]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/platforms/cell/spufs/switch.c
spelling fixes
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / platforms / cell / spufs / switch.c
1 /*
2 * spu_switch.c
3 *
4 * (C) Copyright IBM Corp. 2005
5 *
6 * Author: Mark Nutter <mnutter@us.ibm.com>
7 *
8 * Host-side part of SPU context switch sequence outlined in
9 * Synergistic Processor Element, Book IV.
10 *
11 * A fully premptive switch of an SPE is very expensive in terms
12 * of time and system resources. SPE Book IV indicates that SPE
13 * allocation should follow a "serially reusable device" model,
14 * in which the SPE is assigned a task until it completes. When
15 * this is not possible, this sequence may be used to premptively
16 * save, and then later (optionally) restore the context of a
17 * program executing on an SPE.
18 *
19 *
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2, or (at your option)
23 * any later version.
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/config.h>
36 #include <linux/module.h>
37 #include <linux/errno.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/smp.h>
43 #include <linux/smp_lock.h>
44 #include <linux/stddef.h>
45 #include <linux/unistd.h>
46
47 #include <asm/io.h>
48 #include <asm/spu.h>
49 #include <asm/spu_priv1.h>
50 #include <asm/spu_csa.h>
51 #include <asm/mmu_context.h>
52
53 #include "spu_save_dump.h"
54 #include "spu_restore_dump.h"
55
56 #if 0
57 #define POLL_WHILE_TRUE(_c) { \
58 do { \
59 } while (_c); \
60 }
61 #else
62 #define RELAX_SPIN_COUNT 1000
63 #define POLL_WHILE_TRUE(_c) { \
64 do { \
65 int _i; \
66 for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
67 cpu_relax(); \
68 } \
69 if (unlikely(_c)) yield(); \
70 else break; \
71 } while (_c); \
72 }
73 #endif /* debug */
74
75 #define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c))
76
77 static inline void acquire_spu_lock(struct spu *spu)
78 {
79 /* Save, Step 1:
80 * Restore, Step 1:
81 * Acquire SPU-specific mutual exclusion lock.
82 * TBD.
83 */
84 }
85
86 static inline void release_spu_lock(struct spu *spu)
87 {
88 /* Restore, Step 76:
89 * Release SPU-specific mutual exclusion lock.
90 * TBD.
91 */
92 }
93
94 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
95 {
96 struct spu_problem __iomem *prob = spu->problem;
97 u32 isolate_state;
98
99 /* Save, Step 2:
100 * Save, Step 6:
101 * If SPU_Status[E,L,IS] any field is '1', this
102 * SPU is in isolate state and cannot be context
103 * saved at this time.
104 */
105 isolate_state = SPU_STATUS_ISOLATED_STATE |
106 SPU_STATUS_ISOLATED_LOAD_STAUTUS | SPU_STATUS_ISOLATED_EXIT_STAUTUS;
107 return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
108 }
109
110 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
111 {
112 /* Save, Step 3:
113 * Restore, Step 2:
114 * Save INT_Mask_class0 in CSA.
115 * Write INT_MASK_class0 with value of 0.
116 * Save INT_Mask_class1 in CSA.
117 * Write INT_MASK_class1 with value of 0.
118 * Save INT_Mask_class2 in CSA.
119 * Write INT_MASK_class2 with value of 0.
120 */
121 spin_lock_irq(&spu->register_lock);
122 if (csa) {
123 csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
124 csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
125 csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
126 }
127 spu_int_mask_set(spu, 0, 0ul);
128 spu_int_mask_set(spu, 1, 0ul);
129 spu_int_mask_set(spu, 2, 0ul);
130 eieio();
131 spin_unlock_irq(&spu->register_lock);
132 }
133
134 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
135 {
136 /* Save, Step 4:
137 * Restore, Step 25.
138 * Set a software watchdog timer, which specifies the
139 * maximum allowable time for a context save sequence.
140 *
141 * For present, this implementation will not set a global
142 * watchdog timer, as virtualization & variable system load
143 * may cause unpredictable execution times.
