]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/platforms/cell/spufs/file.c
Merge branch btrfs-master into for-linus
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / platforms / cell / spufs / file.c
1 /*
2 * SPU file system -- file contents
3 *
4 * (C) Copyright IBM Deutschland Entwicklung GmbH 2005
5 *
6 * Author: Arnd Bergmann <arndb@de.ibm.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2, or (at your option)
11 * any later version.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 *
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 */
22
23 #undef DEBUG
24
25 #include <linux/fs.h>
26 #include <linux/ioctl.h>
27 #include <linux/module.h>
28 #include <linux/pagemap.h>
29 #include <linux/poll.h>
30 #include <linux/ptrace.h>
31 #include <linux/seq_file.h>
32
33 #include <asm/io.h>
34 #include <asm/time.h>
35 #include <asm/spu.h>
36 #include <asm/spu_info.h>
37 #include <asm/uaccess.h>
38
39 #include "spufs.h"
40 #include "sputrace.h"
41
42 #define SPUFS_MMAP_4K (PAGE_SIZE == 0x1000)
43
44 /* Simple attribute files */
45 struct spufs_attr {
46 int (*get)(void *, u64 *);
47 int (*set)(void *, u64);
48 char get_buf[24]; /* enough to store a u64 and "\n\0" */
49 char set_buf[24];
50 void *data;
51 const char *fmt; /* format for read operation */
52 struct mutex mutex; /* protects access to these buffers */
53 };
54
55 static int spufs_attr_open(struct inode *inode, struct file *file,
56 int (*get)(void *, u64 *), int (*set)(void *, u64),
57 const char *fmt)
58 {
59 struct spufs_attr *attr;
60
61 attr = kmalloc(sizeof(*attr), GFP_KERNEL);
62 if (!attr)
63 return -ENOMEM;
64
65 attr->get = get;
66 attr->set = set;
67 attr->data = inode->i_private;
68 attr->fmt = fmt;
69 mutex_init(&attr->mutex);
70 file->private_data = attr;
71
72 return nonseekable_open(inode, file);
73 }
74
75 static int spufs_attr_release(struct inode *inode, struct file *file)
76 {
77 kfree(file->private_data);
78 return 0;
79 }
80
81 static ssize_t spufs_attr_read(struct file *file, char __user *buf,
82 size_t len, loff_t *ppos)
83 {
84 struct spufs_attr *attr;
85 size_t size;
86 ssize_t ret;
87
88 attr = file->private_data;
89 if (!attr->get)
90 return -EACCES;
91
92 ret = mutex_lock_interruptible(&attr->mutex);
93 if (ret)
94 return ret;
95
96 if (*ppos) { /* continued read */
97 size = strlen(attr->get_buf);
98 } else { /* first read */
99 u64 val;
100 ret = attr->get(attr->data, &val);
101 if (ret)
102 goto out;
103
104 size = scnprintf(attr->get_buf, sizeof(attr->get_buf),
105 attr->fmt, (unsigned long long)val);
106 }
107
108 ret = simple_read_from_buffer(buf, len, ppos, attr->get_buf, size);
109 out:
110 mutex_unlock(&attr->mutex);
111 return ret;
112 }
113
114 static ssize_t spufs_attr_write(struct file *file, const char __user *buf,
115 size_t len, loff_t *ppos)
116 {
117 struct spufs_attr *attr;
118 u64 val;
119 size_t size;
120 ssize_t ret;
121
122 attr = file->private_data;
123 if (!attr->set)
124 return -EACCES;
125
126 ret = mutex_lock_interruptible(&attr->mutex);
127 if (ret)
128 return ret;
129
130 ret = -EFAULT;
131 size = min(sizeof(attr->set_buf) - 1, len);
132 if (copy_from_user(attr->set_buf, buf, size))
133 goto out;
134
135 ret = len; /* claim we got the whole input */
136 attr->set_buf[size] = '\0';
137 val = simple_strtol(attr->set_buf, NULL, 0);
138 attr->set(attr->data, val);
139 out:
140 mutex_unlock(&attr->mutex);
141 return ret;
142 }
143
144 #define DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__fops, __get, __set, __fmt) \
145 static int __fops ## _open(struct inode *inode, struct file *file) \
146 { \
147 __simple_attr_check_format(__fmt, 0ull); \
148 return spufs_attr_open(inode, file, __get, __set, __fmt); \
149 } \
150 static const struct file_operations __fops = { \
151 .owner = THIS_MODULE, \
152 .open = __fops ## _open, \
153 .release = spufs_attr_release, \
154 .read = spufs_attr_read, \
155 .write = spufs_attr_write, \
156 };
157
158
159 static int
160 spufs_mem_open(struct inode *inode, struct file *file)
161 {
162 struct spufs_inode_info *i = SPUFS_I(inode);
163 struct spu_context *ctx = i->i_ctx;
164
165 mutex_lock(&ctx->mapping_lock);
166 file->private_data = ctx;
167 if (!i->i_openers++)
168 ctx->local_store = inode->i_mapping;
169 mutex_unlock(&ctx->mapping_lock);
170 return 0;
171 }
172
173 static int
174 spufs_mem_release(struct inode *inode, struct file *file)
175 {
176 struct spufs_inode_info *i = SPUFS_I(inode);
177 struct spu_context *ctx = i->i_ctx;
178
179 mutex_lock(&ctx->mapping_lock);
180 if (!--i->i_openers)
181 ctx->local_store = NULL;
182 mutex_unlock(&ctx->mapping_lock);
183 return 0;
184 }
185
186 static ssize_t
187 __spufs_mem_read(struct spu_context *ctx, char __user *buffer,
188 size_t size, loff_t *pos)
189 {
190 char *local_store = ctx->ops->get_ls(ctx);
191 return simple_read_from_buffer(buffer, size, pos, local_store,
192 LS_SIZE);
193 }
194
195 static ssize_t
196 spufs_mem_read(struct file *file, char __user *buffer,
197 size_t size, loff_t *pos)
198 {
199 struct spu_context *ctx = file->private_data;
200 ssize_t ret;
201
202 ret = spu_acquire(ctx);
203 if (ret)
204 return ret;
205 ret = __spufs_mem_read(ctx, buffer, size, pos);
206 spu_release(ctx);
207
208 return ret;
209 }
210
211 static ssize_t
212 spufs_mem_write(struct file *file, const char __user *buffer,
213 size_t size, loff_t *ppos)
214 {
215 struct spu_context *ctx = file->private_data;
216 char *local_store;
217 loff_t pos = *ppos;
218 int ret;
219
220 if (pos < 0)
221 return -EINVAL;
222 if (pos > LS_SIZE)
223 return -EFBIG;
224 if (size > LS_SIZE - pos)
225 size = LS_SIZE - pos;
226
227 ret = spu_acquire(ctx);
228 if (ret)
229 return ret;
230
231 local_store = ctx->ops->get_ls(ctx);
232 ret = copy_from_user(local_store + pos, buffer, size);
233 spu_release(ctx);
234
235 if (ret)
236 return -EFAULT;
237 *ppos = pos + size;
238 return size;
239 }
240
241 static int
242 spufs_mem_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
243 {
244 struct spu_context *ctx = vma->vm_file->private_data;
245 unsigned long address = (unsigned long)vmf->virtual_address;
246 unsigned long pfn, offset;
247
248 #ifdef CONFIG_SPU_FS_64K_LS
249 struct spu_state *csa = &ctx->csa;
250 int psize;
251
252 /* Check what page size we are using */
253 psize = get_slice_psize(vma->vm_mm, address);
254
255 /* Some sanity checking */
256 BUG_ON(csa->use_big_pages != (psize == MMU_PAGE_64K));
257
258 /* Wow, 64K, cool, we need to align the address though */
259 if (csa->use_big_pages) {
260 BUG_ON(vma->vm_start & 0xffff);
261 address &= ~0xfffful;
262 }
263 #endif /* CONFIG_SPU_FS_64K_LS */
264
265 offset = vmf->pgoff << PAGE_SHIFT;
266 if (offset >= LS_SIZE)
267 return VM_FAULT_SIGBUS;
268
269 pr_debug("spufs_mem_mmap_fault address=0x%lx, offset=0x%lx\n",
270 address, offset);
271
272 if (spu_acquire(ctx))
273 return VM_FAULT_NOPAGE;
274
275 if (ctx->state == SPU_STATE_SAVED) {
276 vma->vm_page_prot = pgprot_cached(vma->vm_page_prot);
277 pfn = vmalloc_to_pfn(ctx->csa.lscsa->ls + offset);
278 } else {
279 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
280 pfn = (ctx->spu->local_store_phys + offset) >> PAGE_SHIFT;
281 }
282 vm_insert_pfn(vma, address, pfn);
283
284 spu_release(ctx);
285
286 return VM_FAULT_NOPAGE;
287 }
288
289 static int spufs_mem_mmap_access(struct vm_area_struct *vma,
290 unsigned long address,
291 void *buf, int len, int write)
292 {
293 struct spu_context *ctx = vma->vm_file->private_data;
294 unsigned long offset = address - vma->vm_start;
295 char *local_store;
296
297 if (write && !(vma->vm_flags & VM_WRITE))
298 return -EACCES;
299 if (spu_acquire(ctx))
300 return -EINTR;
301 if ((offset + len) > vma->vm_end)
302 len = vma->vm_end - offset;
303 local_store = ctx->ops->get_ls(ctx);
304 if (write)
305 memcpy_toio(local_store + offset, buf, len);
306 else
307 memcpy_fromio(buf, local_store + offset, len);
308 spu_release(ctx);
309 return len;
310 }
311
312 static const struct vm_operations_struct spufs_mem_mmap_vmops = {
313 .fault = spufs_mem_mmap_fault,
314 .access = spufs_mem_mmap_access,
315 };
316
317 static int spufs_mem_mmap(struct file *file, struct vm_area_struct *vma)
318 {
319 #ifdef CONFIG_SPU_FS_64K_LS
320 struct spu_context *ctx = file->private_data;
321 struct spu_state *csa = &ctx->csa;
322
323 /* Sanity check VMA alignment */
324 if (csa->use_big_pages) {
325 pr_debug("spufs_mem_mmap 64K, start=0x%lx, end=0x%lx,"
326 " pgoff=0x%lx\n", vma->vm_start, vma->vm_end,
327 vma->vm_pgoff);
328 if (vma->vm_start & 0xffff)
329 return -EINVAL;
330 if (vma->vm_pgoff & 0xf)
331 return -EINVAL;
332 }
333 #endif /* CONFIG_SPU_FS_64K_LS */
334
335 if (!(vma->vm_flags & VM_SHARED))
336 return -EINVAL;
337
338 vma->vm_flags |= VM_IO | VM_PFNMAP;
339 vma->vm_page_prot = pgprot_noncached_wc(vma->vm_page_prot);
340
341 vma->vm_ops = &spufs_mem_mmap_vmops;
342 return 0;
343 }
344
345 #ifdef CONFIG_SPU_FS_64K_LS
346 static unsigned long spufs_get_unmapped_area(struct file *file,
347 unsigned long addr, unsigned long len, unsigned long pgoff,
348 unsigned long flags)
349 {
350 struct spu_context *ctx = file->private_data;
351 struct spu_state *csa = &ctx->csa;
352
353 /* If not using big pages, fallback to normal MM g_u_a */
354 if (!csa->use_big_pages)
355 return current->mm->get_unmapped_area(file, addr, len,
356 pgoff, flags);
357
358 /* Else, try to obtain a 64K pages slice */
359 return slice_get_unmapped_area(addr, len, flags,
360 MMU_PAGE_64K, 1, 0);
361 }
362 #endif /* CONFIG_SPU_FS_64K_LS */
363
364 static const struct file_operations spufs_mem_fops = {
365 .open = spufs_mem_open,
366 .release = spufs_mem_release,
367 .read = spufs_mem_read,
368 .write = spufs_mem_write,
369 .llseek = generic_file_llseek,
370 .mmap = spufs_mem_mmap,
371 #ifdef CONFIG_SPU_FS_64K_LS
372 .get_unmapped_area = spufs_get_unmapped_area,
373 #endif
374 };
375
376 static int spufs_ps_fault(struct vm_area_struct *vma,
377 struct vm_fault *vmf,
378 unsigned long ps_offs,
379 unsigned long ps_size)
380 {
381 struct spu_context *ctx = vma->vm_file->private_data;
382 unsigned long area, offset = vmf->pgoff << PAGE_SHIFT;
383 int ret = 0;
384
385 spu_context_nospu_trace(spufs_ps_fault__enter, ctx);
386
387 if (offset >= ps_size)
388 return VM_FAULT_SIGBUS;
389
390 if (fatal_signal_pending(current))
391 return VM_FAULT_SIGBUS;
392
393 /*
394 * Because we release the mmap_sem, the context may be destroyed while
395 * we're in spu_wait. Grab an extra reference so it isn't destroyed
396 * in the meantime.
