]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/powerpc/platforms/cell/spufs/run.c
[XFS] Added quota targets and removed dmapi directory
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / platforms / cell / spufs / run.c
1 #define DEBUG
2
3 #include <linux/wait.h>
4 #include <linux/ptrace.h>
5
6 #include <asm/spu.h>
7 #include <asm/spu_priv1.h>
8 #include <asm/io.h>
9 #include <asm/unistd.h>
10
11 #include "spufs.h"
12
13 /* interrupt-level stop callback function. */
14 void spufs_stop_callback(struct spu *spu)
15 {
16 struct spu_context *ctx = spu->ctx;
17
18 /*
19 * It should be impossible to preempt a context while an exception
20 * is being processed, since the context switch code is specially
21 * coded to deal with interrupts ... But, just in case, sanity check
22 * the context pointer. It is OK to return doing nothing since
23 * the exception will be regenerated when the context is resumed.
24 */
25 if (ctx) {
26 /* Copy exception arguments into module specific structure */
27 ctx->csa.class_0_pending = spu->class_0_pending;
28 ctx->csa.dsisr = spu->dsisr;
29 ctx->csa.dar = spu->dar;
30
31 /* ensure that the exception status has hit memory before a
32 * thread waiting on the context's stop queue is woken */
33 smp_wmb();
34
35 wake_up_all(&ctx->stop_wq);
36 }
37
38 /* Clear callback arguments from spu structure */
39 spu->class_0_pending = 0;
40 spu->dsisr = 0;
41 spu->dar = 0;
42 }
43
44 int spu_stopped(struct spu_context *ctx, u32 *stat)
45 {
46 u64 dsisr;
47 u32 stopped;
48
49 *stat = ctx->ops->status_read(ctx);
50
51 if (test_bit(SPU_SCHED_NOTIFY_ACTIVE, &ctx->sched_flags))
52 return 1;
53
54 stopped = SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
55 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
56 if (*stat & stopped)
57 return 1;
58
59 dsisr = ctx->csa.dsisr;
60 if (dsisr & (MFC_DSISR_PTE_NOT_FOUND | MFC_DSISR_ACCESS_DENIED))
61 return 1;
62
63 if (ctx->csa.class_0_pending)
64 return 1;
65
66 return 0;
67 }
68
69 static int spu_setup_isolated(struct spu_context *ctx)
70 {
71 int ret;
72 u64 __iomem *mfc_cntl;
73 u64 sr1;
74 u32 status;
75 unsigned long timeout;
76 const u32 status_loading = SPU_STATUS_RUNNING
77 | SPU_STATUS_ISOLATED_STATE | SPU_STATUS_ISOLATED_LOAD_STATUS;
78
79 ret = -ENODEV;
80 if (!isolated_loader)
81 goto out;
82
83 /*
84 * We need to exclude userspace access to the context.
85 *
86 * To protect against memory access we invalidate all ptes
87 * and make sure the pagefault handlers block on the mutex.
88 */
89 spu_unmap_mappings(ctx);
90
91 mfc_cntl = &ctx->spu->priv2->mfc_control_RW;
92
93 /* purge the MFC DMA queue to ensure no spurious accesses before we
94 * enter kernel mode */
95 timeout = jiffies + HZ;
96 out_be64(mfc_cntl, MFC_CNTL_PURGE_DMA_REQUEST);
97 while ((in_be64(mfc_cntl) & MFC_CNTL_PURGE_DMA_STATUS_MASK)
98 != MFC_CNTL_PURGE_DMA_COMPLETE) {
99 if (time_after(jiffies, timeout)) {
100 printk(KERN_ERR "%s: timeout flushing MFC DMA queue\n",
101 __FUNCTION__);
102 ret = -EIO;
103 goto out;
104 }
105 cond_resched();
106 }
107
108 /* put the SPE in kernel mode to allow access to the loader */
109 sr1 = spu_mfc_sr1_get(ctx->spu);
110 sr1 &= ~MFC_STATE1_PROBLEM_STATE_MASK;
111 spu_mfc_sr1_set(ctx->spu, sr1);
112
113 /* start the loader */
114 ctx->ops->signal1_write(ctx, (unsigned long)isolated_loader >> 32);
115 ctx->ops->signal2_write(ctx,
116 (unsigned long)isolated_loader & 0xffffffff);
117
118 ctx->ops->runcntl_write(ctx,
119 SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
120
121 ret = 0;
122 timeout = jiffies + HZ;
123 while (((status = ctx->ops->status_read(ctx)) & status_loading) ==
124 status_loading) {
125 if (time_after(jiffies, timeout)) {
126 printk(KERN_ERR "%s: timeout waiting for loader\n",
127 __FUNCTION__);
128 ret = -EIO;
129 goto out_drop_priv;
130 }
131 cond_resched();
132 }
133
134 if (!(status & SPU_STATUS_RUNNING)) {
135 /* If isolated LOAD has failed: run SPU, we will get a stop-and
136 * signal later. */
137 pr_debug("%s: isolated LOAD failed\n", __FUNCTION__);
138 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
139 ret = -EACCES;
140 goto out_drop_priv;
141 }
142
143 if (!(status & SPU_STATUS_ISOLATED_STATE)) {
144 /* This isn't allowed by the CBEA, but check anyway */
145 pr_debug("%s: SPU fell out of isolated mode?\n", __FUNCTION__);
146 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_STOP);
147 ret = -EINVAL;
148 goto out_drop_priv;
149 }
150
151 out_drop_priv:
152 /* Finished accessing the loader. Drop kernel mode */
153 sr1 |= MFC_STATE1_PROBLEM_STATE_MASK;
154 spu_mfc_sr1_set(ctx->spu, sr1);
155
156 out:
157 return ret;
158 }
159
160 static int spu_run_init(struct spu_context *ctx, u32 *npc)
161 {
162 unsigned long runcntl = SPU_RUNCNTL_RUNNABLE;
163 int ret;
164
165 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
166
167 /*
168 * NOSCHED is synchronous scheduling with respect to the caller.