144 */
145 }
146
147 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
148 {
149 /* Save, Step 5:
150 * Restore, Step 3:
151 * Inhibit user-space access (if provided) to this
152 * SPU by unmapping the virtual pages assigned to
153 * the SPU memory-mapped I/O (MMIO) for problem
154 * state. TBD.
155 */
156 }
157
158 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
159 {
160 /* Save, Step 7:
161 * Restore, Step 5:
162 * Set a software context switch pending flag.
163 */
164 set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
165 mb();
166 }
167
168 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
169 {
170 struct spu_priv2 __iomem *priv2 = spu->priv2;
171
172 /* Save, Step 8:
173 * Suspend DMA and save MFC_CNTL.
174 */
175 switch (in_be64(&priv2->mfc_control_RW) &
176 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
177 case MFC_CNTL_SUSPEND_IN_PROGRESS:
178 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
179 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
180 MFC_CNTL_SUSPEND_COMPLETE);
181 /* fall through */
182 case MFC_CNTL_SUSPEND_COMPLETE:
183 if (csa) {
184 csa->priv2.mfc_control_RW =
185 in_be64(&priv2->mfc_control_RW) |
186 MFC_CNTL_SUSPEND_DMA_QUEUE;
187 }
188 break;
189 case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
190 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
191 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
192 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
193 MFC_CNTL_SUSPEND_COMPLETE);
194 if (csa) {
195 csa->priv2.mfc_control_RW =
196 in_be64(&priv2->mfc_control_RW) &
197 ~MFC_CNTL_SUSPEND_DMA_QUEUE;
198 }
199 break;
200 }
201 }
202
203 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
204 {
205 struct spu_problem __iomem *prob = spu->problem;
206
207 /* Save, Step 9:
208 * Save SPU_Runcntl in the CSA. This value contains
209 * the "Application Desired State".
210 */
211 csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
212 }
213
214 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
215 {
216 /* Save, Step 10:
217 * Save MFC_SR1 in the CSA.
218 */
219 csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
220 }
221
222 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
223 {
224 struct spu_problem __iomem *prob = spu->problem;
225
226 /* Save, Step 11:
227 * Read SPU_Status[R], and save to CSA.
228 */
229 if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
230 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
231 } else {
232 u32 stopped;
233
234 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
235 eieio();
236 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
237 SPU_STATUS_RUNNING);
238 stopped =
239 SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
240 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
241 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
242 csa->prob.spu_status_R = SPU_STATUS_RUNNING;
243 else
244 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
245 }
246 }
247
248 static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
249 {
250 struct spu_priv2 __iomem *priv2 = spu->priv2;
251
252 /* Save, Step 12:
253 * Read MFC_CNTL[Ds]. Update saved copy of
254 * CSA.MFC_CNTL[Ds].
255 */
256 if (in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING) {
257 csa->priv2.mfc_control_RW |= MFC_CNTL_DECREMENTER_RUNNING;
258 csa->suspend_time = get_cycles();
259 out_be64(&priv2->spu_chnlcntptr_RW, 7ULL);
260 eieio();
261 csa->spu_chnldata_RW[7] = in_be64(&priv2->spu_chnldata_RW);
262 eieio();
263 } else {
264 csa->priv2.mfc_control_RW &= ~MFC_CNTL_DECREMENTER_RUNNING;
265 }
266 }
267
268 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
269 {
270 struct spu_priv2 __iomem *priv2 = spu->priv2;
271
272 /* Save, Step 13:
273 * Write MFC_CNTL[Dh] set to a '1' to halt
274 * the decrementer.
275 */
276 out_be64(&priv2->mfc_control_RW, MFC_CNTL_DECREMENTER_HALTED);
277 eieio();
278 }
279
280 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
281 {
282 /* Save, Step 14:
283 * Read PPE Timebase High and Timebase low registers
284 * and save in CSA. TBD.