397 */
398 get_spu_context(ctx);
399
400 /*
401 * We have to wait for context to be loaded before we have
402 * pages to hand out to the user, but we don't want to wait
403 * with the mmap_sem held.
404 * It is possible to drop the mmap_sem here, but then we need
405 * to return VM_FAULT_NOPAGE because the mappings may have
406 * hanged.
407 */
408 if (spu_acquire(ctx))
409 goto refault;
410
411 if (ctx->state == SPU_STATE_SAVED) {
412 up_read(&current->mm->mmap_sem);
413 spu_context_nospu_trace(spufs_ps_fault__sleep, ctx);
414 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
415 spu_context_trace(spufs_ps_fault__wake, ctx, ctx->spu);
416 down_read(&current->mm->mmap_sem);
417 } else {
418 area = ctx->spu->problem_phys + ps_offs;
419 vm_insert_pfn(vma, (unsigned long)vmf->virtual_address,
420 (area + offset) >> PAGE_SHIFT);
421 spu_context_trace(spufs_ps_fault__insert, ctx, ctx->spu);
422 }
423
424 if (!ret)
425 spu_release(ctx);
426
427 refault:
428 put_spu_context(ctx);
429 return VM_FAULT_NOPAGE;
430 }
431
432 #if SPUFS_MMAP_4K
433 static int spufs_cntl_mmap_fault(struct vm_area_struct *vma,
434 struct vm_fault *vmf)
435 {
436 return spufs_ps_fault(vma, vmf, 0x4000, SPUFS_CNTL_MAP_SIZE);
437 }
438
439 static const struct vm_operations_struct spufs_cntl_mmap_vmops = {
440 .fault = spufs_cntl_mmap_fault,
441 };
442
443 /*
444 * mmap support for problem state control area [0x4000 - 0x4fff].
445 */
446 static int spufs_cntl_mmap(struct file *file, struct vm_area_struct *vma)
447 {
448 if (!(vma->vm_flags & VM_SHARED))
449 return -EINVAL;
450
451 vma->vm_flags |= VM_IO | VM_PFNMAP;
452 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
453
454 vma->vm_ops = &spufs_cntl_mmap_vmops;
455 return 0;
456 }
457 #else /* SPUFS_MMAP_4K */
458 #define spufs_cntl_mmap NULL
459 #endif /* !SPUFS_MMAP_4K */
460
461 static int spufs_cntl_get(void *data, u64 *val)
462 {
463 struct spu_context *ctx = data;
464 int ret;
465
466 ret = spu_acquire(ctx);
467 if (ret)
468 return ret;
469 *val = ctx->ops->status_read(ctx);
470 spu_release(ctx);
471
472 return 0;
473 }
474
475 static int spufs_cntl_set(void *data, u64 val)
476 {
477 struct spu_context *ctx = data;
478 int ret;
479
480 ret = spu_acquire(ctx);
481 if (ret)
482 return ret;
483 ctx->ops->runcntl_write(ctx, val);
484 spu_release(ctx);
485
486 return 0;
487 }
488
489 static int spufs_cntl_open(struct inode *inode, struct file *file)
490 {
491 struct spufs_inode_info *i = SPUFS_I(inode);
492 struct spu_context *ctx = i->i_ctx;
493
494 mutex_lock(&ctx->mapping_lock);
495 file->private_data = ctx;
496 if (!i->i_openers++)
497 ctx->cntl = inode->i_mapping;
498 mutex_unlock(&ctx->mapping_lock);
499 return simple_attr_open(inode, file, spufs_cntl_get,
500 spufs_cntl_set, "0x%08lx");
501 }
502
503 static int
504 spufs_cntl_release(struct inode *inode, struct file *file)
505 {
506 struct spufs_inode_info *i = SPUFS_I(inode);
507 struct spu_context *ctx = i->i_ctx;
508
509 simple_attr_release(inode, file);
510
511 mutex_lock(&ctx->mapping_lock);
512 if (!--i->i_openers)
513 ctx->cntl = NULL;
514 mutex_unlock(&ctx->mapping_lock);
515 return 0;
516 }
517
518 static const struct file_operations spufs_cntl_fops = {
519 .open = spufs_cntl_open,
520 .release = spufs_cntl_release,
521 .read = simple_attr_read,
522 .write = simple_attr_write,
523 .mmap = spufs_cntl_mmap,
524 };
525
526 static int
527 spufs_regs_open(struct inode *inode, struct file *file)
528 {
529 struct spufs_inode_info *i = SPUFS_I(inode);
530 file->private_data = i->i_ctx;
531 return 0;
532 }
533
534 static ssize_t
535 __spufs_regs_read(struct spu_context *ctx, char __user *buffer,
536 size_t size, loff_t *pos)
537 {
538 struct spu_lscsa *lscsa = ctx->csa.lscsa;
539 return simple_read_from_buffer(buffer, size, pos,
540 lscsa->gprs, sizeof lscsa->gprs);
541 }
542
543 static ssize_t
544 spufs_regs_read(struct file *file, char __user *buffer,
545 size_t size, loff_t *pos)
546 {
547 int ret;
548 struct spu_context *ctx = file->private_data;
549
550 /* pre-check for file position: if we'd return EOF, there's no point
551 * causing a deschedule */
552 if (*pos >= sizeof(ctx->csa.lscsa->gprs))
553 return 0;
554
555 ret = spu_acquire_saved(ctx);
556 if (ret)
557 return ret;
558 ret = __spufs_regs_read(ctx, buffer, size, pos);
559 spu_release_saved(ctx);
560 return ret;
561 }
562
563 static ssize_t
564 spufs_regs_write(struct file *file, const char __user *buffer,
565 size_t size, loff_t *pos)
566 {
567 struct spu_context *ctx = file->private_data;
568 struct spu_lscsa *lscsa = ctx->csa.lscsa;
569 int ret;
570
571 if (*pos >= sizeof(lscsa->gprs))
572 return -EFBIG;
573
574 size = min_t(ssize_t, sizeof(lscsa->gprs) - *pos, size);
575 *pos += size;
576
577 ret = spu_acquire_saved(ctx);
578 if (ret)
579 return ret;
580
581 ret = copy_from_user((char *)lscsa->gprs + *pos - size,
582 buffer, size) ? -EFAULT : size;
583
584 spu_release_saved(ctx);
585 return ret;
586 }
587
588 static const struct file_operations spufs_regs_fops = {
589 .open = spufs_regs_open,
590 .read = spufs_regs_read,
591 .write = spufs_regs_write,
592 .llseek = generic_file_llseek,
593 };
594
595 static ssize_t
596 __spufs_fpcr_read(struct spu_context *ctx, char __user * buffer,
597 size_t size, loff_t * pos)
598 {
599 struct spu_lscsa *lscsa = ctx->csa.lscsa;
600 return simple_read_from_buffer(buffer, size, pos,
601 &lscsa->fpcr, sizeof(lscsa->fpcr));
602 }
603
604 static ssize_t
605 spufs_fpcr_read(struct file *file, char __user * buffer,
606 size_t size, loff_t * pos)
607 {
608 int ret;
609 struct spu_context *ctx = file->private_data;
610
611 ret = spu_acquire_saved(ctx);
612 if (ret)
613 return ret;
614 ret = __spufs_fpcr_read(ctx, buffer, size, pos);
615 spu_release_saved(ctx);
616 return ret;
617 }
618
619 static ssize_t
620 spufs_fpcr_write(struct file *file, const char __user * buffer,
621 size_t size, loff_t * pos)
622 {
623 struct spu_context *ctx = file->private_data;
624 struct spu_lscsa *lscsa = ctx->csa.lscsa;
625 int ret;
626
627 if (*pos >= sizeof(lscsa->fpcr))
628 return -EFBIG;
629
630 size = min_t(ssize_t, sizeof(lscsa->fpcr) - *pos, size);
631
632 ret = spu_acquire_saved(ctx);
633 if (ret)
634 return ret;
635
636 *pos += size;
637 ret = copy_from_user((char *)&lscsa->fpcr + *pos - size,
638 buffer, size) ? -EFAULT : size;
639
640 spu_release_saved(ctx);
641 return ret;
642 }
643
644 static const struct file_operations spufs_fpcr_fops = {
645 .open = spufs_regs_open,
646 .read = spufs_fpcr_read,
647 .write = spufs_fpcr_write,
648 .llseek = generic_file_llseek,
649 };
650
651 /* generic open function for all pipe-like files */
652 static int spufs_pipe_open(struct inode *inode, struct file *file)
653 {
654 struct spufs_inode_info *i = SPUFS_I(inode);
655 file->private_data = i->i_ctx;
656
657 return nonseekable_open(inode, file);
658 }
659
660 /*
661 * Read as many bytes from the mailbox as possible, until
662 * one of the conditions becomes true:
663 *
664 * - no more data available in the mailbox
665 * - end of the user provided buffer
666 * - end of the mapped area
667 */
668 static ssize_t spufs_mbox_read(struct file *file, char __user *buf,
669 size_t len, loff_t *pos)
670 {
671 struct spu_context *ctx = file->private_data;
672 u32 mbox_data, __user *udata;
673 ssize_t count;
674
675 if (len < 4)
676 return -EINVAL;
677
678 if (!access_ok(VERIFY_WRITE, buf, len))
679 return -EFAULT;
680
681 udata = (void __user *)buf;
682
683 count = spu_acquire(ctx);
684 if (count)
685 return count;
686
687 for (count = 0; (count + 4) <= len; count += 4, udata++) {
688 int ret;
689 ret = ctx->ops->mbox_read(ctx, &mbox_data);
690 if (ret == 0)
691 break;
692
693 /*
694 * at the end of the mapped area, we can fault
695 * but still need to return the data we have
696 * read successfully so far.
697 */
698 ret = __put_user(mbox_data, udata);
699 if (ret) {
700 if (!count)
701 count = -EFAULT;
702 break;
703 }
704 }
705 spu_release(ctx);
706
707 if (!count)
708 count = -EAGAIN;
709
710 return count;
711 }
712
713 static const struct file_operations spufs_mbox_fops = {
714 .open = spufs_pipe_open,
715 .read = spufs_mbox_read,
716 };
717
718 static ssize_t spufs_mbox_stat_read(struct file *file, char __user *buf,
719 size_t len, loff_t *pos)
720 {
721 struct spu_context *ctx = file->private_data;
722 ssize_t ret;
723 u32 mbox_stat;
724
725 if (len < 4)
726 return -EINVAL;
727
728 ret = spu_acquire(ctx);
729 if (ret)
730 return ret;
731
732 mbox_stat = ctx->ops->mbox_stat_read(ctx) & 0xff;
733
734 spu_release(ctx);
735
736 if (copy_to_user(buf, &mbox_stat, sizeof mbox_stat))
737 return -EFAULT;
738
739 return 4;
740 }
741
742 static const struct file_operations spufs_mbox_stat_fops = {
743 .open = spufs_pipe_open,
744 .read = spufs_mbox_stat_read,
745 };
746
747 /* low-level ibox access function */
748 size_t spu_ibox_read(struct spu_context *ctx, u32 *data)
749 {
750 return ctx->ops->ibox_read(ctx, data);
751 }
752
753 static int spufs_ibox_fasync(int fd, struct file *file, int on)
754 {
755 struct spu_context *ctx = file->private_data;
756
757 return fasync_helper(fd, file, on, &ctx->ibox_fasync);
758 }
759
760 /* interrupt-level ibox callback function. */
761 void spufs_ibox_callback(struct spu *spu)
762 {
763 struct spu_context *ctx = spu->ctx;
764
765 if (!ctx)
766 return;
767
768 wake_up_all(&ctx->ibox_wq);
769 kill_fasync(&ctx->ibox_fasync, SIGIO, POLLIN);
770 }
771
772 /*
773 * Read as many bytes from the interrupt mailbox as possible, until
774 * one of the conditions becomes true:
775 *
776 * - no more data available in the mailbox
777 * - end of the user provided buffer
778 * - end of the mapped area
779 *
780 * If the file is opened without O_NONBLOCK, we wait here until
781 * any data is available, but return when we have been able to
782 * read something.
