if (ctx)
833 wake_up_all(&ctx->wbox_wq);
834 }
835
836 /*
837 * Write as many bytes to the interrupt mailbox as possible, until
838 * one of the conditions becomes true:
839 *
840 * - the mailbox is full
841 * - end of the user provided buffer
842 * - end of the mapped area
843 *
844 * If the file is opened without O_NONBLOCK, we wait here until
845 * space is available, but return when we have been able to
846 * write something.
847 */
848 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
849 size_t len, loff_t *pos)
850 {
851 struct spu_context *ctx = file->private_data;
852 u32 wbox_data, __user *udata;
853 ssize_t count;
854
855 if (len < 4)
856 return -EINVAL;
857
858 udata = (void __user *)buf;
859 if (!access_ok(buf, len))
860 return -EFAULT;
861
862 if (__get_user(wbox_data, udata))
863 return -EFAULT;
864
865 count = spu_acquire(ctx);
866 if (count)
867 goto out;
868
869 /*
870 * make sure we can at least write one element, by waiting
871 * in case of !O_NONBLOCK
872 */
873 count = 0;
874 if (file->f_flags & O_NONBLOCK) {
875 if (!spu_wbox_write(ctx, wbox_data)) {
876 count = -EAGAIN;
877 goto out_unlock;
878 }
879 } else {
880 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
881 if (count)
882 goto out;
883 }
884
885
886 /* write as much as possible */
887 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
888 int ret;
889 ret = __get_user(wbox_data, udata);
890 if (ret)
891 break;
892
893 ret = spu_wbox_write(ctx, wbox_data);
894 if (ret == 0)
895 break;
896 }
897
898 out_unlock:
899 spu_release(ctx);
900 out:
901 return count;
902 }
903
904 static __poll_t spufs_wbox_poll(struct file *file, poll_table *wait)
905 {
906 struct spu_context *ctx = file->private_data;
907 __poll_t mask;
908
909 poll_wait(file, &ctx->wbox_wq, wait);
910
911 /*
912 * For now keep this uninterruptible and also ignore the rule
913 * that poll should not sleep. Will be fixed later.
914 */
915 mutex_lock(&ctx->state_mutex);
916 mask = ctx->ops->mbox_stat_poll(ctx, EPOLLOUT | EPOLLWRNORM);
917 spu_release(ctx);
918
919 return mask;
920 }
921
922 static const struct file_operations spufs_wbox_fops = {
923 .open = spufs_pipe_open,
924 .write = spufs_wbox_write,
925 .poll = spufs_wbox_poll,
926 .llseek = no_llseek,
927 };
928
929 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
930 size_t len, loff_t *pos)
931 {
932 struct spu_context *ctx = file->private_data;
933 ssize_t ret;
934 u32 wbox_stat;
935
936 if (len < 4)
937 return -EINVAL;
938
939 ret = spu_acquire(ctx);
940 if (ret)
941 return ret;
942 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
943 spu_release(ctx);
944
945 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
946 return -EFAULT;
947
948 return 4;
949 }
950
951 static const struct file_operations spufs_wbox_stat_fops = {
952 .open = spufs_pipe_open,
953 .read = spufs_wbox_stat_read,
954 .llseek = no_llseek,
955 };
956
957 static int spufs_signal1_open(struct inode *inode, struct file *file)
958 {
959 struct spufs_inode_info *i = SPUFS_I(inode);
960 struct spu_context *ctx = i->i_ctx;
961
962 mutex_lock(&ctx->mapping_lock);
963 file->private_data = ctx;
964 if (!i->i_openers++)
965 ctx->signal1 = inode->i_mapping;
966 mutex_unlock(&ctx->mapping_lock);
967 return nonseekable_open(inode, file);
968 }
969
970 static int
971 spufs_signal1_release(struct inode *inode, struct file *file)
972 {
973 struct spufs_inode_info *i = SPUFS_I(inode);
974 struct spu_context *ctx = i->i_ctx;
975
976 mutex_lock(&ctx->mapping_lock);
977 if (!--i->i_openers)
978 ctx->signal1 = NULL;
979 mutex_unlock(&ctx->mapping_lock);
980 return 0;
981 }
982
983 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
984 size_t len, loff_t *pos)
985 {
986 int ret = 0;
987 u32 data;
988
989 if (len < 4)
990 return -EINVAL;
991
992 if (ctx->csa.spu_chnlcnt_RW[3]) {
993 data = ctx->csa.spu_chnldata_RW[3];
994 ret = 4;
995 }
996
997 if (!ret)
998 goto out;
999
1000 if (copy_to_user(buf, &data, 4))
1001 return -EFAULT;
1002
1003 out:
1004 return ret;
1005 }
1006
1007 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1008 size_t len, loff_t *pos)
1009 {
1010 int ret;
1011 struct spu_context *ctx = file->private_data;
1012
1013 ret = spu_acquire_saved(ctx);
1014 if (ret)
1015 return ret;
1016 ret = __spufs_signal1_read(ctx, buf, len, pos);
1017 spu_release_saved(ctx);
1018
1019 return ret;
1020 }
1021
1022 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1023 size_t len, loff_t *pos)
1024 {
1025 struct spu_context *ctx;
1026 ssize_t ret;
1027 u32 data;
1028
1029 ctx = file->private_data;
1030
1031 if (len < 4)
1032 return -EINVAL;
1033
1034 if (copy_from_user(&data, buf, 4))
1035 return -EFAULT;
1036
1037 ret = spu_acquire(ctx);
1038 if (ret)
1039 return ret;
1040 ctx->ops->signal1_write(ctx, data);
1041 spu_release(ctx);
1042
1043 return 4;
1044 }
1045
1046 static vm_fault_t
1047 spufs_signal1_mmap_fault(struct vm_fault *vmf)
1048 {
1049 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1050 return spufs_ps_fault(vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1051 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1052 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1053 * signal 1 and 2 area
1054 */
1055 return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1056 #else
1057 #error unsupported page size
1058 #endif
1059 }
1060
1061 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1062 .fault = spufs_signal1_mmap_fault,
1063 };
1064
1065 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1066 {