169 * The caller waits for the context to be loaded.
170 */
171 if (ctx->flags & SPU_CREATE_NOSCHED) {
172 if (ctx->state == SPU_STATE_SAVED) {
173 ret = spu_activate(ctx, 0);
174 if (ret)
175 return ret;
176 }
177 }
178
179 /*
180 * Apply special setup as required.
181 */
182 if (ctx->flags & SPU_CREATE_ISOLATE) {
183 if (!(ctx->ops->status_read(ctx) & SPU_STATUS_ISOLATED_STATE)) {
184 ret = spu_setup_isolated(ctx);
185 if (ret)
186 return ret;
187 }
188
189 /*
190 * If userspace has set the runcntrl register (eg, to
191 * issue an isolated exit), we need to re-set it here
192 */
193 runcntl = ctx->ops->runcntl_read(ctx) &
194 (SPU_RUNCNTL_RUNNABLE | SPU_RUNCNTL_ISOLATE);
195 if (runcntl == 0)
196 runcntl = SPU_RUNCNTL_RUNNABLE;
197 }
198
199 if (ctx->flags & SPU_CREATE_NOSCHED) {
200 spuctx_switch_state(ctx, SPU_UTIL_USER);
201 ctx->ops->runcntl_write(ctx, runcntl);
202 } else {
203 unsigned long privcntl;
204
205 if (test_thread_flag(TIF_SINGLESTEP))
206 privcntl = SPU_PRIVCNTL_MODE_SINGLE_STEP;
207 else
208 privcntl = SPU_PRIVCNTL_MODE_NORMAL;
209
210 ctx->ops->npc_write(ctx, *npc);
211 ctx->ops->privcntl_write(ctx, privcntl);
212 ctx->ops->runcntl_write(ctx, runcntl);
213
214 if (ctx->state == SPU_STATE_SAVED) {
215 ret = spu_activate(ctx, 0);
216 if (ret)
217 return ret;
218 } else {
219 spuctx_switch_state(ctx, SPU_UTIL_USER);
220 }
221 }
222
223 return 0;
224 }
225
226 static int spu_run_fini(struct spu_context *ctx, u32 *npc,
227 u32 *status)
228 {
229 int ret = 0;
230
231 spu_del_from_rq(ctx);
232
233 *status = ctx->ops->status_read(ctx);
234 *npc = ctx->ops->npc_read(ctx);
235
236 spuctx_switch_state(ctx, SPU_UTIL_IDLE_LOADED);
237 spu_release(ctx);
238
239 if (signal_pending(current))
240 ret = -ERESTARTSYS;
241
242 return ret;
243 }
244
245 /*
246 * SPU syscall restarting is tricky because we violate the basic
247 * assumption that the signal handler is running on the interrupted
248 * thread. Here instead, the handler runs on PowerPC user space code,
249 * while the syscall was called from the SPU.
250 * This means we can only do a very rough approximation of POSIX
251 * signal semantics.
252 */
253 static int spu_handle_restartsys(struct spu_context *ctx, long *spu_ret,
254 unsigned int *npc)
255 {
256 int ret;
257
258 switch (*spu_ret) {
259 case -ERESTARTSYS:
260 case -ERESTARTNOINTR:
261 /*
262 * Enter the regular syscall restarting for
263 * sys_spu_run, then restart the SPU syscall
264 * callback.
265 */
266 *npc -= 8;
267 ret = -ERESTARTSYS;
268 break;
269 case -ERESTARTNOHAND:
270 case -ERESTART_RESTARTBLOCK:
271 /*
272 * Restart block is too hard for now, just return -EINTR
273 * to the SPU.
274 * ERESTARTNOHAND comes from sys_pause, we also return
275 * -EINTR from there.
276 * Assume that we need to be restarted ourselves though.