783 */
784 static ssize_t spufs_ibox_read(struct file *file, char __user *buf,
785 size_t len, loff_t *pos)
786 {
787 struct spu_context *ctx = file->private_data;
788 u32 ibox_data, __user *udata;
789 ssize_t count;
790
791 if (len < 4)
792 return -EINVAL;
793
794 if (!access_ok(VERIFY_WRITE, buf, len))
795 return -EFAULT;
796
797 udata = (void __user *)buf;
798
799 count = spu_acquire(ctx);
800 if (count)
801 goto out;
802
803 /* wait only for the first element */
804 count = 0;
805 if (file->f_flags & O_NONBLOCK) {
806 if (!spu_ibox_read(ctx, &ibox_data)) {
807 count = -EAGAIN;
808 goto out_unlock;
809 }
810 } else {
811 count = spufs_wait(ctx->ibox_wq, spu_ibox_read(ctx, &ibox_data));
812 if (count)
813 goto out;
814 }
815
816 /* if we can't write at all, return -EFAULT */
817 count = __put_user(ibox_data, udata);
818 if (count)
819 goto out_unlock;
820
821 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
822 int ret;
823 ret = ctx->ops->ibox_read(ctx, &ibox_data);
824 if (ret == 0)
825 break;
826 /*
827 * at the end of the mapped area, we can fault
828 * but still need to return the data we have
829 * read successfully so far.
830 */
831 ret = __put_user(ibox_data, udata);
832 if (ret)
833 break;
834 }
835
836 out_unlock:
837 spu_release(ctx);
838 out:
839 return count;
840 }
841
842 static unsigned int spufs_ibox_poll(struct file *file, poll_table *wait)
843 {
844 struct spu_context *ctx = file->private_data;
845 unsigned int mask;
846
847 poll_wait(file, &ctx->ibox_wq, wait);
848
849 /*
850 * For now keep this uninterruptible and also ignore the rule
851 * that poll should not sleep. Will be fixed later.
852 */
853 mutex_lock(&ctx->state_mutex);
854 mask = ctx->ops->mbox_stat_poll(ctx, POLLIN | POLLRDNORM);
855 spu_release(ctx);
856
857 return mask;
858 }
859
860 static const struct file_operations spufs_ibox_fops = {
861 .open = spufs_pipe_open,
862 .read = spufs_ibox_read,
863 .poll = spufs_ibox_poll,
864 .fasync = spufs_ibox_fasync,
865 };
866
867 static ssize_t spufs_ibox_stat_read(struct file *file, char __user *buf,
868 size_t len, loff_t *pos)
869 {
870 struct spu_context *ctx = file->private_data;
871 ssize_t ret;
872 u32 ibox_stat;
873
874 if (len < 4)
875 return -EINVAL;
876
877 ret = spu_acquire(ctx);
878 if (ret)
879 return ret;
880 ibox_stat = (ctx->ops->mbox_stat_read(ctx) >> 16) & 0xff;
881 spu_release(ctx);
882
883 if (copy_to_user(buf, &ibox_stat, sizeof ibox_stat))
884 return -EFAULT;
885
886 return 4;
887 }
888
889 static const struct file_operations spufs_ibox_stat_fops = {
890 .open = spufs_pipe_open,
891 .read = spufs_ibox_stat_read,
892 };
893
894 /* low-level mailbox write */
895 size_t spu_wbox_write(struct spu_context *ctx, u32 data)
896 {
897 return ctx->ops->wbox_write(ctx, data);
898 }
899
900 static int spufs_wbox_fasync(int fd, struct file *file, int on)
901 {
902 struct spu_context *ctx = file->private_data;
903 int ret;
904
905 ret = fasync_helper(fd, file, on, &ctx->wbox_fasync);
906
907 return ret;
908 }
909
910 /* interrupt-level wbox callback function. */
911 void spufs_wbox_callback(struct spu *spu)
912 {
913 struct spu_context *ctx = spu->ctx;
914
915 if (!ctx)
916 return;
917
918 wake_up_all(&ctx->wbox_wq);
919 kill_fasync(&ctx->wbox_fasync, SIGIO, POLLOUT);
920 }
921
922 /*
923 * Write as many bytes to the interrupt mailbox as possible, until
924 * one of the conditions becomes true:
925 *
926 * - the mailbox is full
927 * - end of the user provided buffer
928 * - end of the mapped area
929 *
930 * If the file is opened without O_NONBLOCK, we wait here until
931 * space is availabyl, but return when we have been able to
932 * write something.
933 */
934 static ssize_t spufs_wbox_write(struct file *file, const char __user *buf,
935 size_t len, loff_t *pos)
936 {
937 struct spu_context *ctx = file->private_data;
938 u32 wbox_data, __user *udata;
939 ssize_t count;
940
941 if (len < 4)
942 return -EINVAL;
943
944 udata = (void __user *)buf;
945 if (!access_ok(VERIFY_READ, buf, len))
946 return -EFAULT;
947
948 if (__get_user(wbox_data, udata))
949 return -EFAULT;
950
951 count = spu_acquire(ctx);
952 if (count)
953 goto out;
954
955 /*
956 * make sure we can at least write one element, by waiting
957 * in case of !O_NONBLOCK
958 */
959 count = 0;
960 if (file->f_flags & O_NONBLOCK) {
961 if (!spu_wbox_write(ctx, wbox_data)) {
962 count = -EAGAIN;
963 goto out_unlock;
964 }
965 } else {
966 count = spufs_wait(ctx->wbox_wq, spu_wbox_write(ctx, wbox_data));
967 if (count)
968 goto out;
969 }
970
971
972 /* write as much as possible */
973 for (count = 4, udata++; (count + 4) <= len; count += 4, udata++) {
974 int ret;
975 ret = __get_user(wbox_data, udata);
976 if (ret)
977 break;
978
979 ret = spu_wbox_write(ctx, wbox_data);
980 if (ret == 0)
981 break;
982 }
983
984 out_unlock:
985 spu_release(ctx);
986 out:
987 return count;
988 }
989
990 static unsigned int spufs_wbox_poll(struct file *file, poll_table *wait)
991 {
992 struct spu_context *ctx = file->private_data;
993 unsigned int mask;
994
995 poll_wait(file, &ctx->wbox_wq, wait);
996
997 /*
998 * For now keep this uninterruptible and also ignore the rule
999 * that poll should not sleep. Will be fixed later.
1000 */
1001 mutex_lock(&ctx->state_mutex);
1002 mask = ctx->ops->mbox_stat_poll(ctx, POLLOUT | POLLWRNORM);
1003 spu_release(ctx);
1004
1005 return mask;
1006 }
1007
1008 static const struct file_operations spufs_wbox_fops = {
1009 .open = spufs_pipe_open,
1010 .write = spufs_wbox_write,
1011 .poll = spufs_wbox_poll,
1012 .fasync = spufs_wbox_fasync,
1013 };
1014
1015 static ssize_t spufs_wbox_stat_read(struct file *file, char __user *buf,
1016 size_t len, loff_t *pos)
1017 {
1018 struct spu_context *ctx = file->private_data;
1019 ssize_t ret;
1020 u32 wbox_stat;
1021
1022 if (len < 4)
1023 return -EINVAL;
1024
1025 ret = spu_acquire(ctx);
1026 if (ret)
1027 return ret;
1028 wbox_stat = (ctx->ops->mbox_stat_read(ctx) >> 8) & 0xff;
1029 spu_release(ctx);
1030
1031 if (copy_to_user(buf, &wbox_stat, sizeof wbox_stat))
1032 return -EFAULT;
1033
1034 return 4;
1035 }
1036
1037 static const struct file_operations spufs_wbox_stat_fops = {
1038 .open = spufs_pipe_open,
1039 .read = spufs_wbox_stat_read,
1040 };
1041
1042 static int spufs_signal1_open(struct inode *inode, struct file *file)
1043 {
1044 struct spufs_inode_info *i = SPUFS_I(inode);
1045 struct spu_context *ctx = i->i_ctx;
1046
1047 mutex_lock(&ctx->mapping_lock);
1048 file->private_data = ctx;
1049 if (!i->i_openers++)
1050 ctx->signal1 = inode->i_mapping;
1051 mutex_unlock(&ctx->mapping_lock);
1052 return nonseekable_open(inode, file);
1053 }
1054
1055 static int
1056 spufs_signal1_release(struct inode *inode, struct file *file)
1057 {
1058 struct spufs_inode_info *i = SPUFS_I(inode);
1059 struct spu_context *ctx = i->i_ctx;
1060
1061 mutex_lock(&ctx->mapping_lock);
1062 if (!--i->i_openers)
1063 ctx->signal1 = NULL;
1064 mutex_unlock(&ctx->mapping_lock);
1065 return 0;
1066 }
1067
1068 static ssize_t __spufs_signal1_read(struct spu_context *ctx, char __user *buf,
1069 size_t len, loff_t *pos)
1070 {
1071 int ret = 0;
1072 u32 data;
1073
1074 if (len < 4)
1075 return -EINVAL;
1076
1077 if (ctx->csa.spu_chnlcnt_RW[3]) {
1078 data = ctx->csa.spu_chnldata_RW[3];
1079 ret = 4;
1080 }
1081
1082 if (!ret)
1083 goto out;
1084
1085 if (copy_to_user(buf, &data, 4))
1086 return -EFAULT;
1087
1088 out:
1089 return ret;
1090 }
1091
1092 static ssize_t spufs_signal1_read(struct file *file, char __user *buf,
1093 size_t len, loff_t *pos)
1094 {
1095 int ret;
1096 struct spu_context *ctx = file->private_data;
1097
1098 ret = spu_acquire_saved(ctx);
1099 if (ret)
1100 return ret;
1101 ret = __spufs_signal1_read(ctx, buf, len, pos);
1102 spu_release_saved(ctx);
1103
1104 return ret;
1105 }
1106
1107 static ssize_t spufs_signal1_write(struct file *file, const char __user *buf,
1108 size_t len, loff_t *pos)
1109 {
1110 struct spu_context *ctx;
1111 ssize_t ret;
1112 u32 data;
1113
1114 ctx = file->private_data;
1115
1116 if (len < 4)
1117 return -EINVAL;
1118
1119 if (copy_from_user(&data, buf, 4))
1120 return -EFAULT;
1121
1122 ret = spu_acquire(ctx);
1123 if (ret)
1124 return ret;
1125 ctx->ops->signal1_write(ctx, data);
1126 spu_release(ctx);
1127
1128 return 4;
1129 }
1130
1131 static int
1132 spufs_signal1_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1133 {
1134 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1135 return spufs_ps_fault(vma, vmf, 0x14000, SPUFS_SIGNAL_MAP_SIZE);
1136 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1137 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1138 * signal 1 and 2 area
1139 */
1140 return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1141 #else
1142 #error unsupported page size
1143 #endif