1067 if (!(vma->vm_flags & VM_SHARED))
1068 return -EINVAL;
1069
1070 vma->vm_flags |= VM_IO | VM_PFNMAP;
1071 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1072
1073 vma->vm_ops = &spufs_signal1_mmap_vmops;
1074 return 0;
1075 }
1076
1077 static const struct file_operations spufs_signal1_fops = {
1078 .open = spufs_signal1_open,
1079 .release = spufs_signal1_release,
1080 .read = spufs_signal1_read,
1081 .write = spufs_signal1_write,
1082 .mmap = spufs_signal1_mmap,
1083 .llseek = no_llseek,
1084 };
1085
1086 static const struct file_operations spufs_signal1_nosched_fops = {
1087 .open = spufs_signal1_open,
1088 .release = spufs_signal1_release,
1089 .write = spufs_signal1_write,
1090 .mmap = spufs_signal1_mmap,
1091 .llseek = no_llseek,
1092 };
1093
1094 static int spufs_signal2_open(struct inode *inode, struct file *file)
1095 {
1096 struct spufs_inode_info *i = SPUFS_I(inode);
1097 struct spu_context *ctx = i->i_ctx;
1098
1099 mutex_lock(&ctx->mapping_lock);
1100 file->private_data = ctx;
1101 if (!i->i_openers++)
1102 ctx->signal2 = inode->i_mapping;
1103 mutex_unlock(&ctx->mapping_lock);
1104 return nonseekable_open(inode, file);
1105 }
1106
1107 static int
1108 spufs_signal2_release(struct inode *inode, struct file *file)
1109 {
1110 struct spufs_inode_info *i = SPUFS_I(inode);
1111 struct spu_context *ctx = i->i_ctx;
1112
1113 mutex_lock(&ctx->mapping_lock);
1114 if (!--i->i_openers)
1115 ctx->signal2 = NULL;
1116 mutex_unlock(&ctx->mapping_lock);
1117 return 0;
1118 }
1119
1120 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1121 size_t len, loff_t *pos)
1122 {
1123 int ret = 0;
1124 u32 data;
1125
1126 if (len < 4)
1127 return -EINVAL;
1128
1129 if (ctx->csa.spu_chnlcnt_RW[4]) {
1130 data = ctx->csa.spu_chnldata_RW[4];
1131 ret = 4;
1132 }
1133
1134 if (!ret)
1135 goto out;
1136
1137 if (copy_to_user(buf, &data, 4))
1138 return -EFAULT;
1139
1140 out:
1141 return ret;
1142 }
1143
1144 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1145 size_t len, loff_t *pos)
1146 {
1147 struct spu_context *ctx = file->private_data;
1148 int ret;
1149
1150 ret = spu_acquire_saved(ctx);
1151 if (ret)
1152 return ret;
1153 ret = __spufs_signal2_read(ctx, buf, len, pos);
1154 spu_release_saved(ctx);
1155
1156 return ret;
1157 }
1158
1159 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1160 size_t len, loff_t *pos)
1161 {
1162 struct spu_context *ctx;
1163 ssize_t ret;
1164 u32 data;
1165
1166 ctx = file->private_data;
1167
1168 if (len < 4)
1169 return -EINVAL;
1170
1171 if (copy_from_user(&data, buf, 4))
1172 return -EFAULT;
1173
1174 ret = spu_acquire(ctx);
1175 if (ret)
1176 return ret;
1177 ctx->ops->signal2_write(ctx, data);
1178 spu_release(ctx);
1179
1180 return 4;
1181 }
1182
1183 #if SPUFS_MMAP_4K
1184 static vm_fault_t
1185 spufs_signal2_mmap_fault(struct vm_fault *vmf)
1186 {
1187 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1188 return spufs_ps_fault(vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1189 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1190 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1191 * signal 1 and 2 area
1192 */
1193 return spufs_ps_fault(vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1194 #else
1195 #error unsupported page size
1196 #endif
1197 }
1198
1199 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1200 .fault = spufs_signal2_mmap_fault,
1201 };
1202
1203 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1204 {
1205 if (!(vma->vm_flags & VM_SHARED))
1206 return -EINVAL;
1207
1208 vma->vm_flags |= VM_IO | VM_PFNMAP;
1209 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1210
1211 vma->vm_ops = &spufs_signal2_mmap_vmops;
1212 return 0;
1213 }
1214 #else /* SPUFS_MMAP_4K */
1215 #define spufs_signal2_mmap NULL
1216 #endif /* !SPUFS_MMAP_4K */
1217
1218 static const struct file_operations spufs_signal2_fops = {
1219 .open = spufs_signal2_open,
1220 .release = spufs_signal2_release,
1221 .read = spufs_signal2_read,
1222 .write = spufs_signal2_write,
1223 .mmap = spufs_signal2_mmap,
1224 .llseek = no_llseek,
1225 };
1226
1227 static const struct file_operations spufs_signal2_nosched_fops = {
1228 .open = spufs_signal2_open,
1229 .release = spufs_signal2_release,
1230 .write = spufs_signal2_write,
1231 .mmap = spufs_signal2_mmap,
1232 .llseek = no_llseek,
1233 };
1234
1235 /*
1236 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1237 * work of acquiring (or not) the SPU context before calling through
1238 * to the actual get routine. The set routine is called directly.
1239 */
1240 #define SPU_ATTR_NOACQUIRE 0
1241 #define SPU_ATTR_ACQUIRE 1
1242 #define SPU_ATTR_ACQUIRE_SAVED 2
1243
1244 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \
1245 static int __##__get(void *data, u64 *val) \
1246 { \
1247 struct spu_context *ctx = data; \
1248 int ret = 0; \
1249 \
1250 if (__acquire == SPU_ATTR_ACQUIRE) { \
1251 ret = spu_acquire(ctx); \
1252 if (ret) \
1253 return ret; \
1254 *val = __get(ctx); \
1255 spu_release(ctx); \
1256 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \
1257 ret = spu_acquire_saved(ctx); \
1258 if (ret) \
1259 return ret; \
1260 *val = __get(ctx); \
1261 spu_release_saved(ctx); \
1262 } else \
1263 *val = __get(ctx); \
1264 \
1265 return 0; \
1266 } \
1267 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1268
1269 static int spufs_signal1_type_set(void *data, u64 val)
1270 {
1271 struct spu_context *ctx = data;
1272 int ret;
1273