285 */
286 csa->suspend_time = get_cycles();
287 }
288
289 static inline void remove_other_spu_access(struct spu_state *csa,
290 struct spu *spu)
291 {
292 /* Save, Step 15:
293 * Remove other SPU access to this SPU by unmapping
294 * this SPU's pages from their address space. TBD.
295 */
296 }
297
298 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
299 {
300 struct spu_problem __iomem *prob = spu->problem;
301
302 /* Save, Step 16:
303 * Restore, Step 11.
304 * Write SPU_MSSync register. Poll SPU_MSSync[P]
305 * for a value of 0.
306 */
307 out_be64(&prob->spc_mssync_RW, 1UL);
308 POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
309 }
310
311 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
312 {
313 /* Save, Step 17:
314 * Restore, Step 12.
315 * Restore, Step 48.
316 * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
317 * Then issue a PPE sync instruction.
318 */
319 spu_tlb_invalidate(spu);
320 mb();
321 }
322
323 static inline void handle_pending_interrupts(struct spu_state *csa,
324 struct spu *spu)
325 {
326 /* Save, Step 18:
327 * Handle any pending interrupts from this SPU
328 * here. This is OS or hypervisor specific. One
329 * option is to re-enable interrupts to handle any
330 * pending interrupts, with the interrupt handlers
331 * recognizing the software Context Switch Pending
332 * flag, to ensure the SPU execution or MFC command
333 * queue is not restarted. TBD.
334 */
335 }
336
337 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
338 {
339 struct spu_priv2 __iomem *priv2 = spu->priv2;
340 int i;
341
342 /* Save, Step 19:
343 * If MFC_Cntl[Se]=0 then save
344 * MFC command queues.
345 */
346 if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
347 for (i = 0; i < 8; i++) {
348 csa->priv2.puq[i].mfc_cq_data0_RW =
349 in_be64(&priv2->puq[i].mfc_cq_data0_RW);
350 csa->priv2.puq[i].mfc_cq_data1_RW =
351 in_be64(&priv2->puq[i].mfc_cq_data1_RW);
352 csa->priv2.puq[i].mfc_cq_data2_RW =
353 in_be64(&priv2->puq[i].mfc_cq_data2_RW);
354 csa->priv2.puq[i].mfc_cq_data3_RW =
355 in_be64(&priv2->puq[i].mfc_cq_data3_RW);
356 }
357 for (i = 0; i < 16; i++) {
358 csa->priv2.spuq[i].mfc_cq_data0_RW =
359 in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
360 csa->priv2.spuq[i].mfc_cq_data1_RW =
361 in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
362 csa->priv2.spuq[i].mfc_cq_data2_RW =
363 in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
364 csa->priv2.spuq[i].mfc_cq_data3_RW =
365 in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
366 }
367 }
368 }
369
370 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
371 {
372 struct spu_problem __iomem *prob = spu->problem;
373
374 /* Save, Step 20:
375 * Save the PPU_QueryMask register
376 * in the CSA.
377 */
378 csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
379 }
380
381 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
382 {
383 struct spu_problem __iomem *prob = spu->problem;
384
385 /* Save, Step 21:
386 * Save the PPU_QueryType register
387 * in the CSA.
388 */
389 csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
390 }
391
392 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
393 {
394 struct spu_priv2 __iomem *priv2 = spu->priv2;
395
396 /* Save, Step 22:
397 * Save the MFC_CSR_TSQ register
398 * in the LSCSA.
399 */
400 csa->priv2.spu_tag_status_query_RW =
401 in_be64(&priv2->spu_tag_status_query_RW);
402 }
403
404 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
405 {
406 struct spu_priv2 __iomem *priv2 = spu->priv2;
407
408 /* Save, Step 23:
409 * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
410 * registers in the CSA.
411 */
412 csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
413 csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
414 }
415
416 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
417 {
418 struct spu_priv2 __iomem *priv2 = spu->priv2;
419
420 /* Save, Step 24:
421 * Save the MFC_CSR_ATO register in
422 * the CSA.
423 */
424 csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
425 }
426
427 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
428 {
429 /* Save, Step 25:
430 * Save the MFC_TCLASS_ID register in
431 * the CSA.