1144 }
1145
1146 static const struct vm_operations_struct spufs_signal1_mmap_vmops = {
1147 .fault = spufs_signal1_mmap_fault,
1148 };
1149
1150 static int spufs_signal1_mmap(struct file *file, struct vm_area_struct *vma)
1151 {
1152 if (!(vma->vm_flags & VM_SHARED))
1153 return -EINVAL;
1154
1155 vma->vm_flags |= VM_IO | VM_PFNMAP;
1156 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1157
1158 vma->vm_ops = &spufs_signal1_mmap_vmops;
1159 return 0;
1160 }
1161
1162 static const struct file_operations spufs_signal1_fops = {
1163 .open = spufs_signal1_open,
1164 .release = spufs_signal1_release,
1165 .read = spufs_signal1_read,
1166 .write = spufs_signal1_write,
1167 .mmap = spufs_signal1_mmap,
1168 };
1169
1170 static const struct file_operations spufs_signal1_nosched_fops = {
1171 .open = spufs_signal1_open,
1172 .release = spufs_signal1_release,
1173 .write = spufs_signal1_write,
1174 .mmap = spufs_signal1_mmap,
1175 };
1176
1177 static int spufs_signal2_open(struct inode *inode, struct file *file)
1178 {
1179 struct spufs_inode_info *i = SPUFS_I(inode);
1180 struct spu_context *ctx = i->i_ctx;
1181
1182 mutex_lock(&ctx->mapping_lock);
1183 file->private_data = ctx;
1184 if (!i->i_openers++)
1185 ctx->signal2 = inode->i_mapping;
1186 mutex_unlock(&ctx->mapping_lock);
1187 return nonseekable_open(inode, file);
1188 }
1189
1190 static int
1191 spufs_signal2_release(struct inode *inode, struct file *file)
1192 {
1193 struct spufs_inode_info *i = SPUFS_I(inode);
1194 struct spu_context *ctx = i->i_ctx;
1195
1196 mutex_lock(&ctx->mapping_lock);
1197 if (!--i->i_openers)
1198 ctx->signal2 = NULL;
1199 mutex_unlock(&ctx->mapping_lock);
1200 return 0;
1201 }
1202
1203 static ssize_t __spufs_signal2_read(struct spu_context *ctx, char __user *buf,
1204 size_t len, loff_t *pos)
1205 {
1206 int ret = 0;
1207 u32 data;
1208
1209 if (len < 4)
1210 return -EINVAL;
1211
1212 if (ctx->csa.spu_chnlcnt_RW[4]) {
1213 data = ctx->csa.spu_chnldata_RW[4];
1214 ret = 4;
1215 }
1216
1217 if (!ret)
1218 goto out;
1219
1220 if (copy_to_user(buf, &data, 4))
1221 return -EFAULT;
1222
1223 out:
1224 return ret;
1225 }
1226
1227 static ssize_t spufs_signal2_read(struct file *file, char __user *buf,
1228 size_t len, loff_t *pos)
1229 {
1230 struct spu_context *ctx = file->private_data;
1231 int ret;
1232
1233 ret = spu_acquire_saved(ctx);
1234 if (ret)
1235 return ret;
1236 ret = __spufs_signal2_read(ctx, buf, len, pos);
1237 spu_release_saved(ctx);
1238
1239 return ret;
1240 }
1241
1242 static ssize_t spufs_signal2_write(struct file *file, const char __user *buf,
1243 size_t len, loff_t *pos)
1244 {
1245 struct spu_context *ctx;
1246 ssize_t ret;
1247 u32 data;
1248
1249 ctx = file->private_data;
1250
1251 if (len < 4)
1252 return -EINVAL;
1253
1254 if (copy_from_user(&data, buf, 4))
1255 return -EFAULT;
1256
1257 ret = spu_acquire(ctx);
1258 if (ret)
1259 return ret;
1260 ctx->ops->signal2_write(ctx, data);
1261 spu_release(ctx);
1262
1263 return 4;
1264 }
1265
1266 #if SPUFS_MMAP_4K
1267 static int
1268 spufs_signal2_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1269 {
1270 #if SPUFS_SIGNAL_MAP_SIZE == 0x1000
1271 return spufs_ps_fault(vma, vmf, 0x1c000, SPUFS_SIGNAL_MAP_SIZE);
1272 #elif SPUFS_SIGNAL_MAP_SIZE == 0x10000
1273 /* For 64k pages, both signal1 and signal2 can be used to mmap the whole
1274 * signal 1 and 2 area
1275 */
1276 return spufs_ps_fault(vma, vmf, 0x10000, SPUFS_SIGNAL_MAP_SIZE);
1277 #else
1278 #error unsupported page size
1279 #endif
1280 }
1281
1282 static const struct vm_operations_struct spufs_signal2_mmap_vmops = {
1283 .fault = spufs_signal2_mmap_fault,
1284 };
1285
1286 static int spufs_signal2_mmap(struct file *file, struct vm_area_struct *vma)
1287 {
1288 if (!(vma->vm_flags & VM_SHARED))
1289 return -EINVAL;
1290
1291 vma->vm_flags |= VM_IO | VM_PFNMAP;
1292 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1293
1294 vma->vm_ops = &spufs_signal2_mmap_vmops;
1295 return 0;
1296 }
1297 #else /* SPUFS_MMAP_4K */
1298 #define spufs_signal2_mmap NULL
1299 #endif /* !SPUFS_MMAP_4K */
1300
1301 static const struct file_operations spufs_signal2_fops = {
1302 .open = spufs_signal2_open,
1303 .release = spufs_signal2_release,
1304 .read = spufs_signal2_read,
1305 .write = spufs_signal2_write,
1306 .mmap = spufs_signal2_mmap,
1307 };
1308
1309 static const struct file_operations spufs_signal2_nosched_fops = {
1310 .open = spufs_signal2_open,
1311 .release = spufs_signal2_release,
1312 .write = spufs_signal2_write,
1313 .mmap = spufs_signal2_mmap,
1314 };
1315
1316 /*
1317 * This is a wrapper around DEFINE_SIMPLE_ATTRIBUTE which does the
1318 * work of acquiring (or not) the SPU context before calling through
1319 * to the actual get routine. The set routine is called directly.
1320 */
1321 #define SPU_ATTR_NOACQUIRE 0
1322 #define SPU_ATTR_ACQUIRE 1
1323 #define SPU_ATTR_ACQUIRE_SAVED 2
1324
1325 #define DEFINE_SPUFS_ATTRIBUTE(__name, __get, __set, __fmt, __acquire) \
1326 static int __##__get(void *data, u64 *val) \
1327 { \
1328 struct spu_context *ctx = data; \
1329 int ret = 0; \
1330 \
1331 if (__acquire == SPU_ATTR_ACQUIRE) { \
1332 ret = spu_acquire(ctx); \
1333 if (ret) \
1334 return ret; \
1335 *val = __get(ctx); \
1336 spu_release(ctx); \
1337 } else if (__acquire == SPU_ATTR_ACQUIRE_SAVED) { \
1338 ret = spu_acquire_saved(ctx); \
1339 if (ret) \
1340 return ret; \
1341 *val = __get(ctx); \
1342 spu_release_saved(ctx); \
1343 } else \
1344 *val = __get(ctx); \
1345 \
1346 return 0; \
1347 } \
1348 DEFINE_SPUFS_SIMPLE_ATTRIBUTE(__name, __##__get, __set, __fmt);
1349
1350 static int spufs_signal1_type_set(void *data, u64 val)
1351 {
1352 struct spu_context *ctx = data;
1353 int ret;
1354
1355 ret = spu_acquire(ctx);
1356 if (ret)
1357 return ret;
1358 ctx->ops->signal1_type_set(ctx, val);
1359 spu_release(ctx);
1360
1361 return 0;
1362 }
1363
1364 static u64 spufs_signal1_type_get(struct spu_context *ctx)
1365 {
1366 return ctx->ops->signal1_type_get(ctx);
1367 }
1368 DEFINE_SPUFS_ATTRIBUTE(spufs_signal1_type, spufs_signal1_type_get,
1369 spufs_signal1_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1370
1371
1372 static int spufs_signal2_type_set(void *data, u64 val)
1373 {
1374 struct spu_context *ctx = data;
1375 int ret;
1376
1377 ret = spu_acquire(ctx);
1378 if (ret)
1379 return ret;
1380 ctx->ops->signal2_type_set(ctx, val);
1381 spu_release(ctx);
1382
1383 return 0;
1384 }
1385
1386 static u64 spufs_signal2_type_get(struct spu_context *ctx)
1387 {
1388 return ctx->ops->signal2_type_get(ctx);
1389 }
1390 DEFINE_SPUFS_ATTRIBUTE(spufs_signal2_type, spufs_signal2_type_get,
1391 spufs_signal2_type_set, "%llu\n", SPU_ATTR_ACQUIRE);
1392
1393 #if SPUFS_MMAP_4K
1394 static int
1395 spufs_mss_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1396 {
1397 return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_MSS_MAP_SIZE);
1398 }
1399
1400 static const struct vm_operations_struct spufs_mss_mmap_vmops = {
1401 .fault = spufs_mss_mmap_fault,
1402 };
1403
1404 /*
1405 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1406 */
1407 static int spufs_mss_mmap(struct file *file, struct vm_area_struct *vma)
1408 {
1409 if (!(vma->vm_flags & VM_SHARED))
1410 return -EINVAL;
1411
1412 vma->vm_flags |= VM_IO | VM_PFNMAP;
1413 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1414
1415 vma->vm_ops = &spufs_mss_mmap_vmops;
1416 return 0;
1417 }
1418 #else /* SPUFS_MMAP_4K */
1419 #define spufs_mss_mmap NULL
1420 #endif /* !SPUFS_MMAP_4K */
1421
1422 static int spufs_mss_open(struct inode *inode, struct file *file)
1423 {
1424 struct spufs_inode_info *i = SPUFS_I(inode);
1425 struct spu_context *ctx = i->i_ctx;
1426
1427 file->private_data = i->i_ctx;
1428
1429 mutex_lock(&ctx->mapping_lock);
1430 if (!i->i_openers++)
1431 ctx->mss = inode->i_mapping;
1432 mutex_unlock(&ctx->mapping_lock);
1433 return nonseekable_open(inode, file);
1434 }
1435
1436 static int
1437 spufs_mss_release(struct inode *inode, struct file *file)
1438 {
1439 struct spufs_inode_info *i = SPUFS_I(inode);
1440 struct spu_context *ctx = i->i_ctx;
1441
1442 mutex_lock(&ctx->mapping_lock);
1443 if (!--i->i_openers)
1444 ctx->mss = NULL;
1445 mutex_unlock(&ctx->mapping_lock);
1446 return 0;
1447 }
1448
1449 static const struct file_operations spufs_mss_fops = {
1450 .open = spufs_mss_open,
1451 .release = spufs_mss_release,
1452 .mmap = spufs_mss_mmap,
1453 };
1454
1455 static int
1456 spufs_psmap_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1457 {
1458 return spufs_ps_fault(vma, vmf, 0x0000, SPUFS_PS_MAP_SIZE);
1459 }
1460
1461 static const struct vm_operations_struct spufs_psmap_mmap_vmops = {
1462 .fault = spufs_psmap_mmap_fault,
1463 };
1464
1465 /*
1466 * mmap support for full problem state area [0x00000 - 0x1ffff].