1274 ret = spu_acquire(ctx);
1275 if (ret)
1276 return ret;
1277 ctx->ops->signal1_type_set(ctx, val);
1278 spu_release(ctx);
1279
1280 return 0;
1281 }
1282
1283 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1284 {
1285 return ctx->ops->signal1_type_get(ctx);
1286 }
1287 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1288 spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1289
1290
1291 static int spufs_signal2_type_set(void *data, u64 val)
1292 {
1293 struct spu_context *ctx = data;
1294 int ret;
1295
1296 ret = spu_acquire(ctx);
1297 if (ret)
1298 return ret;
1299 ctx->ops->signal2_type_set(ctx, val);
1300 spu_release(ctx);
1301
1302 return 0;
1303 }
1304
1305 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1306 {
1307 return ctx->ops->signal2_type_get(ctx);
1308 }
1309 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1310 spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1311
1312 #if SPUFS_MMAP_4K
1313 static vm_fault_t
1314 spufs_mss_mmap_fault(struct vm_fault *vmf)
1315 {
1316 return spufs_ps_fault(vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1317 }
1318
1319 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1320 .fault = spufs_mss_mmap_fault,
1321 };
1322
1323 /*
1324 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1325 */
1326 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1327 {
1328 if (!(vma->vm_flags & VM_SHARED))
1329 return -EINVAL;
1330
1331 vma->vm_flags |= VM_IO | VM_PFNMAP;
1332 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1333
1334 vma->vm_ops = &spufs_mss_mmap_vmops;
1335 return 0;
1336 }
1337 #else /* SPUFS_MMAP_4K */
1338 #define spufs_mss_mmap NULL
1339 #endif /* !SPUFS_MMAP_4K */
1340
1341 static int spufs_mss_open(struct inode *inode, struct file *file)
1342 {
1343 struct spufs_inode_info *i = SPUFS_I(inode);
1344 struct spu_context *ctx = i->i_ctx;
1345
1346 file->private_data = i->i_ctx;
1347
1348 mutex_lock(&ctx->mapping_lock);
1349 if (!i->i_openers++)
1350 ctx->mss = inode->i_mapping;
1351 mutex_unlock(&ctx->mapping_lock);
1352 return nonseekable_open(inode, file);
1353 }
1354
1355 static int
1356 spufs_mss_release(struct inode *inode, struct file *file)
1357 {
1358 struct spufs_inode_info *i = SPUFS_I(inode);
1359 struct spu_context *ctx = i->i_ctx;
1360
1361 mutex_lock(&ctx->mapping_lock);
1362 if (!--i->i_openers)
1363 ctx->mss = NULL;
1364 mutex_unlock(&ctx->mapping_lock);
1365 return 0;
1366 }
1367
1368 static const struct file_operations spufs_mss_fops = {
1369 .open = spufs_mss_open,
1370 .release = spufs_mss_release,
1371 .mmap = spufs_mss_mmap,
1372 .llseek = no_llseek,
1373 };
1374
1375 static vm_fault_t
1376 spufs_psmap_mmap_fault(struct vm_fault *vmf)
1377 {
1378 return spufs_ps_fault(vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1379 }
1380
1381 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1382 .fault = spufs_psmap_mmap_fault,
1383 };
1384
1385 /*
1386 * mmap support for full problem state area [0x00000 - 0x1ffff].
1387 */
1388 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1389 {
1390 if (!(vma->vm_flags & VM_SHARED))
1391 return -EINVAL;
1392
1393 vma->vm_flags |= VM_IO | VM_PFNMAP;
1394 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1395
1396 vma->vm_ops = &spufs_psmap_mmap_vmops;
1397 return 0;
1398 }
1399
1400 static int spufs_psmap_open(struct inode *inode, struct file *file)
1401 {
1402 struct spufs_inode_info *i = SPUFS_I(inode);
1403 struct spu_context *ctx = i->i_ctx;
1404
1405 mutex_lock(&ctx->mapping_lock);
1406 file->private_data = i->i_ctx;
1407 if (!i->i_openers++)
1408 ctx->psmap = inode->i_mapping;
1409 mutex_unlock(&ctx->mapping_lock);
1410 return nonseekable_open(inode, file);
1411 }
1412
1413 static int
1414 spufs_psmap_release(struct inode *inode, struct file *file)
1415 {
1416 struct spufs_inode_info *i = SPUFS_I(inode);
1417 struct spu_context *ctx = i->i_ctx;
1418
1419 mutex_lock(&ctx->mapping_lock);
1420 if (!--i->i_openers)
1421 ctx->psmap = NULL;
1422 mutex_unlock(&ctx->mapping_lock);
1423 return 0;
1424 }
1425
1426 static const struct file_operations spufs_psmap_fops = {
1427 .open = spufs_psmap_open,
1428 .release = spufs_psmap_release,
1429 .mmap = spufs_psmap_mmap,
1430 .llseek = no_llseek,
1431 };
1432
1433
1434 #if SPUFS_MMAP_4K
1435 static vm_fault_t
1436 spufs_mfc_mmap_fault(struct vm_fault *vmf)
1437 {
1438 return spufs_ps_fault(vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1439 }
1440
1441 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1442 .fault = spufs_mfc_mmap_fault,
1443 };
1444
1445 /*
1446 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1447 */
1448 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1449 {
1450 if (!(vma->vm_flags & VM_SHARED))
1451 return -EINVAL;
1452
1453 vma->vm_flags |= VM_IO | VM_PFNMAP;
1454 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1455
1456 vma->vm_ops = &spufs_mfc_mmap_vmops;
1457 return 0;
1458 }
1459 #else /* SPUFS_MMAP_4K */
1460 #define spufs_mfc_mmap NULL
1461 #endif /* !SPUFS_MMAP_4K */
1462
1463 static int spufs_mfc_open(struct inode *inode, struct file *file)
1464 {
1465 struct spufs_inode_info *i = SPUFS_I(inode);
1466 struct spu_context *ctx = i->i_ctx;
1467
1468 /* we don't want to deal with DMA into other processes */
1469 if (ctx->owner != current->mm)
1470 return -EINVAL;
1471
1472 if (atomic_read(&inode->i_count) != 1)
1473 return -EBUSY;
1474
1475 mutex_lock(&ctx->mapping_lock);
1476 file->private_data = ctx;
1477 if (!i->i_openers++)