432 */
433 csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
434 }
435
436 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
437 {
438 /* Save, Step 26:
439 * Restore, Step 23.
440 * Write the MFC_TCLASS_ID register with
441 * the value 0x10000000.
442 */
443 spu_mfc_tclass_id_set(spu, 0x10000000);
444 eieio();
445 }
446
447 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
448 {
449 struct spu_priv2 __iomem *priv2 = spu->priv2;
450
451 /* Save, Step 27:
452 * Restore, Step 14.
453 * Write MFC_CNTL[Pc]=1 (purge queue).
454 */
455 out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
456 eieio();
457 }
458
459 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
460 {
461 struct spu_priv2 __iomem *priv2 = spu->priv2;
462
463 /* Save, Step 28:
464 * Poll MFC_CNTL[Ps] until value '11' is read
465 * (purge complete).
466 */
467 POLL_WHILE_FALSE(in_be64(&priv2->mfc_control_RW) &
468 MFC_CNTL_PURGE_DMA_COMPLETE);
469 }
470
471 static inline void save_mfc_slbs(struct spu_state *csa, struct spu *spu)
472 {
473 struct spu_priv2 __iomem *priv2 = spu->priv2;
474 int i;
475
476 /* Save, Step 29:
477 * If MFC_SR1[R]='1', save SLBs in CSA.
478 */
479 if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) {
480 csa->priv2.slb_index_W = in_be64(&priv2->slb_index_W);
481 for (i = 0; i < 8; i++) {
482 out_be64(&priv2->slb_index_W, i);
483 eieio();
484 csa->slb_esid_RW[i] = in_be64(&priv2->slb_esid_RW);
485 csa->slb_vsid_RW[i] = in_be64(&priv2->slb_vsid_RW);
486 eieio();
487 }
488 }
489 }
490
491 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
492 {
493 /* Save, Step 30:
494 * Restore, Step 18:
495 * Write MFC_SR1 with MFC_SR1[D=0,S=1] and
496 * MFC_SR1[TL,R,Pr,T] set correctly for the
497 * OS specific environment.
498 *
499 * Implementation note: The SPU-side code
500 * for save/restore is privileged, so the
501 * MFC_SR1[Pr] bit is not set.
502 *
503 */
504 spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
505 MFC_STATE1_RELOCATE_MASK |
506 MFC_STATE1_BUS_TLBIE_MASK));
507 }
508
509 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
510 {
511 struct spu_problem __iomem *prob = spu->problem;
512
513 /* Save, Step 31:
514 * Save SPU_NPC in the CSA.
515 */
516 csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
517 }
518
519 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
520 {
521 struct spu_priv2 __iomem *priv2 = spu->priv2;
522
523 /* Save, Step 32:
524 * Save SPU_PrivCntl in the CSA.
525 */
526 csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
527 }
528
529 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
530 {
531 struct spu_priv2 __iomem *priv2 = spu->priv2;
532
533 /* Save, Step 33:
534 * Restore, Step 16:
535 * Write SPU_PrivCntl[S,Le,A] fields reset to 0.
536 */
537 out_be64(&priv2->spu_privcntl_RW, 0UL);
538 eieio();
539 }
540
541 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
542 {
543 struct spu_priv2 __iomem *priv2 = spu->priv2;
544
545 /* Save, Step 34:
546 * Save SPU_LSLR in the CSA.
547 */
548 csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
549 }
550
551 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
552 {
553 struct spu_priv2 __iomem *priv2 = spu->priv2;
554
555 /* Save, Step 35:
556 * Restore, Step 17.
557 * Reset SPU_LSLR.
558 */
559 out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
560 eieio();
561 }
562
563 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
564 {
565 struct spu_priv2 __iomem *priv2 = spu->priv2;
566
567 /* Save, Step 36:
568 * Save SPU_Cfg in the CSA.
569 */
570 csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
571 }
572
573 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
574 {
575 /* Save, Step 37:
576 * Save PM_Trace_Tag_Wait_Mask in the CSA.