1467 */
1468 static int spufs_psmap_mmap(struct file *file, struct vm_area_struct *vma)
1469 {
1470 if (!(vma->vm_flags & VM_SHARED))
1471 return -EINVAL;
1472
1473 vma->vm_flags |= VM_IO | VM_PFNMAP;
1474 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1475
1476 vma->vm_ops = &spufs_psmap_mmap_vmops;
1477 return 0;
1478 }
1479
1480 static int spufs_psmap_open(struct inode *inode, struct file *file)
1481 {
1482 struct spufs_inode_info *i = SPUFS_I(inode);
1483 struct spu_context *ctx = i->i_ctx;
1484
1485 mutex_lock(&ctx->mapping_lock);
1486 file->private_data = i->i_ctx;
1487 if (!i->i_openers++)
1488 ctx->psmap = inode->i_mapping;
1489 mutex_unlock(&ctx->mapping_lock);
1490 return nonseekable_open(inode, file);
1491 }
1492
1493 static int
1494 spufs_psmap_release(struct inode *inode, struct file *file)
1495 {
1496 struct spufs_inode_info *i = SPUFS_I(inode);
1497 struct spu_context *ctx = i->i_ctx;
1498
1499 mutex_lock(&ctx->mapping_lock);
1500 if (!--i->i_openers)
1501 ctx->psmap = NULL;
1502 mutex_unlock(&ctx->mapping_lock);
1503 return 0;
1504 }
1505
1506 static const struct file_operations spufs_psmap_fops = {
1507 .open = spufs_psmap_open,
1508 .release = spufs_psmap_release,
1509 .mmap = spufs_psmap_mmap,
1510 };
1511
1512
1513 #if SPUFS_MMAP_4K
1514 static int
1515 spufs_mfc_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1516 {
1517 return spufs_ps_fault(vma, vmf, 0x3000, SPUFS_MFC_MAP_SIZE);
1518 }
1519
1520 static const struct vm_operations_struct spufs_mfc_mmap_vmops = {
1521 .fault = spufs_mfc_mmap_fault,
1522 };
1523
1524 /*
1525 * mmap support for problem state MFC DMA area [0x0000 - 0x0fff].
1526 */
1527 static int spufs_mfc_mmap(struct file *file, struct vm_area_struct *vma)
1528 {
1529 if (!(vma->vm_flags & VM_SHARED))
1530 return -EINVAL;
1531
1532 vma->vm_flags |= VM_IO | VM_PFNMAP;
1533 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
1534
1535 vma->vm_ops = &spufs_mfc_mmap_vmops;
1536 return 0;
1537 }
1538 #else /* SPUFS_MMAP_4K */
1539 #define spufs_mfc_mmap NULL
1540 #endif /* !SPUFS_MMAP_4K */
1541
1542 static int spufs_mfc_open(struct inode *inode, struct file *file)
1543 {
1544 struct spufs_inode_info *i = SPUFS_I(inode);
1545 struct spu_context *ctx = i->i_ctx;
1546
1547 /* we don't want to deal with DMA into other processes */
1548 if (ctx->owner != current->mm)
1549 return -EINVAL;
1550
1551 if (atomic_read(&inode->i_count) != 1)
1552 return -EBUSY;
1553
1554 mutex_lock(&ctx->mapping_lock);
1555 file->private_data = ctx;
1556 if (!i->i_openers++)
1557 ctx->mfc = inode->i_mapping;
1558 mutex_unlock(&ctx->mapping_lock);
1559 return nonseekable_open(inode, file);
1560 }
1561
1562 static int
1563 spufs_mfc_release(struct inode *inode, struct file *file)
1564 {
1565 struct spufs_inode_info *i = SPUFS_I(inode);
1566 struct spu_context *ctx = i->i_ctx;
1567
1568 mutex_lock(&ctx->mapping_lock);
1569 if (!--i->i_openers)
1570 ctx->mfc = NULL;
1571 mutex_unlock(&ctx->mapping_lock);
1572 return 0;
1573 }
1574
1575 /* interrupt-level mfc callback function. */
1576 void spufs_mfc_callback(struct spu *spu)
1577 {
1578 struct spu_context *ctx = spu->ctx;
1579
1580 if (!ctx)
1581 return;
1582
1583 wake_up_all(&ctx->mfc_wq);
1584
1585 pr_debug("%s %s\n", __func__, spu->name);
1586 if (ctx->mfc_fasync) {
1587 u32 free_elements, tagstatus;
1588 unsigned int mask;
1589
1590 /* no need for spu_acquire in interrupt context */
1591 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1592 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1593
1594 mask = 0;
1595 if (free_elements & 0xffff)
1596 mask |= POLLOUT;
1597 if (tagstatus & ctx->tagwait)
1598 mask |= POLLIN;
1599
1600 kill_fasync(&ctx->mfc_fasync, SIGIO, mask);
1601 }
1602 }
1603
1604 static int spufs_read_mfc_tagstatus(struct spu_context *ctx, u32 *status)
1605 {
1606 /* See if there is one tag group is complete */
1607 /* FIXME we need locking around tagwait */
1608 *status = ctx->ops->read_mfc_tagstatus(ctx) & ctx->tagwait;
1609 ctx->tagwait &= ~*status;
1610 if (*status)
1611 return 1;
1612
1613 /* enable interrupt waiting for any tag group,
1614 may silently fail if interrupts are already enabled */
1615 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1616 return 0;
1617 }
1618
1619 static ssize_t spufs_mfc_read(struct file *file, char __user *buffer,
1620 size_t size, loff_t *pos)
1621 {
1622 struct spu_context *ctx = file->private_data;
1623 int ret = -EINVAL;
1624 u32 status;
1625
1626 if (size != 4)
1627 goto out;
1628
1629 ret = spu_acquire(ctx);
1630 if (ret)
1631 return ret;
1632
1633 ret = -EINVAL;
1634 if (file->f_flags & O_NONBLOCK) {
1635 status = ctx->ops->read_mfc_tagstatus(ctx);
1636 if (!(status & ctx->tagwait))
1637 ret = -EAGAIN;
1638 else
1639 /* XXX(hch): shouldn't we clear ret here? */
1640 ctx->tagwait &= ~status;
1641 } else {
1642 ret = spufs_wait(ctx->mfc_wq,
1643 spufs_read_mfc_tagstatus(ctx, &status));
1644 if (ret)
1645 goto out;
1646 }
1647 spu_release(ctx);
1648
1649 ret = 4;
1650 if (copy_to_user(buffer, &status, 4))
1651 ret = -EFAULT;
1652
1653 out:
1654 return ret;
1655 }
1656
1657 static int spufs_check_valid_dma(struct mfc_dma_command *cmd)
1658 {
1659 pr_debug("queueing DMA %x %llx %x %x %x\n", cmd->lsa,
1660 cmd->ea, cmd->size, cmd->tag, cmd->cmd);
1661
1662 switch (cmd->cmd) {
1663 case MFC_PUT_CMD:
1664 case MFC_PUTF_CMD:
1665 case MFC_PUTB_CMD:
1666 case MFC_GET_CMD:
1667 case MFC_GETF_CMD:
1668 case MFC_GETB_CMD:
1669 break;
1670 default:
1671 pr_debug("invalid DMA opcode %x\n", cmd->cmd);
1672 return -EIO;
1673 }
1674
1675 if ((cmd->lsa & 0xf) != (cmd->ea &0xf)) {
1676 pr_debug("invalid DMA alignment, ea %llx lsa %x\n",
1677 cmd->ea, cmd->lsa);
1678 return -EIO;
1679 }
1680
1681 switch (cmd->size & 0xf) {
1682 case 1:
1683 break;
1684 case 2:
1685 if (cmd->lsa & 1)
1686 goto error;
1687 break;
1688 case 4:
1689 if (cmd->lsa & 3)
1690 goto error;
1691 break;
1692 case 8:
1693 if (cmd->lsa & 7)
1694 goto error;
1695 break;
1696 case 0:
1697 if (cmd->lsa & 15)
1698 goto error;
1699 break;
1700 error:
1701 default:
1702 pr_debug("invalid DMA alignment %x for size %x\n",
1703 cmd->lsa & 0xf, cmd->size);
1704 return -EIO;
1705 }
1706
1707 if (cmd->size > 16 * 1024) {
1708 pr_debug("invalid DMA size %x\n", cmd->size);
1709 return -EIO;
1710 }
1711
1712 if (cmd->tag & 0xfff0) {
1713 /* we reserve the higher tag numbers for kernel use */
1714 pr_debug("invalid DMA tag\n");
1715 return -EIO;
1716 }
1717
1718 if (cmd->class) {
1719 /* not supported in this version */
1720 pr_debug("invalid DMA class\n");
1721 return -EIO;
1722 }
1723
1724 return 0;
1725 }
1726
1727 static int spu_send_mfc_command(struct spu_context *ctx,
1728 struct mfc_dma_command cmd,
1729 int *error)
1730 {
1731 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1732 if (*error == -EAGAIN) {
1733 /* wait for any tag group to complete
1734 so we have space for the new command */
1735 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 1);
1736 /* try again, because the queue might be
1737 empty again */
1738 *error = ctx->ops->send_mfc_command(ctx, &cmd);
1739 if (*error == -EAGAIN)
1740 return 0;
1741 }
1742 return 1;
1743 }
1744
1745 static ssize_t spufs_mfc_write(struct file *file, const char __user *buffer,
1746 size_t size, loff_t *pos)
1747 {
1748 struct spu_context *ctx = file->private_data;
1749 struct mfc_dma_command cmd;
1750 int ret = -EINVAL;
1751
1752 if (size != sizeof cmd)
1753 goto out;
1754
1755 ret = -EFAULT;
1756 if (copy_from_user(&cmd, buffer, sizeof cmd))
1757 goto out;
1758
1759 ret = spufs_check_valid_dma(&cmd);
1760 if (ret)
1761 goto out;
1762
1763 ret = spu_acquire(ctx);
1764 if (ret)
1765 goto out;
1766
1767 ret = spufs_wait(ctx->run_wq, ctx->state == SPU_STATE_RUNNABLE);
1768 if (ret)
1769 goto out;
1770
1771 if (file->f_flags & O_NONBLOCK) {
1772 ret = ctx->ops->send_mfc_command(ctx, &cmd);
1773 } else {
1774 int status;
1775 ret = spufs_wait(ctx->mfc_wq,
1776 spu_send_mfc_command(ctx, cmd, &status));
1777 if (ret)
1778 goto out;
1779 if (status)
1780 ret = status;
1781 }
1782
1783 if (ret)
1784 goto out_unlock;
1785
1786 ctx->tagwait |= 1 << cmd.tag;
1787 ret = size;
1788
1789 out_unlock:
1790 spu_release(ctx);
1791 out:
1792 return ret;
1793 }
1794
1795 static unsigned int spufs_mfc_poll(struct file *file,poll_table *wait)
1796 {
1797 struct spu_context *ctx = file->private_data;
1798 u32 free_elements, tagstatus;
1799 unsigned int mask;
1800
1801 poll_wait(file, &ctx->mfc_wq, wait);
1802
1803 /*
1804 * For now keep this uninterruptible and also ignore the rule
1805 * that poll should not sleep. Will be fixed later.