1478 ctx->mfc = inode->i_mapping;
1479 mutex_unlock(&ctx->mapping_lock);
1480 return nonseekable_open(inode, file);
1481 }
1482
1483 static int
1484 spufs_mfc_release(struct inode *inode, struct file *file)
1485 {
1486 struct spufs_inode_info *i = SPUFS_I(inode);
1487 struct spu_context *ctx = i->i_ctx;
1488
1489 mutex_lock(&ctx->mapping_lock);
1490 if (!--i->i_openers)
1491 ctx->mfc = NULL;
1492 mutex_unlock(&ctx->mapping_lock);
1493 return 0;
1494 }
1495
1496 /* interrupt-level mfc callback function. */
1497 void spufs_mfc_callback(struct spu *spu)
1498 {
1499 struct spu_context *ctx = spu->ctx;
1500
1501 if (ctx)
1502 wake_up_all(&ctx->mfc_wq);
1503 }
1504
1505 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1506 {
1507 /* See if there is one tag group is complete */
1508 /* FIXME we need locking around tagwait */
1509 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1510 ctx->tagwait &= ~*status;
1511 if (*status)
1512 return 1;
1513
1514 /* enable interrupt waiting for any tag group,
1515 may silently fail if interrupts are already enabled */
1516 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1517 return 0;
1518 }
1519
1520 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1521 size_t size, loff_t *pos)
1522 {
1523 struct spu_context *ctx = file->private_data;
1524 int ret = -EINVAL;
1525 u32 status;
1526
1527 if (size != 4)
1528 goto out;
1529
1530 ret = spu_acquire(ctx);
1531 if (ret)
1532 return ret;
1533
1534 ret = -EINVAL;
1535 if (file->f_flags & O_NONBLOCK) {
1536 status = ctx->ops->read_mfc_tagstatus(ctx);
1537 if (!(status & ctx->tagwait))
1538 ret = -EAGAIN;
1539 else
1540 /* XXX(hch): shouldn't we clear ret here? */
1541 ctx->tagwait &= ~status;
1542 } else {
1543 ret = spufs_wait(ctx->mfc_wq,
1544 spufs_read_mfc_tagstatus(ctx, &status));
1545 if (ret)
1546 goto out;
1547 }
1548 spu_release(ctx);
1549
1550 ret = 4;
1551 if (copy_to_user(buffer, &status, 4))
1552 ret = -EFAULT;
1553
1554 out:
1555 return ret;
1556 }
1557
1558 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1559 {
1560 pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1561 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1562
1563 switch (cmd->cmd) {
1564 case MFC_PUT_CMD:
1565 case MFC_PUTF_CMD:
1566 case MFC_PUTB_CMD:
1567 case MFC_GET_CMD:
1568 case MFC_GETF_CMD:
1569 case MFC_GETB_CMD:
1570 break;
1571 default:
1572 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1573 return -EIO;
1574 }
1575
1576 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1577 pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1578 cmd->ea, cmd->lsa);
1579 return -EIO;
1580 }
1581
1582 switch (cmd->size & 0xf) {
1583 case 1:
1584 break;
1585 case 2:
1586 if (cmd->lsa & 1)
1587 goto error;
1588 break;
1589 case 4:
1590 if (cmd->lsa & 3)
1591 goto error;
1592 break;
1593 case 8:
1594 if (cmd->lsa & 7)
1595 goto error;
1596 break;
1597 case 0:
1598 if (cmd->lsa & 15)
1599 goto error;
1600 break;
1601 error:
1602 default:
1603 pr_debug("invalid DMA alignment %x for size %x\n",
1604 cmd->lsa & 0xf, cmd->size);
1605 return -EIO;
1606 }
1607
1608 if (cmd->size > 16 * 1024) {
1609 pr_debug("invalid DMA size %x\n", cmd->size);
1610 return -EIO;
1611 }
1612
1613 if (cmd->tag & 0xfff0) {
1614 /* we reserve the higher tag numbers for kernel use */
1615 pr_debug("invalid DMA tag\n");
1616 return -EIO;
1617 }
1618
1619 if (cmd->class) {
1620 /* not supported in this version */
1621 pr_debug("invalid DMA class\n");
1622 return -EIO;
1623 }
1624
1625 return 0;
1626 }
1627
1628 static int spu_send_mfc_command(struct spu_context *ctx,
1629 struct mfc_dma_command cmd,
1630 int *error)
1631 {
1632 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1633 if (*error == -EAGAIN) {
1634 /* wait for any tag group to complete
1635 so we have space for the new command */
1636 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1637 /* try again, because the queue might be
1638 empty again */
1639 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1640 if (*error == -EAGAIN)
1641 return 0;
1642 }
1643 return 1;
1644 }
1645
1646 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1647 size_t size, loff_t *pos)
1648 {
1649 struct spu_context *ctx = file->private_data;
1650 struct mfc_dma_command cmd;
1651 int ret = -EINVAL;
1652
1653 if (size != sizeof cmd)
1654 goto out;
1655
1656 ret = -EFAULT;
1657 if (copy_from_user(&cmd, buffer, sizeof cmd))
1658 goto out;
1659
1660 ret = spufs_check_valid_dma(&cmd);
1661 if (ret)
1662 goto out;
1663
1664 ret = spu_acquire(ctx);
1665 if (ret)
1666 goto out;
1667
1668 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1669 if (ret)
1670 goto out;
1671
1672 if (file->f_flags & O_NONBLOCK) {
1673 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1674 } else {
1675 int status;
1676 ret = spufs_wait(ctx->mfc_wq,
1677 spu_send_mfc_command(ctx, cmd, &status));
1678 if (ret)
1679 goto out;
1680 if (status)
1681 ret = status;
1682 }
1683
1684 if (ret)
1685 goto out_unlock;
1686
1687 ctx->tagwait |= 1 << cmd.tag;
1688 ret = size;
1689
1690 out_unlock:
1691 spu_release(ctx);
1692 out:
1693 return ret;
1694 }
1695
1696 static __poll_t spufs_mfc_poll(struct file *file,poll_table *wait)
1697 {
1698 struct spu_context *ctx = file->private_data;
1699 u32 free_elements, tagstatus;
1700 __poll_t mask;
1701
1702 poll_wait(file, &ctx->mfc_wq, wait);
1703
1704 /*
1705 * For now keep this uninterruptible and also ignore the rule
1706 * that poll should not sleep. Will be fixed later.