277 */
278 *spu_ret = -EINTR;
279 ret = -ERESTARTSYS;
280 break;
281 default:
282 printk(KERN_WARNING "%s: unexpected return code %ld\n",
283 __FUNCTION__, *spu_ret);
284 ret = 0;
285 }
286 return ret;
287 }
288
289 static int spu_process_callback(struct spu_context *ctx)
290 {
291 struct spu_syscall_block s;
292 u32 ls_pointer, npc;
293 void __iomem *ls;
294 long spu_ret;
295 int ret, ret2;
296
297 /* get syscall block from local store */
298 npc = ctx->ops->npc_read(ctx) & ~3;
299 ls = (void __iomem *)ctx->ops->get_ls(ctx);
300 ls_pointer = in_be32(ls + npc);
301 if (ls_pointer > (LS_SIZE - sizeof(s)))
302 return -EFAULT;
303 memcpy_fromio(&s, ls + ls_pointer, sizeof(s));
304
305 /* do actual syscall without pinning the spu */
306 ret = 0;
307 spu_ret = -ENOSYS;
308 npc += 4;
309
310 if (s.nr_ret < __NR_syscalls) {
311 spu_release(ctx);
312 /* do actual system call from here */
313 spu_ret = spu_sys_callback(&s);
314 if (spu_ret <= -ERESTARTSYS) {
315 ret = spu_handle_restartsys(ctx, &spu_ret, &npc);
316 }
317 ret2 = spu_acquire(ctx);
318 if (ret == -ERESTARTSYS)
319 return ret;
320 if (ret2)
321 return -EINTR;
322 }
323
324 /* write result, jump over indirect pointer */
325 memcpy_toio(ls + ls_pointer, &spu_ret, sizeof(spu_ret));
326 ctx->ops->npc_write(ctx, npc);
327 ctx->ops->runcntl_write(ctx, SPU_RUNCNTL_RUNNABLE);
328 return ret;
329 }
330
331 long spufs_run_spu(struct spu_context *ctx, u32 *npc, u32 *event)
332 {
333 int ret;
334 struct spu *spu;
335 u32 status;
336
337 if (mutex_lock_interruptible(&ctx->run_mutex))
338 return -ERESTARTSYS;
339
340 spu_enable_spu(ctx);
341 ctx->event_return = 0;
342
343 ret = spu_acquire(ctx);
344 if (ret)
345 goto out_unlock;
346
347 spu_update_sched_info(ctx);
348
349 ret = spu_run_init(ctx, npc);
350 if (ret) {
351 spu_release(ctx);
352 goto out;
353 }
354
355 do {
356 ret = spufs_wait(ctx->stop_wq, spu_stopped(ctx, &status));
357 if (unlikely(ret))
358 break;
359 spu = ctx->spu;
360 if (unlikely(test_and_clear_bit(SPU_SCHED_NOTIFY_ACTIVE,
361 &ctx->sched_flags))) {
362 if (!(status & SPU_STATUS_STOPPED_BY_STOP)) {
363 spu_switch_notify(spu, ctx);
364 continue;
365 }
366 }
367
368 spuctx_switch_state(ctx, SPU_UTIL_SYSTEM);
369
370 if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
371 (status >> SPU_STOP_STATUS_SHIFT == 0x2104)) {
372 ret = spu_process_callback(ctx);
373 if (ret)
374 break;
375 status &= ~SPU_STATUS_STOPPED_BY_STOP;
376 }
377 ret = spufs_handle_class1(ctx);
378 if (ret)
379 break;
380
381 ret = spufs_handle_class0(ctx);
382 if (ret)
383 break;
384
385 if (signal_pending(current))
386 ret = -ERESTARTSYS;
387 } while (!ret && !(status & (SPU_STATUS_STOPPED_BY_STOP |
388 SPU_STATUS_STOPPED_BY_HALT |
389 SPU_STATUS_SINGLE_STEP)));
390
391 if ((status & SPU_STATUS_STOPPED_BY_STOP) &&
392 (((status >> SPU_STOP_STATUS_SHIFT) & 0x3f00) == 0x2100) &&
393 (ctx->state == SPU_STATE_RUNNABLE))
394 ctx->stats.libassist++;
395
396
397 spu_disable_spu(ctx);
398 ret = spu_run_fini(ctx, npc, &status);
399 spu_yield(ctx);
400
401 if ((ret == 0) ||
402 ((ret == -ERESTARTSYS) &&
403 ((status & SPU_STATUS_STOPPED_BY_HALT) ||
404 (status & SPU_STATUS_SINGLE_STEP) ||
405 ((status & SPU_STATUS_STOPPED_BY_STOP) &&
406 (status >> SPU_STOP_STATUS_SHIFT != 0x2104)))))
407 ret = status;
408
409 /* Note: we don't need to force_sig SIGTRAP on single-step
410 * since we have TIF_SINGLESTEP set, thus the kernel will do
411 * it upon return from the syscall anyawy
412 */
413 if ((status & SPU_STATUS_STOPPED_BY_STOP)
414 && (status >> SPU_STOP_STATUS_SHIFT) == 0x3fff) {
415 force_sig(SIGTRAP, current);
416 ret = -ERESTARTSYS;
417 }
418
419 out:
420 *event = ctx->event_return;
421 out_unlock:
422 mutex_unlock(&ctx->run_mutex);
423 return ret;
424 }