1806 */
1807 mutex_lock(&ctx->state_mutex);
1808 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2);
1809 free_elements = ctx->ops->get_mfc_free_elements(ctx);
1810 tagstatus = ctx->ops->read_mfc_tagstatus(ctx);
1811 spu_release(ctx);
1812
1813 mask = 0;
1814 if (free_elements & 0xffff)
1815 mask |= POLLOUT | POLLWRNORM;
1816 if (tagstatus & ctx->tagwait)
1817 mask |= POLLIN | POLLRDNORM;
1818
1819 pr_debug("%s: free %d tagstatus %d tagwait %d\n", __func__,
1820 free_elements, tagstatus, ctx->tagwait);
1821
1822 return mask;
1823 }
1824
1825 static int spufs_mfc_flush(struct file *file, fl_owner_t id)
1826 {
1827 struct spu_context *ctx = file->private_data;
1828 int ret;
1829
1830 ret = spu_acquire(ctx);
1831 if (ret)
1832 goto out;
1833 #if 0
1834 /* this currently hangs */
1835 ret = spufs_wait(ctx->mfc_wq,
1836 ctx->ops->set_mfc_query(ctx, ctx->tagwait, 2));
1837 if (ret)
1838 goto out;
1839 ret = spufs_wait(ctx->mfc_wq,
1840 ctx->ops->read_mfc_tagstatus(ctx) == ctx->tagwait);
1841 if (ret)
1842 goto out;
1843 #else
1844 ret = 0;
1845 #endif
1846 spu_release(ctx);
1847 out:
1848 return ret;
1849 }
1850
1851 static int spufs_mfc_fsync(struct file *file, struct dentry *dentry,
1852 int datasync)
1853 {
1854 return spufs_mfc_flush(file, NULL);
1855 }
1856
1857 static int spufs_mfc_fasync(int fd, struct file *file, int on)
1858 {
1859 struct spu_context *ctx = file->private_data;
1860
1861 return fasync_helper(fd, file, on, &ctx->mfc_fasync);
1862 }
1863
1864 static const struct file_operations spufs_mfc_fops = {
1865 .open = spufs_mfc_open,
1866 .release = spufs_mfc_release,
1867 .read = spufs_mfc_read,
1868 .write = spufs_mfc_write,
1869 .poll = spufs_mfc_poll,
1870 .flush = spufs_mfc_flush,
1871 .fsync = spufs_mfc_fsync,
1872 .fasync = spufs_mfc_fasync,
1873 .mmap = spufs_mfc_mmap,
1874 };
1875
1876 static int spufs_npc_set(void *data, u64 val)
1877 {
1878 struct spu_context *ctx = data;
1879 int ret;
1880
1881 ret = spu_acquire(ctx);
1882 if (ret)
1883 return ret;
1884 ctx->ops->npc_write(ctx, val);
1885 spu_release(ctx);
1886
1887 return 0;
1888 }
1889
1890 static u64 spufs_npc_get(struct spu_context *ctx)
1891 {
1892 return ctx->ops->npc_read(ctx);
1893 }
1894 DEFINE_SPUFS_ATTRIBUTE(spufs_npc_ops, spufs_npc_get, spufs_npc_set,
1895 "0x%llx\n", SPU_ATTR_ACQUIRE);
1896
1897 static int spufs_decr_set(void *data, u64 val)
1898 {
1899 struct spu_context *ctx = data;
1900 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1901 int ret;
1902
1903 ret = spu_acquire_saved(ctx);
1904 if (ret)
1905 return ret;
1906 lscsa->decr.slot[0] = (u32) val;
1907 spu_release_saved(ctx);
1908
1909 return 0;
1910 }
1911
1912 static u64 spufs_decr_get(struct spu_context *ctx)
1913 {
1914 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1915 return lscsa->decr.slot[0];
1916 }
1917 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_ops, spufs_decr_get, spufs_decr_set,
1918 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED);
1919
1920 static int spufs_decr_status_set(void *data, u64 val)
1921 {
1922 struct spu_context *ctx = data;
1923 int ret;
1924
1925 ret = spu_acquire_saved(ctx);
1926 if (ret)
1927 return ret;
1928 if (val)
1929 ctx->csa.priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
1930 else
1931 ctx->csa.priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
1932 spu_release_saved(ctx);
1933
1934 return 0;
1935 }
1936
1937 static u64 spufs_decr_status_get(struct spu_context *ctx)
1938 {
1939 if (ctx->csa.priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING)
1940 return SPU_DECR_STATUS_RUNNING;
1941 else
1942 return 0;
1943 }
1944 DEFINE_SPUFS_ATTRIBUTE(spufs_decr_status_ops, spufs_decr_status_get,
1945 spufs_decr_status_set, "0x%llx\n",
1946 SPU_ATTR_ACQUIRE_SAVED);
1947
1948 static int spufs_event_mask_set(void *data, u64 val)
1949 {
1950 struct spu_context *ctx = data;
1951 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1952 int ret;
1953
1954 ret = spu_acquire_saved(ctx);
1955 if (ret)
1956 return ret;
1957 lscsa->event_mask.slot[0] = (u32) val;
1958 spu_release_saved(ctx);
1959
1960 return 0;
1961 }
1962
1963 static u64 spufs_event_mask_get(struct spu_context *ctx)
1964 {
1965 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1966 return lscsa->event_mask.slot[0];
1967 }
1968
1969 DEFINE_SPUFS_ATTRIBUTE(spufs_event_mask_ops, spufs_event_mask_get,
1970 spufs_event_mask_set, "0x%llx\n",
1971 SPU_ATTR_ACQUIRE_SAVED);
1972
1973 static u64 spufs_event_status_get(struct spu_context *ctx)
1974 {
1975 struct spu_state *state = &ctx->csa;
1976 u64 stat;
1977 stat = state->spu_chnlcnt_RW[0];
1978 if (stat)
1979 return state->spu_chnldata_RW[0];
1980 return 0;
1981 }
1982 DEFINE_SPUFS_ATTRIBUTE(spufs_event_status_ops, spufs_event_status_get,
1983 NULL, "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
1984
1985 static int spufs_srr0_set(void *data, u64 val)
1986 {
1987 struct spu_context *ctx = data;
1988 struct spu_lscsa *lscsa = ctx->csa.lscsa;
1989 int ret;
1990
1991 ret = spu_acquire_saved(ctx);
1992 if (ret)
1993 return ret;
1994 lscsa->srr0.slot[0] = (u32) val;
1995 spu_release_saved(ctx);
1996
1997 return 0;
1998 }
1999
2000 static u64 spufs_srr0_get(struct spu_context *ctx)
2001 {
2002 struct spu_lscsa *lscsa = ctx->csa.lscsa;
2003 return lscsa->srr0.slot[0];
2004 }
2005 DEFINE_SPUFS_ATTRIBUTE(spufs_srr0_ops, spufs_srr0_get, spufs_srr0_set,
2006 "0x%llx\n", SPU_ATTR_ACQUIRE_SAVED)
2007
2008 static u64 spufs_id_get(struct spu_context *ctx)
2009 {
2010 u64 num;
2011
2012 if (ctx->state == SPU_STATE_RUNNABLE)
2013 num = ctx->spu->number;
2014 else
2015 num = (unsigned int)-1;
2016
2017 return num;
2018 }
2019 DEFINE_SPUFS_ATTRIBUTE(spufs_id_ops, spufs_id_get, NULL, "0x%llx\n",
2020 SPU_ATTR_ACQUIRE)
2021
2022 static u64 spufs_object_id_get(struct spu_context *ctx)
2023 {
2024 /* FIXME: Should there really be no locking here? */
2025 return ctx->object_id;
2026 }
2027
2028 static int spufs_object_id_set(void *data, u64 id)
2029 {
2030 struct spu_context *ctx = data;
2031 ctx->object_id = id;
2032
2033 return 0;
2034 }
2035
2036 DEFINE_SPUFS_ATTRIBUTE(spufs_object_id_ops, spufs_object_id_get,
2037 spufs_object_id_set, "0x%llx\n", SPU_ATTR_NOACQUIRE);
2038
2039 static u64 spufs_lslr_get(struct spu_context *ctx)
2040 {
2041 return ctx->csa.priv2.spu_lslr_RW;
2042 }
2043 DEFINE_SPUFS_ATTRIBUTE(spufs_lslr_ops, spufs_lslr_get, NULL, "0x%llx\n",
2044 SPU_ATTR_ACQUIRE_SAVED);
2045
2046 static int spufs_info_open(struct inode *inode, struct file *file)
2047 {
2048 struct spufs_inode_info *i = SPUFS_I(inode);
2049 struct spu_context *ctx = i->i_ctx;
2050 file->private_data = ctx;
2051 return 0;
2052 }
2053
2054 static int spufs_caps_show(struct seq_file *s, void *private)
2055 {
2056 struct spu_context *ctx = s->private;
2057
2058 if (!(ctx->flags & SPU_CREATE_NOSCHED))
2059 seq_puts(s, "sched\n");
2060 if (!(ctx->flags & SPU_CREATE_ISOLATE))
2061 seq_puts(s, "step\n");
2062 return 0;
2063 }
2064
2065 static int spufs_caps_open(struct inode *inode, struct file *file)
2066 {
2067 return single_open(file, spufs_caps_show, SPUFS_I(inode)->i_ctx);
2068 }
2069
2070 static const struct file_operations spufs_caps_fops = {
2071 .open = spufs_caps_open,
2072 .read = seq_read,
2073 .llseek = seq_lseek,
2074 .release = single_release,
2075 };
2076
2077 static ssize_t __spufs_mbox_info_read(struct spu_context *ctx,
2078 char __user *buf, size_t len, loff_t *pos)
2079 {
2080 u32 data;
2081
2082 /* EOF if there's no entry in the mbox */
2083 if (!(ctx->csa.prob.mb_stat_R & 0x0000ff))
2084 return 0;
2085
2086 data = ctx->csa.prob.pu_mb_R;
2087
2088 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2089 }
2090
2091 static ssize_t spufs_mbox_info_read(struct file *file, char __user *buf,
2092 size_t len, loff_t *pos)
2093 {
2094 int ret;
2095 struct spu_context *ctx = file->private_data;
2096
2097 if (!access_ok(VERIFY_WRITE, buf, len))
2098 return -EFAULT;
2099
2100 ret = spu_acquire_saved(ctx);
2101 if (ret)
2102 return ret;
2103 spin_lock(&ctx->csa.register_lock);
2104 ret = __spufs_mbox_info_read(ctx, buf, len, pos);
2105 spin_unlock(&ctx->csa.register_lock);
2106 spu_release_saved(ctx);
2107
2108 return ret;
2109 }
2110
2111 static const struct file_operations spufs_mbox_info_fops = {
2112 .open = spufs_info_open,
2113 .read = spufs_mbox_info_read,
2114 .llseek = generic_file_llseek,
2115 };
2116
2117 static ssize_t __spufs_ibox_info_read(struct spu_context *ctx,
2118 char __user *buf, size_t len, loff_t *pos)
2119 {
2120 u32 data;
2121
2122 /* EOF if there's no entry in the ibox */
2123 if (!(ctx->csa.prob.mb_stat_R & 0xff0000))
2124 return 0;
2125
2126 data = ctx->csa.priv2.puint_mb_R;
2127
2128 return simple_read_from_buffer(buf, len, pos, &data, sizeof data);
2129 }
2130
2131 static ssize_t spufs_ibox_info_read(struct file *file, char __user *buf,
2132 size_t len, loff_t *pos)
2133 {
2134 struct spu_context *ctx = file->private_data;
2135 int ret;
2136
2137 if (!access_ok(VERIFY_WRITE, buf, len))
2138 return -EFAULT;
2139
2140 ret = spu_acquire_saved(ctx);
2141 if (ret)
2142 return ret;
2143 spin_lock(&ctx->csa.register_lock);
2144 ret = __spufs_ibox_info_read(ctx, buf, len, pos);
2145 spin_unlock(&ctx->csa.register_lock);
2146 spu_release_saved(ctx);
2147
2148 return ret;
2149 }
2150
2151 static const struct file_operations spufs_ibox_info_fops = {
2152 .open = spufs_info_open,
2153 .read = spufs_ibox_info_read,
2154 .llseek = generic_file_llseek,
2155 };
2156
2157 static ssize_t __spufs_wbox_info_read(struct spu_context *ctx,
2158 char __user *buf, size_t len, loff_t *pos)
2159 {
2160 int i, cnt;
2161 u32 data[4];
2162 u32 wbox_stat;
2163
2164 wbox_stat = ctx->csa.prob.mb_stat_R;
2165 cnt = 4 - ((wbox_stat & 0x00ff00) >> 8);
2166 for (i = 0; i < cnt; i++) {
2167 data[i] = ctx->csa.spu_mailbox_data[i];
2168 }
2169
2170 return simple_read_from_buffer(buf, len, pos, &data,
2171 cnt * sizeof(u32));