1707 */
1708 mutex_lock(&ctx->state_mutex);
1709 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1710 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1711 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1712 spu_release(ctx);
1713
1714 mask = 0;
1715 if (free_elements & 0xffff)
1716 mask |= EPOLLOUT | EPOLLWRNORM;
1717 if (tagstatus & ctx->tagwait)
1718 mask |= EPOLLIN | EPOLLRDNORM;
1719
1720 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1721 free_elements, tagstatus, ctx->tagwait);
1722
1723 return mask;
1724 }
1725
1726 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1727 {
1728 struct spu_context *ctx = file->private_data;
1729 int ret;
1730
1731 ret = spu_acquire(ctx);
1732 if (ret)
1733 goto out;
1734 #if 0
1735 /* this currently hangs */
1736 ret = spufs_wait(ctx->mfc_wq,
1737 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1738 if (ret)
1739 goto out;
1740 ret = spufs_wait(ctx->mfc_wq,
1741 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1742 if (ret)
1743 goto out;
1744 #else
1745 ret = 0;
1746 #endif
1747 spu_release(ctx);
1748 out:
1749 return ret;
1750 }
1751
1752 static int spufs_mfc_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1753 {
1754 struct inode *inode = file_inode(file);
1755 int err = file_write_and_wait_range(file, start, end);
1756 if (!err) {
1757 inode_lock(inode);
1758 err = spufs_mfc_flush(file, NULL);
1759 inode_unlock(inode);
1760 }
1761 return err;
1762 }
1763
1764 static const struct file_operations spufs_mfc_fops = {
1765 .open = spufs_mfc_open,
1766 .release = spufs_mfc_release,
1767 .read = spufs_mfc_read,
1768 .write = spufs_mfc_write,
1769 .poll = spufs_mfc_poll,
1770 .flush = spufs_mfc_flush,
1771 .fsync = spufs_mfc_fsync,
1772 .mmap = spufs_mfc_mmap,
1773 .llseek = no_llseek,
1774 };
1775
1776 static int spufs_npc_set(void *data, u64 val)
1777 {
1778 struct spu_context *ctx = data;
1779 int ret;
1780
1781 ret = spu_acquire(ctx);
1782 if (ret)
1783 return ret;
1784 ctx->ops->npc_write(ctx, val);
1785 spu_release(ctx);
1786
1787 return 0;
1788 }
1789
1790 static u64 spufs_npc_get(struct spu_context *ctx)
1791 {
1792 return ctx->ops->npc_read(ctx);
1793 }
1794 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1795 "0x%llx\n", SPU_ATTR_ACQUIRE);
1796
1797 static int spufs_decr_set(void *data, u64 val)
1798 {
1799 struct spu_context *ctx = data;
1800 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1801 int ret;
1802
1803 ret = spu_acquire_saved(ctx);
1804 if (ret)
1805 return ret;
1806 lscsa->decr.slot[0] = (u32) val;
1807 spu_release_saved(ctx);
1808
1809 return 0;
1810 }
1811
1812 static u64 spufs_decr_get(struct spu_context *ctx)
1813 {
1814 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1815 return lscsa->decr.slot[0];
1816 }
1817 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1818 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1819
1820 static int spufs_decr_status_set(void *data, u64 val)
1821 {
1822 struct spu_context *ctx = data;
1823 int ret;
1824
1825 ret = spu_acquire_saved(ctx);
1826 if (ret)
1827 return ret;
1828 if (val)
1829 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1830 else
1831 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1832 spu_release_saved(ctx);
1833
1834 return 0;
1835 }
1836
1837 static u64 spufs_decr_status_get(struct spu_context *ctx)
1838 {
1839 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1840 return SPU_DECR_STATUS_RUNNING;
1841 else
1842 return 0;
1843 }
1844 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1845 spufs_decr_status_set, "0x%llx\n",
1846 SPU_ATTR_ACQUIRE_SAVED);
1847
1848 static int spufs_event_mask_set(void *data, u64 val)
1849 {
1850 struct spu_context *ctx = data;
1851 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1852 int ret;
1853
1854 ret = spu_acquire_saved(ctx);
1855 if (ret)
1856 return ret;
1857 lscsa->event_mask.slot[0] = (u32) val;
1858 spu_release_saved(ctx);
1859
1860 return 0;
1861 }
1862
1863 static u64 spufs_event_mask_get(struct spu_context *ctx)
1864 {
1865 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1866 return lscsa->event_mask.slot[0];
1867 }
1868
1869 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1870 spufs_event_mask_set, "0x%llx\n",
1871 SPU_ATTR_ACQUIRE_SAVED);
1872
1873 static u64 spufs_event_status_get(struct spu_context *ctx)
1874 {
1875 struct spu_state *state = &ctx->csa;
1876 u64 stat;
1877 stat = state->spu_chnlcnt_RW[0];
1878 if (stat)
1879 return state->spu_chnldata_RW[0];
1880 return 0;
1881 }
1882 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1883 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1884
1885 static int spufs_srr0_set(void *data, u64 val)
1886 {
1887 struct spu_context *ctx = data;
1888 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1889 int ret;
1890
1891 ret = spu_acquire_saved(ctx);
1892 if (ret)
1893 return ret;
1894 lscsa->srr0.slot[0] = (u32) val;
1895 spu_release_saved(ctx);
1896
1897 return 0;
1898 }
1899
1900 static u64 spufs_srr0_get(struct spu_context *ctx)
1901 {
1902 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1903 return lscsa->srr0.slot[0];
1904 }
1905 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
1906 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1907
1908 static u64 spufs_id_get(struct spu_context *ctx)
1909 {
1910 u64 num;
1911
1912 if (ctx->state == SPU_STATE_RUNNABLE)
1913 num = ctx->spu->number;
1914 else
1915 num = (unsigned int)-1;
1916
1917 return num;
1918 }
1919 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
1920 SPU_ATTR_ACQUIRE)
1921
1922 static u64 spufs_object_id_get(struct spu_context *ctx)
1923 {
1924 /* FIXME: Should there really be no locking here? */
1925 return ctx->object_id;
1926 }
1927
1928 static int spufs_object_id_set(void *data, u64 id)
1929 {
1930 struct spu_context *ctx = data;
1931 ctx->object_id = id;
1932
1933 return 0;
1934 }
1935
1936 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
1937 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
1938
1939 static u64 spufs_lslr_get(struct spu_context *ctx)
1940 {
1941 return ctx->csa.priv2.spu_lslr_RW;
1942 }
1943 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
1944 SPU_ATTR_ACQUIRE_SAVED);
1945
1946 static int spufs_info_open(struct inode *inode, struct file *file)
1947 {
1948 struct spufs_inode_info *i = SPUFS_I(inode);
1949 struct spu_context *ctx = i->i_ctx;
1950 file->private_data = ctx;
1951 return 0;
1952 }
1953
1954 static int spufs_caps_show(struct seq_file *s, void *private)
1955 {
1956 struct spu_context *ctx = s->private;
1957
1958 if (!(ctx->flags & SPU_CREATE_NOSCHED))
1959 seq_puts(s, "sched\n");
1960 if (!(ctx->flags & SPU_CREATE_ISOLATE))
1961 seq_puts(s, "step\n");
1962 return 0;
1963 }
1964
1965 static int spufs_caps_open(struct inode *inode, struct file *file)
1966 {
1967 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
1968 }
1969
1970 static const struct file_operations spufs_caps_fops = {
1971 .open = spufs_caps_open,
1972 .read = seq_read,
1973 .llseek = seq_lseek,
1974 .release = single_release,
1975 };
1976
1977 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
1978 char __user *buf, size_t len, loff_t *pos)
1979 {
1980 u32 data;
1981
1982 /* EOF if there's no entry in the mbox */
1983 if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
1984 return 0;
1985
1986 data = ctx->csa.prob.pu_mb_R;