577 * Not performed by this implementation.
578 */
579 }
580
581 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
582 {
583 /* Save, Step 38:
584 * Save RA_GROUP_ID register and the
585 * RA_ENABLE reigster in the CSA.
586 */
587 csa->priv1.resource_allocation_groupID_RW =
588 spu_resource_allocation_groupID_get(spu);
589 csa->priv1.resource_allocation_enable_RW =
590 spu_resource_allocation_enable_get(spu);
591 }
592
593 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
594 {
595 struct spu_problem __iomem *prob = spu->problem;
596
597 /* Save, Step 39:
598 * Save MB_Stat register in the CSA.
599 */
600 csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
601 }
602
603 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
604 {
605 struct spu_problem __iomem *prob = spu->problem;
606
607 /* Save, Step 40:
608 * Save the PPU_MB register in the CSA.
609 */
610 csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
611 }
612
613 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
614 {
615 struct spu_priv2 __iomem *priv2 = spu->priv2;
616
617 /* Save, Step 41:
618 * Save the PPUINT_MB register in the CSA.
619 */
620 csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
621 }
622
623 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
624 {
625 struct spu_priv2 __iomem *priv2 = spu->priv2;
626 u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
627 int i;
628
629 /* Save, Step 42:
630 */
631
632 /* Save CH 1, without channel count */
633 out_be64(&priv2->spu_chnlcntptr_RW, 1);
634 csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
635
636 /* Save the following CH: [0,3,4,24,25,27] */
637 for (i = 0; i < 7; i++) {
638 idx = ch_indices[i];
639 out_be64(&priv2->spu_chnlcntptr_RW, idx);
640 eieio();
641 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
642 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
643 out_be64(&priv2->spu_chnldata_RW, 0UL);
644 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
645 eieio();
646 }
647 }
648
649 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
650 {
651 struct spu_priv2 __iomem *priv2 = spu->priv2;
652 int i;
653
654 /* Save, Step 43:
655 * Save SPU Read Mailbox Channel.
656 */
657 out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
658 eieio();
659 csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
660 for (i = 0; i < 4; i++) {
661 csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
662 }
663 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
664 eieio();
665 }
666
667 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
668 {
669 struct spu_priv2 __iomem *priv2 = spu->priv2;
670
671 /* Save, Step 44:
672 * Save MFC_CMD Channel.
673 */
674 out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
675 eieio();
676 csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
677 eieio();
678 }
679
680 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
681 {
682 struct spu_priv2 __iomem *priv2 = spu->priv2;
683 u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
684 u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
685 u64 idx;
686 int i;
687
688 /* Save, Step 45:
689 * Reset the following CH: [21, 23, 28, 30]
690 */
691 for (i = 0; i < 4; i++) {
692 idx = ch_indices[i];
693 out_be64(&priv2->spu_chnlcntptr_RW, idx);
694 eieio();
695 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
696 eieio();
697 }
698 }
699
700 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
701 {
702 struct spu_priv2 __iomem *priv2 = spu->priv2;
703
704 /* Save, Step 46:
705 * Restore, Step 25.
706 * Write MFC_CNTL[Sc]=0 (resume queue processing).
707 */
708 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
709 }
710
711 static inline void invalidate_slbs(struct spu_state *csa, struct spu *spu)
712 {
713 struct spu_priv2 __iomem *priv2 = spu->priv2;
714
715 /* Save, Step 45:
716 * Restore, Step 19:
717 * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All.