2172 }
2173
2174 static ssize_t spufs_wbox_info_read(struct file *file, char __user *buf,
2175 size_t len, loff_t *pos)
2176 {
2177 struct spu_context *ctx = file->private_data;
2178 int ret;
2179
2180 if (!access_ok(VERIFY_WRITE, buf, len))
2181 return -EFAULT;
2182
2183 ret = spu_acquire_saved(ctx);
2184 if (ret)
2185 return ret;
2186 spin_lock(&ctx->csa.register_lock);
2187 ret = __spufs_wbox_info_read(ctx, buf, len, pos);
2188 spin_unlock(&ctx->csa.register_lock);
2189 spu_release_saved(ctx);
2190
2191 return ret;
2192 }
2193
2194 static const struct file_operations spufs_wbox_info_fops = {
2195 .open = spufs_info_open,
2196 .read = spufs_wbox_info_read,
2197 .llseek = generic_file_llseek,
2198 };
2199
2200 static ssize_t __spufs_dma_info_read(struct spu_context *ctx,
2201 char __user *buf, size_t len, loff_t *pos)
2202 {
2203 struct spu_dma_info info;
2204 struct mfc_cq_sr *qp, *spuqp;
2205 int i;
2206
2207 info.dma_info_type = ctx->csa.priv2.spu_tag_status_query_RW;
2208 info.dma_info_mask = ctx->csa.lscsa->tag_mask.slot[0];
2209 info.dma_info_status = ctx->csa.spu_chnldata_RW[24];
2210 info.dma_info_stall_and_notify = ctx->csa.spu_chnldata_RW[25];
2211 info.dma_info_atomic_command_status = ctx->csa.spu_chnldata_RW[27];
2212 for (i = 0; i < 16; i++) {
2213 qp = &info.dma_info_command_data[i];
2214 spuqp = &ctx->csa.priv2.spuq[i];
2215
2216 qp->mfc_cq_data0_RW = spuqp->mfc_cq_data0_RW;
2217 qp->mfc_cq_data1_RW = spuqp->mfc_cq_data1_RW;
2218 qp->mfc_cq_data2_RW = spuqp->mfc_cq_data2_RW;
2219 qp->mfc_cq_data3_RW = spuqp->mfc_cq_data3_RW;
2220 }
2221
2222 return simple_read_from_buffer(buf, len, pos, &info,
2223 sizeof info);
2224 }
2225
2226 static ssize_t spufs_dma_info_read(struct file *file, char __user *buf,
2227 size_t len, loff_t *pos)
2228 {
2229 struct spu_context *ctx = file->private_data;
2230 int ret;
2231
2232 if (!access_ok(VERIFY_WRITE, buf, len))
2233 return -EFAULT;
2234
2235 ret = spu_acquire_saved(ctx);
2236 if (ret)
2237 return ret;
2238 spin_lock(&ctx->csa.register_lock);
2239 ret = __spufs_dma_info_read(ctx, buf, len, pos);
2240 spin_unlock(&ctx->csa.register_lock);
2241 spu_release_saved(ctx);
2242
2243 return ret;
2244 }
2245
2246 static const struct file_operations spufs_dma_info_fops = {
2247 .open = spufs_info_open,
2248 .read = spufs_dma_info_read,
2249 };
2250
2251 static ssize_t __spufs_proxydma_info_read(struct spu_context *ctx,
2252 char __user *buf, size_t len, loff_t *pos)
2253 {
2254 struct spu_proxydma_info info;
2255 struct mfc_cq_sr *qp, *puqp;
2256 int ret = sizeof info;
2257 int i;
2258
2259 if (len < ret)
2260 return -EINVAL;
2261
2262 if (!access_ok(VERIFY_WRITE, buf, len))
2263 return -EFAULT;
2264
2265 info.proxydma_info_type = ctx->csa.prob.dma_querytype_RW;
2266 info.proxydma_info_mask = ctx->csa.prob.dma_querymask_RW;
2267 info.proxydma_info_status = ctx->csa.prob.dma_tagstatus_R;
2268 for (i = 0; i < 8; i++) {
2269 qp = &info.proxydma_info_command_data[i];
2270 puqp = &ctx->csa.priv2.puq[i];
2271
2272 qp->mfc_cq_data0_RW = puqp->mfc_cq_data0_RW;
2273 qp->mfc_cq_data1_RW = puqp->mfc_cq_data1_RW;
2274 qp->mfc_cq_data2_RW = puqp->mfc_cq_data2_RW;
2275 qp->mfc_cq_data3_RW = puqp->mfc_cq_data3_RW;
2276 }
2277
2278 return simple_read_from_buffer(buf, len, pos, &info,
2279 sizeof info);
2280 }
2281
2282 static ssize_t spufs_proxydma_info_read(struct file *file, char __user *buf,
2283 size_t len, loff_t *pos)
2284 {
2285 struct spu_context *ctx = file->private_data;
2286 int ret;
2287
2288 ret = spu_acquire_saved(ctx);
2289 if (ret)
2290 return ret;
2291 spin_lock(&ctx->csa.register_lock);
2292 ret = __spufs_proxydma_info_read(ctx, buf, len, pos);
2293 spin_unlock(&ctx->csa.register_lock);
2294 spu_release_saved(ctx);
2295
2296 return ret;
2297 }
2298
2299 static const struct file_operations spufs_proxydma_info_fops = {
2300 .open = spufs_info_open,
2301 .read = spufs_proxydma_info_read,
2302 };
2303
2304 static int spufs_show_tid(struct seq_file *s, void *private)
2305 {
2306 struct spu_context *ctx = s->private;
2307
2308 seq_printf(s, "%d\n", ctx->tid);
2309 return 0;
2310 }
2311
2312 static int spufs_tid_open(struct inode *inode, struct file *file)
2313 {
2314 return single_open(file, spufs_show_tid, SPUFS_I(inode)->i_ctx);
2315 }
2316
2317 static const struct file_operations spufs_tid_fops = {
2318 .open = spufs_tid_open,
2319 .read = seq_read,
2320 .llseek = seq_lseek,
2321 .release = single_release,
2322 };
2323
2324 static const char *ctx_state_names[] = {
2325 "user", "system", "iowait", "loaded"
2326 };
2327
2328 static unsigned long long spufs_acct_time(struct spu_context *ctx,
2329 enum spu_utilization_state state)
2330 {
2331 struct timespec ts;
2332 unsigned long long time = ctx->stats.times[state];
2333
2334 /*
2335 * In general, utilization statistics are updated by the controlling
2336 * thread as the spu context moves through various well defined
2337 * state transitions, but if the context is lazily loaded its
2338 * utilization statistics are not updated as the controlling thread
2339 * is not tightly coupled with the execution of the spu context. We
2340 * calculate and apply the time delta from the last recorded state
2341 * of the spu context.
2342 */
2343 if (ctx->spu && ctx->stats.util_state == state) {
2344 ktime_get_ts(&ts);
2345 time += timespec_to_ns(&ts) - ctx->stats.tstamp;
2346 }
2347
2348 return time / NSEC_PER_MSEC;
2349 }
2350
2351 static unsigned long long spufs_slb_flts(struct spu_context *ctx)
2352 {
2353 unsigned long long slb_flts = ctx->stats.slb_flt;
2354
2355 if (ctx->state == SPU_STATE_RUNNABLE) {
2356 slb_flts += (ctx->spu->stats.slb_flt -
2357 ctx->stats.slb_flt_base);
2358 }
2359
2360 return slb_flts;
2361 }
2362
2363 static unsigned long long spufs_class2_intrs(struct spu_context *ctx)
2364 {
2365 unsigned long long class2_intrs = ctx->stats.class2_intr;
2366
2367 if (ctx->state == SPU_STATE_RUNNABLE) {
2368 class2_intrs += (ctx->spu->stats.class2_intr -
2369 ctx->stats.class2_intr_base);
2370 }
2371
2372 return class2_intrs;
2373 }
2374
2375
2376 static int spufs_show_stat(struct seq_file *s, void *private)
2377 {
2378 struct spu_context *ctx = s->private;
2379 int ret;
2380
2381 ret = spu_acquire(ctx);
2382 if (ret)
2383 return ret;
2384
2385 seq_printf(s, "%s %llu %llu %llu %llu "
2386 "%llu %llu %llu %llu %llu %llu %llu %llu\n",
2387 ctx_state_names[ctx->stats.util_state],
2388 spufs_acct_time(ctx, SPU_UTIL_USER),
2389 spufs_acct_time(ctx, SPU_UTIL_SYSTEM),
2390 spufs_acct_time(ctx, SPU_UTIL_IOWAIT),
2391 spufs_acct_time(ctx, SPU_UTIL_IDLE_LOADED),
2392 ctx->stats.vol_ctx_switch,
2393 ctx->stats.invol_ctx_switch,
2394 spufs_slb_flts(ctx),
2395 ctx->stats.hash_flt,
2396 ctx->stats.min_flt,
2397 ctx->stats.maj_flt,
2398 spufs_class2_intrs(ctx),
2399 ctx->stats.libassist);
2400 spu_release(ctx);
2401 return 0;
2402 }
2403
2404 static int spufs_stat_open(struct inode *inode, struct file *file)
2405 {
2406 return single_open(file, spufs_show_stat, SPUFS_I(inode)->i_ctx);
2407 }
2408
2409 static const struct file_operations spufs_stat_fops = {
2410 .open = spufs_stat_open,
2411 .read = seq_read,
2412 .llseek = seq_lseek,
2413 .release = single_release,
2414 };
2415
2416 static inline int spufs_switch_log_used(struct spu_context *ctx)
2417 {
2418 return (ctx->switch_log->head - ctx->switch_log->tail) %
2419 SWITCH_LOG_BUFSIZE;
2420 }
2421
2422 static inline int spufs_switch_log_avail(struct spu_context *ctx)
2423 {
2424 return SWITCH_LOG_BUFSIZE - spufs_switch_log_used(ctx);
2425 }
2426
2427 static int spufs_switch_log_open(struct inode *inode, struct file *file)
2428 {
2429 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2430 int rc;
2431
2432 rc = spu_acquire(ctx);
2433 if (rc)
2434 return rc;
2435
2436 if (ctx->switch_log) {
2437 rc = -EBUSY;
2438 goto out;
2439 }
2440
2441 ctx->switch_log = kmalloc(sizeof(struct switch_log) +
2442 SWITCH_LOG_BUFSIZE * sizeof(struct switch_log_entry),
2443 GFP_KERNEL);
2444
2445 if (!ctx->switch_log) {
2446 rc = -ENOMEM;
2447 goto out;
2448 }
2449
2450 ctx->switch_log->head = ctx->switch_log->tail = 0;
2451 init_waitqueue_head(&ctx->switch_log->wait);
2452 rc = 0;
2453
2454 out:
2455 spu_release(ctx);
2456 return rc;
2457 }
2458
2459 static int spufs_switch_log_release(struct inode *inode, struct file *file)
2460 {
2461 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2462 int rc;
2463
2464 rc = spu_acquire(ctx);
2465 if (rc)
2466 return rc;
2467
2468 kfree(ctx->switch_log);
2469 ctx->switch_log = NULL;
2470 spu_release(ctx);
2471
2472 return 0;
2473 }
2474
2475 static int switch_log_sprint(struct spu_context *ctx, char *tbuf, int n)
2476 {
2477 struct switch_log_entry *p;
2478
2479 p = ctx->switch_log->log + ctx->switch_log->tail % SWITCH_LOG_BUFSIZE;
2480
2481 return snprintf(tbuf, n, "%u.%09u %d %u %u %llu\n",
2482 (unsigned int) p->tstamp.tv_sec,
2483 (unsigned int) p->tstamp.tv_nsec,
2484 p->spu_id,
2485 (unsigned int) p->type,
2486 (unsigned int) p->val,
2487 (unsigned long long) p->timebase);
2488 }
2489
2490 static ssize_t spufs_switch_log_read(struct file *file, char __user *buf,
2491 size_t len, loff_t *ppos)
2492 {
2493 struct inode *inode = file->f_path.dentry->d_inode;
2494 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2495 int error = 0, cnt = 0;
2496
2497 if (!buf)
2498 return -EINVAL;
2499
2500 error = spu_acquire(ctx);
2501 if (error)
2502 return error;
2503
2504 while (cnt < len) {
2505 char tbuf[128];
2506 int width;
2507
2508 if (spufs_switch_log_used(ctx) == 0) {
2509 if (cnt > 0) {
2510 /* If there's data ready to go, we can
2511 * just return straight away */
2512 break;
2513
2514 } else if (file->f_flags & O_NONBLOCK) {
2515 error = -EAGAIN;
2516 break;
2517
2518 } else {
2519 /* spufs_wait will drop the mutex and
2520 * re-acquire, but since we're in read(), the
2521 * file cannot be _released (and so
2522 * ctx->switch_log is stable).