1987
1988 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
1989 }
1990
1991 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
1992 size_t len, loff_t *pos)
1993 {
1994 int ret;
1995 struct spu_context *ctx = file->private_data;
1996
1997 if (!access_ok(buf, len))
1998 return -EFAULT;
1999
2000 ret = spu_acquire_saved(ctx);
2001 if (ret)
2002 return ret;
2003 spin_lock(&ctx->csa.register_lock);
2004 ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2005 spin_unlock(&ctx->csa.register_lock);
2006 spu_release_saved(ctx);
2007
2008 return ret;
2009 }
2010
2011 static const struct file_operations spufs_mbox_info_fops = {
2012 .open = spufs_info_open,
2013 .read = spufs_mbox_info_read,
2014 .llseek = generic_file_llseek,
2015 };
2016
2017 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2018 char __user *buf, size_t len, loff_t *pos)
2019 {
2020 u32 data;
2021
2022 /* EOF if there's no entry in the ibox */
2023 if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2024 return 0;
2025
2026 data = ctx->csa.priv2.puint_mb_R;
2027
2028 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2029 }
2030
2031 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2032 size_t len, loff_t *pos)
2033 {
2034 struct spu_context *ctx = file->private_data;
2035 int ret;
2036
2037 if (!access_ok(buf, len))
2038 return -EFAULT;
2039
2040 ret = spu_acquire_saved(ctx);
2041 if (ret)
2042 return ret;
2043 spin_lock(&ctx->csa.register_lock);
2044 ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2045 spin_unlock(&ctx->csa.register_lock);
2046 spu_release_saved(ctx);
2047
2048 return ret;
2049 }
2050
2051 static const struct file_operations spufs_ibox_info_fops = {
2052 .open = spufs_info_open,
2053 .read = spufs_ibox_info_read,
2054 .llseek = generic_file_llseek,
2055 };
2056
2057 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2058 char __user *buf, size_t len, loff_t *pos)
2059 {
2060 int i, cnt;
2061 u32 data[4];
2062 u32 wbox_stat;
2063
2064 wbox_stat = ctx->csa.prob.mb_stat_R;
2065 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2066 for (i = 0; i < cnt; i++) {
2067 data[i] = ctx->csa.spu_mailbox_data[i];
2068 }
2069
2070 return simple_read_from_buffer(buf, len, pos, &data,
2071 cnt * sizeof(u32));
2072 }
2073
2074 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2075 size_t len, loff_t *pos)
2076 {
2077 struct spu_context *ctx = file->private_data;
2078 int ret;
2079
2080 if (!access_ok(buf, len))
2081 return -EFAULT;
2082
2083 ret = spu_acquire_saved(ctx);
2084 if (ret)
2085 return ret;
2086 spin_lock(&ctx->csa.register_lock);
2087 ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2088 spin_unlock(&ctx->csa.register_lock);
2089 spu_release_saved(ctx);
2090
2091 return ret;
2092 }
2093
2094 static const struct file_operations spufs_wbox_info_fops = {
2095 .open = spufs_info_open,
2096 .read = spufs_wbox_info_read,
2097 .llseek = generic_file_llseek,
2098 };
2099
2100 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2101 char __user *buf, size_t len, loff_t *pos)
2102 {
2103 struct spu_dma_info info;
2104 struct mfc_cq_sr *qp, *spuqp;
2105 int i;
2106
2107 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2108 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2109 info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2110 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2111 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2112 for (i = 0; i < 16; i++) {
2113 qp = &info.dma_info_command_data[i];
2114 spuqp = &ctx->csa.priv2.spuq[i];
2115
2116 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2117 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2118 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2119 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2120 }
2121
2122 return simple_read_from_buffer(buf, len, pos, &info,
2123 sizeof info);
2124 }
2125
2126 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2127 size_t len, loff_t *pos)
2128 {
2129 struct spu_context *ctx = file->private_data;
2130 int ret;
2131
2132 if (!access_ok(buf, len))
2133 return -EFAULT;
2134
2135 ret = spu_acquire_saved(ctx);
2136 if (ret)
2137 return ret;
2138 spin_lock(&ctx->csa.register_lock);
2139 ret = __spufs_dma_info_read(ctx, buf, len, pos);
2140 spin_unlock(&ctx->csa.register_lock);
2141 spu_release_saved(ctx);
2142
2143 return ret;
2144 }
2145
2146 static const struct file_operations spufs_dma_info_fops = {
2147 .open = spufs_info_open,
2148 .read = spufs_dma_info_read,
2149 .llseek = no_llseek,
2150 };
2151
2152 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2153 char __user *buf, size_t len, loff_t *pos)
2154 {
2155 struct spu_proxydma_info info;
2156 struct mfc_cq_sr *qp, *puqp;
2157 int ret = sizeof info;
2158 int i;
2159
2160 if (len < ret)
2161 return -EINVAL;
2162
2163 if (!access_ok(buf, len))
2164 return -EFAULT;
2165
2166 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2167 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2168 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2169 for (i = 0; i < 8; i++) {
2170 qp = &info.proxydma_info_command_data[i];
2171 puqp = &ctx->csa.priv2.puq[i];
2172
2173 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2174 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2175 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2176 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2177 }
2178
2179 return simple_read_from_buffer(buf, len, pos, &info,
2180 sizeof info);
2181 }
2182
2183 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2184 size_t len, loff_t *pos)
2185 {
2186 struct spu_context *ctx = file->private_data;
2187 int ret;
2188
2189 ret = spu_acquire_saved(ctx);
2190 if (ret)
2191 return ret;
2192 spin_lock(&ctx->csa.register_lock);
2193 ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2194 spin_unlock(&ctx->csa.register_lock);
2195 spu_release_saved(ctx);
2196
2197 return ret;
2198 }
2199
2200 static const struct file_operations spufs_proxydma_info_fops = {
2201 .open = spufs_info_open,
2202 .read = spufs_proxydma_info_read,
2203 .llseek = no_llseek,
2204 };
2205
2206 static int spufs_show_tid(struct seq_file *s, void *private)
2207 {
2208 struct spu_context *ctx = s->private;
2209
2210 seq_printf(s, "%d\n", ctx->tid);
2211 return 0;
2212 }
2213
2214 static int spufs_tid_open(struct inode *inode, struct file *file)
2215 {
2216 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2217 }
2218
2219 static const struct file_operations spufs_tid_fops = {
2220 .open = spufs_tid_open,
2221 .read = seq_read,
2222 .llseek = seq_lseek,
2223 .release = single_release,
2224 };
2225
2226 static const char *ctx_state_names[] = {
2227 "user", "system", "iowait", "loaded"
2228 };
2229
2230 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2231 enum spu_utilization_state state)
2232 {
2233 unsigned long long time = ctx->stats.times[state];
2234
2235 /*
2236 * In general, utilization statistics are updated by the controlling
2237 * thread as the spu context moves through various well defined
2238 * state transitions, but if the context is lazily loaded its
2239 * utilization statistics are not updated as the controlling thread
2240 * is not tightly coupled with the execution of the spu context. We
2241 * calculate and apply the time delta from the last recorded state
2242 * of the spu context.