718 */
719 if (spu_mfc_sr1_get(spu) & MFC_STATE1_RELOCATE_MASK) {
720 out_be64(&priv2->slb_invalidate_all_W, 0UL);
721 eieio();
722 }
723 }
724
725 static inline void get_kernel_slb(u64 ea, u64 slb[2])
726 {
727 u64 llp;
728
729 if (REGION_ID(ea) == KERNEL_REGION_ID)
730 llp = mmu_psize_defs[mmu_linear_psize].sllp;
731 else
732 llp = mmu_psize_defs[mmu_virtual_psize].sllp;
733 slb[0] = (get_kernel_vsid(ea) << SLB_VSID_SHIFT) |
734 SLB_VSID_KERNEL | llp;
735 slb[1] = (ea & ESID_MASK) | SLB_ESID_V;
736 }
737
738 static inline void load_mfc_slb(struct spu *spu, u64 slb[2], int slbe)
739 {
740 struct spu_priv2 __iomem *priv2 = spu->priv2;
741
742 out_be64(&priv2->slb_index_W, slbe);
743 eieio();
744 out_be64(&priv2->slb_vsid_RW, slb[0]);
745 out_be64(&priv2->slb_esid_RW, slb[1]);
746 eieio();
747 }
748
749 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu)
750 {
751 u64 code_slb[2];
752 u64 lscsa_slb[2];
753
754 /* Save, Step 47:
755 * Restore, Step 30.
756 * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
757 * register, then initialize SLB_VSID and SLB_ESID
758 * to provide access to SPU context save code and
759 * LSCSA.
760 *
761 * This implementation places both the context
762 * switch code and LSCSA in kernel address space.
763 *
764 * Further this implementation assumes that the
765 * MFC_SR1[R]=1 (in other words, assume that
766 * translation is desired by OS environment).
767 */
768 invalidate_slbs(csa, spu);
769 get_kernel_slb((unsigned long)&spu_save_code[0], code_slb);
770 get_kernel_slb((unsigned long)csa->lscsa, lscsa_slb);
771 load_mfc_slb(spu, code_slb, 0);
772 if ((lscsa_slb[0] != code_slb[0]) || (lscsa_slb[1] != code_slb[1]))
773 load_mfc_slb(spu, lscsa_slb, 1);
774 }
775
776 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
777 {
778 /* Save, Step 48:
779 * Restore, Step 23.
780 * Change the software context switch pending flag
781 * to context switch active.
782 */
783 set_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
784 clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
785 mb();
786 }
787
788 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
789 {
790 unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
791 CLASS1_ENABLE_STORAGE_FAULT_INTR;
792
793 /* Save, Step 49:
794 * Restore, Step 22:
795 * Reset and then enable interrupts, as
796 * needed by OS.
797 *
798 * This implementation enables only class1
799 * (translation) interrupts.
800 */
801 spin_lock_irq(&spu->register_lock);
802 spu_int_stat_clear(spu, 0, ~0ul);
803 spu_int_stat_clear(spu, 1, ~0ul);
804 spu_int_stat_clear(spu, 2, ~0ul);
805 spu_int_mask_set(spu, 0, 0ul);
806 spu_int_mask_set(spu, 1, class1_mask);
807 spu_int_mask_set(spu, 2, 0ul);
808 spin_unlock_irq(&spu->register_lock);
809 }
810
811 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
812 unsigned int ls_offset, unsigned int size,
813 unsigned int tag, unsigned int rclass,
814 unsigned int cmd)
815 {
816 struct spu_problem __iomem *prob = spu->problem;
817 union mfc_tag_size_class_cmd command;
818 unsigned int transfer_size;
819 volatile unsigned int status = 0x0;
820
821 while (size > 0) {
822 transfer_size =
823 (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
824 command.u.mfc_size = transfer_size;
825 command.u.mfc_tag = tag;
826 command.u.mfc_rclassid = rclass;
827 command.u.mfc_cmd = cmd;
828 do {
829 out_be32(&prob->mfc_lsa_W, ls_offset);
830 out_be64(&prob->mfc_ea_W, ea);
831 out_be64(&prob->mfc_union_W.all64, command.all64);
832 status =
833 in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
834 if (unlikely(status & 0x2)) {
835 cpu_relax();
836 }
837 } while (status & 0x3);
838 size -= transfer_size;
839 ea += transfer_size;
840 ls_offset += transfer_size;
841 }
842 return 0;
843 }
844
845 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
846 {
847 unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
848 unsigned int ls_offset = 0x0;
849 unsigned int size = 16384;
850 unsigned int tag = 0;
851 unsigned int rclass = 0;
852 unsigned int cmd = MFC_PUT_CMD;
853
854 /* Save, Step 50:
855 * Issue a DMA command to copy the first 16K bytes
856 * of local storage to the CSA.