2523 */
2524 error = spufs_wait(ctx->switch_log->wait,
2525 spufs_switch_log_used(ctx) > 0);
2526
2527 /* On error, spufs_wait returns without the
2528 * state mutex held */
2529 if (error)
2530 return error;
2531
2532 /* We may have had entries read from underneath
2533 * us while we dropped the mutex in spufs_wait,
2534 * so re-check */
2535 if (spufs_switch_log_used(ctx) == 0)
2536 continue;
2537 }
2538 }
2539
2540 width = switch_log_sprint(ctx, tbuf, sizeof(tbuf));
2541 if (width < len)
2542 ctx->switch_log->tail =
2543 (ctx->switch_log->tail + 1) %
2544 SWITCH_LOG_BUFSIZE;
2545 else
2546 /* If the record is greater than space available return
2547 * partial buffer (so far) */
2548 break;
2549
2550 error = copy_to_user(buf + cnt, tbuf, width);
2551 if (error)
2552 break;
2553 cnt += width;
2554 }
2555
2556 spu_release(ctx);
2557
2558 return cnt == 0 ? error : cnt;
2559 }
2560
2561 static unsigned int spufs_switch_log_poll(struct file *file, poll_table *wait)
2562 {
2563 struct inode *inode = file->f_path.dentry->d_inode;
2564 struct spu_context *ctx = SPUFS_I(inode)->i_ctx;
2565 unsigned int mask = 0;
2566 int rc;
2567
2568 poll_wait(file, &ctx->switch_log->wait, wait);
2569
2570 rc = spu_acquire(ctx);
2571 if (rc)
2572 return rc;
2573
2574 if (spufs_switch_log_used(ctx) > 0)
2575 mask |= POLLIN;
2576
2577 spu_release(ctx);
2578
2579 return mask;
2580 }
2581
2582 static const struct file_operations spufs_switch_log_fops = {
2583 .owner = THIS_MODULE,
2584 .open = spufs_switch_log_open,
2585 .read = spufs_switch_log_read,
2586 .poll = spufs_switch_log_poll,
2587 .release = spufs_switch_log_release,
2588 };
2589
2590 /**
2591 * Log a context switch event to a switch log reader.
2592 *
2593 * Must be called with ctx->state_mutex held.
2594 */
2595 void spu_switch_log_notify(struct spu *spu, struct spu_context *ctx,
2596 u32 type, u32 val)
2597 {
2598 if (!ctx->switch_log)
2599 return;
2600
2601 if (spufs_switch_log_avail(ctx) > 1) {
2602 struct switch_log_entry *p;
2603
2604 p = ctx->switch_log->log + ctx->switch_log->head;
2605 ktime_get_ts(&p->tstamp);
2606 p->timebase = get_tb();
2607 p->spu_id = spu ? spu->number : -1;
2608 p->type = type;
2609 p->val = val;
2610
2611 ctx->switch_log->head =
2612 (ctx->switch_log->head + 1) % SWITCH_LOG_BUFSIZE;
2613 }
2614
2615 wake_up(&ctx->switch_log->wait);
2616 }
2617
2618 static int spufs_show_ctx(struct seq_file *s, void *private)
2619 {
2620 struct spu_context *ctx = s->private;
2621 u64 mfc_control_RW;
2622
2623 mutex_lock(&ctx->state_mutex);
2624 if (ctx->spu) {
2625 struct spu *spu = ctx->spu;
2626 struct spu_priv2 __iomem *priv2 = spu->priv2;
2627
2628 spin_lock_irq(&spu->register_lock);
2629 mfc_control_RW = in_be64(&priv2->mfc_control_RW);
2630 spin_unlock_irq(&spu->register_lock);
2631 } else {
2632 struct spu_state *csa = &ctx->csa;
2633
2634 mfc_control_RW = csa->priv2.mfc_control_RW;
2635 }
2636
2637 seq_printf(s, "%c flgs(%lx) sflgs(%lx) pri(%d) ts(%d) spu(%02d)"
2638 " %c %llx %llx %llx %llx %x %x\n",
2639 ctx->state == SPU_STATE_SAVED ? 'S' : 'R',
2640 ctx->flags,
2641 ctx->sched_flags,
2642 ctx->prio,
2643 ctx->time_slice,
2644 ctx->spu ? ctx->spu->number : -1,
2645 !list_empty(&ctx->rq) ? 'q' : ' ',
2646 ctx->csa.class_0_pending,
2647 ctx->csa.class_0_dar,
2648 ctx->csa.class_1_dsisr,
2649 mfc_control_RW,
2650 ctx->ops->runcntl_read(ctx),
2651 ctx->ops->status_read(ctx));
2652
2653 mutex_unlock(&ctx->state_mutex);
2654
2655 return 0;
2656 }
2657
2658 static int spufs_ctx_open(struct inode *inode, struct file *file)
2659 {
2660 return single_open(file, spufs_show_ctx, SPUFS_I(inode)->i_ctx);
2661 }
2662
2663 static const struct file_operations spufs_ctx_fops = {
2664 .open = spufs_ctx_open,
2665 .read = seq_read,
2666 .llseek = seq_lseek,
2667 .release = single_release,
2668 };
2669
2670 const struct spufs_tree_descr spufs_dir_contents[] = {
2671 { "capabilities", &spufs_caps_fops, 0444, },
2672 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2673 { "regs", &spufs_regs_fops, 0666, sizeof(struct spu_reg128[128]), },
2674 { "mbox", &spufs_mbox_fops, 0444, },
2675 { "ibox", &spufs_ibox_fops, 0444, },
2676 { "wbox", &spufs_wbox_fops, 0222, },
2677 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2678 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2679 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2680 { "signal1", &spufs_signal1_fops, 0666, },
2681 { "signal2", &spufs_signal2_fops, 0666, },
2682 { "signal1_type", &spufs_signal1_type, 0666, },
2683 { "signal2_type", &spufs_signal2_type, 0666, },
2684 { "cntl", &spufs_cntl_fops, 0666, },
2685 { "fpcr", &spufs_fpcr_fops, 0666, sizeof(struct spu_reg128), },
2686 { "lslr", &spufs_lslr_ops, 0444, },
2687 { "mfc", &spufs_mfc_fops, 0666, },
2688 { "mss", &spufs_mss_fops, 0666, },
2689 { "npc", &spufs_npc_ops, 0666, },
2690 { "srr0", &spufs_srr0_ops, 0666, },
2691 { "decr", &spufs_decr_ops, 0666, },
2692 { "decr_status", &spufs_decr_status_ops, 0666, },
2693 { "event_mask", &spufs_event_mask_ops, 0666, },
2694 { "event_status", &spufs_event_status_ops, 0444, },
2695 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2696 { "phys-id", &spufs_id_ops, 0666, },
2697 { "object-id", &spufs_object_id_ops, 0666, },
2698 { "mbox_info", &spufs_mbox_info_fops, 0444, sizeof(u32), },
2699 { "ibox_info", &spufs_ibox_info_fops, 0444, sizeof(u32), },
2700 { "wbox_info", &spufs_wbox_info_fops, 0444, sizeof(u32), },
2701 { "dma_info", &spufs_dma_info_fops, 0444,
2702 sizeof(struct spu_dma_info), },
2703 { "proxydma_info", &spufs_proxydma_info_fops, 0444,
2704 sizeof(struct spu_proxydma_info)},
2705 { "tid", &spufs_tid_fops, 0444, },
2706 { "stat", &spufs_stat_fops, 0444, },
2707 { "switch_log", &spufs_switch_log_fops, 0444 },
2708 {},
2709 };
2710
2711 const struct spufs_tree_descr spufs_dir_nosched_contents[] = {
2712 { "capabilities", &spufs_caps_fops, 0444, },
2713 { "mem", &spufs_mem_fops, 0666, LS_SIZE, },
2714 { "mbox", &spufs_mbox_fops, 0444, },
2715 { "ibox", &spufs_ibox_fops, 0444, },
2716 { "wbox", &spufs_wbox_fops, 0222, },
2717 { "mbox_stat", &spufs_mbox_stat_fops, 0444, sizeof(u32), },
2718 { "ibox_stat", &spufs_ibox_stat_fops, 0444, sizeof(u32), },
2719 { "wbox_stat", &spufs_wbox_stat_fops, 0444, sizeof(u32), },
2720 { "signal1", &spufs_signal1_nosched_fops, 0222, },
2721 { "signal2", &spufs_signal2_nosched_fops, 0222, },
2722 { "signal1_type", &spufs_signal1_type, 0666, },
2723 { "signal2_type", &spufs_signal2_type, 0666, },
2724 { "mss", &spufs_mss_fops, 0666, },
2725 { "mfc", &spufs_mfc_fops, 0666, },
2726 { "cntl", &spufs_cntl_fops, 0666, },
2727 { "npc", &spufs_npc_ops, 0666, },
2728 { "psmap", &spufs_psmap_fops, 0666, SPUFS_PS_MAP_SIZE, },
2729 { "phys-id", &spufs_id_ops, 0666, },
2730 { "object-id", &spufs_object_id_ops, 0666, },
2731 { "tid", &spufs_tid_fops, 0444, },
2732 { "stat", &spufs_stat_fops, 0444, },
2733 {},
2734 };
2735
2736 const struct spufs_tree_descr spufs_dir_debug_contents[] = {
2737 { ".ctx", &spufs_ctx_fops, 0444, },
2738 {},
2739 };
2740
2741 const struct spufs_coredump_reader spufs_coredump_read[] = {
2742 { "regs", __spufs_regs_read, NULL, sizeof(struct spu_reg128[128])},
2743 { "fpcr", __spufs_fpcr_read, NULL, sizeof(struct spu_reg128) },
2744 { "lslr", NULL, spufs_lslr_get, 19 },
2745 { "decr", NULL, spufs_decr_get, 19 },
2746 { "decr_status", NULL, spufs_decr_status_get, 19 },
2747 { "mem", __spufs_mem_read, NULL, LS_SIZE, },
2748 { "signal1", __spufs_signal1_read, NULL, sizeof(u32) },
2749 { "signal1_type", NULL, spufs_signal1_type_get, 19 },
2750 { "signal2", __spufs_signal2_read, NULL, sizeof(u32) },
2751 { "signal2_type", NULL, spufs_signal2_type_get, 19 },
2752 { "event_mask", NULL, spufs_event_mask_get, 19 },
2753 { "event_status", NULL, spufs_event_status_get, 19 },
2754 { "mbox_info", __spufs_mbox_info_read, NULL, sizeof(u32) },
2755 { "ibox_info", __spufs_ibox_info_read, NULL, sizeof(u32) },
2756 { "wbox_info", __spufs_wbox_info_read, NULL, 4 * sizeof(u32)},
2757 { "dma_info", __spufs_dma_info_read, NULL, sizeof(struct spu_dma_info)},
2758 { "proxydma_info", __spufs_proxydma_info_read,
2759 NULL, sizeof(struct spu_proxydma_info)},
2760 { "object-id", NULL, spufs_object_id_get, 19 },
2761 { "npc", NULL, spufs_npc_get, 19 },
2762 { NULL },
2763 };