2243 */
2244 if (ctx->spu && ctx->stats.util_state == state) {
2245 time += ktime_get_ns() - ctx->stats.tstamp;
2246 }
2247
2248 return time / NSEC_PER_MSEC;
2249 }
2250
2251 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2252 {
2253 unsigned long long slb_flts = ctx->stats.slb_flt;
2254
2255 if (ctx->state == SPU_STATE_RUNNABLE) {
2256 slb_flts += (ctx->spu->stats.slb_flt -
2257 ctx->stats.slb_flt_base);
2258 }
2259
2260 return slb_flts;
2261 }
2262
2263 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2264 {
2265 unsigned long long class2_intrs = ctx->stats.class2_intr;
2266
2267 if (ctx->state == SPU_STATE_RUNNABLE) {
2268 class2_intrs += (ctx->spu->stats.class2_intr -
2269 ctx->stats.class2_intr_base);
2270 }
2271
2272 return class2_intrs;
2273 }
2274
2275
2276 static int spufs_show_stat(struct seq_file *s, void *private)
2277 {
2278 struct spu_context *ctx = s->private;
2279 int ret;
2280
2281 ret = spu_acquire(ctx);
2282 if (ret)
2283 return ret;
2284
2285 seq_printf(s, "%s %llu %llu %llu %llu "
2286 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2287 ctx_state_names[ctx->stats.util_state],
2288 spufs_acct_time(ctx, SPU_UTIL_USER),
2289 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2290 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2291 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2292 ctx->stats.vol_ctx_switch,
2293 ctx->stats.invol_ctx_switch,
2294 spufs_slb_flts(ctx),
2295 ctx->stats.hash_flt,
2296 ctx->stats.min_flt,
2297 ctx->stats.maj_flt,
2298 spufs_class2_intrs(ctx),
2299 ctx->stats.libassist);
2300 spu_release(ctx);
2301 return 0;
2302 }
2303
2304 static int spufs_stat_open(struct inode *inode, struct file *file)
2305 {
2306 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2307 }
2308
2309 static const struct file_operations spufs_stat_fops = {
2310 .open = spufs_stat_open,
2311 .read = seq_read,
2312 .llseek = seq_lseek,
2313 .release = single_release,
2314 };
2315
2316 static inline int spufs_switch_log_used(struct spu_context *ctx)
2317 {
2318 return (ctx->switch_log->head - ctx->switch_log->tail) %
2319 SWITCH_LOG_BUFSIZE;
2320 }
2321
2322 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2323 {
2324 return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2325 }
2326
2327 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2328 {
2329 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2330 int rc;
2331
2332 rc = spu_acquire(ctx);
2333 if (rc)
2334 return rc;
2335
2336 if (ctx->switch_log) {
2337 rc = -EBUSY;
2338 goto out;
2339 }
2340
2341 ctx->switch_log = kmalloc(struct_size(ctx->switch_log, log,
2342 SWITCH_LOG_BUFSIZE), GFP_KERNEL);
2343
2344 if (!ctx->switch_log) {
2345 rc = -ENOMEM;
2346 goto out;
2347 }
2348
2349 ctx->switch_log->head = ctx->switch_log->tail = 0;
2350 init_waitqueue_head(&ctx->switch_log->wait);
2351 rc = 0;
2352
2353 out:
2354 spu_release(ctx);
2355 return rc;
2356 }
2357
2358 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2359 {
2360 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2361 int rc;
2362
2363 rc = spu_acquire(ctx);
2364 if (rc)
2365 return rc;
2366
2367 kfree(ctx->switch_log);
2368 ctx->switch_log = NULL;
2369 spu_release(ctx);
2370
2371 return 0;
2372 }
2373
2374 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2375 {
2376 struct switch_log_entry *p;
2377
2378 p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2379
2380 return snprintf(tbuf, n, "%llu.%09u %d %u %u %llu\n",
2381 (unsigned long long) p->tstamp.tv_sec,
2382 (unsigned int) p->tstamp.tv_nsec,
2383 p->spu_id,
2384 (unsigned int) p->type,
2385 (unsigned int) p->val,
2386 (unsigned long long) p->timebase);
2387 }
2388
2389 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2390 size_t len, loff_t *ppos)
2391 {
2392 struct inode *inode = file_inode(file);
2393 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2394 int error = 0, cnt = 0;
2395
2396 if (!buf)
2397 return -EINVAL;
2398
2399 error = spu_acquire(ctx);
2400 if (error)
2401 return error;
2402
2403 while (cnt < len) {
2404 char tbuf[128];
2405 int width;
2406
2407 if (spufs_switch_log_used(ctx) == 0) {
2408 if (cnt > 0) {
2409 /* If there's data ready to go, we can
2410 * just return straight away */
2411 break;
2412
2413 } else if (file->f_flags & O_NONBLOCK) {
2414 error = -EAGAIN;
2415 break;
2416
2417 } else {
2418 /* spufs_wait will drop the mutex and
2419 * re-acquire, but since we're in read(), the
2420 * file cannot be _released (and so
2421 * ctx->switch_log is stable).
2422 */
2423 error = spufs_wait(ctx->switch_log->wait,
2424 spufs_switch_log_used(ctx) > 0);
2425
2426 /* On error, spufs_wait returns without the
2427 * state mutex held */
2428 if (error)
2429 return error;
2430
2431 /* We may have had entries read from underneath
2432 * us while we dropped the mutex in spufs_wait,
2433 * so re-check */
2434 if (spufs_switch_log_used(ctx) == 0)
2435 continue;
2436 }
2437 }
2438
2439 width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2440 if (width < len)
2441 ctx->switch_log->tail =
2442 (ctx->switch_log->tail + 1) %
2443 SWITCH_LOG_BUFSIZE;
2444 else
2445 /* If the record is greater than space available return
2446 * partial buffer (so far) */
2447 break;
2448
2449 error = copy_to_user(buf + cnt, tbuf, width);
2450 if (error)
2451 break;
2452 cnt += width;
2453 }
2454
2455 spu_release(ctx);
2456
2457 return cnt == 0 ? error : cnt;
2458 }
2459
2460 static __poll_t spufs_switch_log_poll(struct file *file, poll_table *wait)
2461 {
2462 struct inode *inode = file_inode(file);
2463 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2464 __poll_t mask = 0;
2465 int rc;
2466
2467 poll_wait(file, &ctx->switch_log->wait, wait);
2468
2469 rc = spu_acquire(ctx);
2470 if (rc)
2471 return rc;
2472
2473 if (spufs_switch_log_used(ctx) > 0)
2474 mask |= EPOLLIN;
2475
2476 spu_release(ctx);
2477
2478 return mask;
2479 }
2480
2481 static const struct file_operations spufs_switch_log_fops = {
2482 .open = spufs_switch_log_open,
2483 .read = spufs_switch_log_read,
2484 .poll = spufs_switch_log_poll,
2485 .release = spufs_switch_log_release,
2486 .llseek = no_llseek,
2487 };
2488
2489 /**
2490 * Log a context switch event to a switch log reader.
2491 *
2492 * Must be called with ctx->state_mutex held.
2493 */
2494 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2495 u32 type, u32 val)
2496 {
2497 if (!ctx->switch_log)
2498 return;
2499
2500 if (spufs_switch_log_avail(ctx) > 1) {
2501 struct switch_log_entry *p;
2502
2503 p = ctx->switch_log->log + ctx->switch_log->head;
2504 ktime_get_ts64(&p->tstamp);
2505 p->timebase = get_tb();
2506 p->spu_id = spu ? spu->number : -1;
2507 p->type = type;
2508 p->val = val;
2509
2510 ctx->switch_log->head =
2511 (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2512 }
2513
2514 wake_up(&ctx->switch_log->wait);
2515 }
2516
2517 static int spufs_show_ctx(struct seq_file *s, void *private)
2518 {
2519 struct spu_context *ctx = s->private;
2520 u64 mfc_control_RW;
2521
2522 mutex_lock(&ctx->state_mutex);
2523 if (ctx->spu) {
2524 struct spu *spu = ctx->spu;
2525 struct spu_priv2 __iomem *priv2 = spu->priv2;
2526
2527 spin_lock_irq(&spu->register_lock);
2528 mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2529 spin_unlock_irq(&spu->register_lock);
2530 } else {
2531 struct spu_state *csa = &ctx->csa;
2532
2533 mfc_control_RW = csa->priv2.mfc_control_RW;
2534 }
2535
2536 seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2537 " %c %llx %llx %llx %llx %x %x\n",
2538 ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2539 ctx->flags,
2540 ctx->sched_flags,
2541 ctx->prio,
2542 ctx->time_slice,
2543 ctx->spu ? ctx->spu->number : -1,
2544 !list_empty(&ctx->rq) ? 'q' : ' ',
2545 ctx->csa.class_0_pending,
2546 ctx->csa.class_0_dar,
2547 ctx->csa.class_1_dsisr,
2548 mfc_control_RW,
2549 ctx->ops->runcntl_read(ctx),
2550 ctx->ops->status_read(ctx));
2551
2552 mutex_unlock(&ctx->state_mutex);
2553
2554 return 0;
2555 }
2556
2557 static int spufs_ctx_open(struct inode *inode, struct file *file)
2558 {
2559 return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2560 }
2561
2562 static const struct file_operations spufs_ctx_fops = {
2563 .open = spufs_ctx_open,
2564 .read = seq_read,
2565 .llseek = seq_lseek,
2566 .release = single_release,
2567 };
2568
2569 const struct spufs_tree_descr spufs_dir_contents[] = {
2570 { "capabilities", &spufs_caps_fops, 0444, },
2571 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2572 { "regs", &spufs_regs_fops, 0666, sizeof(struct spu_reg128[128]), },
2573 { "mbox", &spufs_mbox_fops, 0444, },
2574 { "ibox", &spufs_ibox_fops, 0444, },
2575 { "wbox", &spufs_wbox_fops, 0222, },
2576 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2577 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2578 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2579 { "signal1", &spufs_signal1_fops, 0666, },
2580 { "signal2", &spufs_signal2_fops, 0666, },
2581 { "signal1_type", &spufs_signal1_type, 0666, },
2582 { "signal2_type", &spufs_signal2_type, 0666, },
2583 { "cntl", &spufs_cntl_fops, 0666, },
2584 { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2585 { "lslr", &spufs_lslr_ops, 0444, },
2586 { "mfc", &spufs_mfc_fops, 0666, },
2587 { "mss", &spufs_mss_fops, 0666, },
2588 { "npc", &spufs_npc_ops, 0666, },
2589 { "srr0", &spufs_srr0_ops, 0666, },
2590 { "decr", &spufs_decr_ops, 0666, },
2591 { "decr_status", &spufs_decr_status_ops, 0666, },
2592 { "event_mask", &spufs_event_mask_ops, 0666, },
2593 { "event_status", &spufs_event_status_ops, 0444, },
2594 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2595 { "phys-id", &spufs_id_ops, 0666, },
2596 { "object-id", &spufs_object_id_ops, 0666, },
2597 { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2598 { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2599 { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2600 { "dma_info", &spufs_dma_info_fops, 0444,
2601 sizeof(struct spu_dma_info), },
2602 { "proxydma_info", &spufs_proxydma_info_fops, 0444,
2603 sizeof(struct spu_proxydma_info)},
2604 { "tid", &spufs_tid_fops, 0444, },
2605 { "stat", &spufs_stat_fops, 0444, },
2606 { "switch_log", &spufs_switch_log_fops, 0444 },
2607 {},
2608 };
2609
2610 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2611 { "capabilities", &spufs_caps_fops, 0444, },
2612 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2613 { "mbox", &spufs_mbox_fops, 0444, },
2614 { "ibox", &spufs_ibox_fops, 0444, },
2615 { "wbox", &spufs_wbox_fops, 0222, },
2616 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2617 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2618 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2619 { "signal1", &spufs_signal1_nosched_fops, 0222, },
2620 { "signal2", &spufs_signal2_nosched_fops, 0222, },
2621 { "signal1_type", &spufs_signal1_type, 0666, },
2622 { "signal2_type", &spufs_signal2_type, 0666, },
2623 { "mss", &spufs_mss_fops, 0666, },
2624 { "mfc", &spufs_mfc_fops, 0666, },
2625 { "cntl", &spufs_cntl_fops, 0666, },
2626 { "npc", &spufs_npc_ops, 0666, },
2627 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2628 { "phys-id", &spufs_id_ops, 0666, },
2629 { "object-id", &spufs_object_id_ops, 0666, },
2630 { "tid", &spufs_tid_fops, 0444, },
2631 { "stat", &spufs_stat_fops, 0444, },
2632 {},
2633 };
2634
2635 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2636 { ".ctx", &spufs_ctx_fops, 0444, },
2637 {},
2638 };
2639
2640 const struct spufs_coredump_reader spufs_coredump_read[] = {
2641 { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2642 { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2643 { "lslr", NULL, spufs_lslr_get, 19 },
2644 { "decr", NULL, spufs_decr_get, 19 },
2645 { "decr_status", NULL, spufs_decr_status_get, 19 },
2646 { "mem", __spufs_mem_read, NULL, LS_SIZE, },
2647 { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2648 { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2649 { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2650 { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2651 { "event_mask", NULL, spufs_event_mask_get, 19 },
2652 { "event_status", NULL, spufs_event_status_get, 19 },
2653 { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2654 { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2655 { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2656 { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2657 { "proxydma_info", __spufs_proxydma_info_read,
2658 NULL, sizeof(struct spu_proxydma_info)},
2659 { "object-id", NULL, spufs_object_id_get, 19 },
2660 { "npc", NULL, spufs_npc_get, 19 },
2661 { NULL },
2662 };