857 */
858 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
859 }
860
861 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
862 {
863 struct spu_problem __iomem *prob = spu->problem;
864
865 /* Save, Step 51:
866 * Restore, Step 31.
867 * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
868 * point address of context save code in local
869 * storage.
870 *
871 * This implementation uses SPU-side save/restore
872 * programs with entry points at LSA of 0.
873 */
874 out_be32(&prob->spu_npc_RW, 0);
875 eieio();
876 }
877
878 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
879 {
880 struct spu_problem __iomem *prob = spu->problem;
881 union {
882 u64 ull;
883 u32 ui[2];
884 } addr64;
885
886 /* Save, Step 52:
887 * Restore, Step 32:
888 * Write SPU_Sig_Notify_1 register with upper 32-bits
889 * of the CSA.LSCSA effective address.
890 */
891 addr64.ull = (u64) csa->lscsa;
892 out_be32(&prob->signal_notify1, addr64.ui[0]);
893 eieio();
894 }
895
896 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
897 {
898 struct spu_problem __iomem *prob = spu->problem;
899 union {
900 u64 ull;
901 u32 ui[2];
902 } addr64;
903
904 /* Save, Step 53:
905 * Restore, Step 33:
906 * Write SPU_Sig_Notify_2 register with lower 32-bits
907 * of the CSA.LSCSA effective address.
908 */
909 addr64.ull = (u64) csa->lscsa;
910 out_be32(&prob->signal_notify2, addr64.ui[1]);
911 eieio();
912 }
913
914 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
915 {
916 unsigned long addr = (unsigned long)&spu_save_code[0];
917 unsigned int ls_offset = 0x0;
918 unsigned int size = sizeof(spu_save_code);
919 unsigned int tag = 0;
920 unsigned int rclass = 0;
921 unsigned int cmd = MFC_GETFS_CMD;
922
923 /* Save, Step 54:
924 * Issue a DMA command to copy context save code
925 * to local storage and start SPU.
926 */
927 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
928 }
929
930 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
931 {
932 struct spu_problem __iomem *prob = spu->problem;
933
934 /* Save, Step 55:
935 * Restore, Step 38.
936 * Write PPU_QueryMask=1 (enable Tag Group 0)
937 * and issue eieio instruction.
938 */
939 out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
940 eieio();
941 }
942
943 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
944 {
945 struct spu_problem __iomem *prob = spu->problem;
946 u32 mask = MFC_TAGID_TO_TAGMASK(0);
947 unsigned long flags;
948
949 /* Save, Step 56:
950 * Restore, Step 39.
951 * Restore, Step 39.
952 * Restore, Step 46.
953 * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
954 * or write PPU_QueryType[TS]=01 and wait for Tag Group
955 * Complete Interrupt. Write INT_Stat_Class0 or
956 * INT_Stat_Class2 with value of 'handled'.
957 */
958 POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
959
960 local_irq_save(flags);
961 spu_int_stat_clear(spu, 0, ~(0ul));
962 spu_int_stat_clear(spu, 2, ~(0ul));
963 local_irq_restore(flags);
964 }
965
966 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
967 {
968 struct spu_problem __iomem *prob = spu->problem;
969 unsigned long flags;
970
971 /* Save, Step 57:
972 * Restore, Step 40.
973 * Poll until SPU_Status[R]=0 or wait for SPU Class 0
974 * or SPU Class 2 interrupt. Write INT_Stat_class0
975 * or INT_Stat_class2 with value of handled.
976 */
977 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
978
979 local_irq_save(flags);
980 spu_int_stat_clear(spu, 0, ~(0ul));
981 spu_int_stat_clear(spu, 2, ~(0ul));
982 local_irq_restore(flags);
983 }
984
985 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
986 {
987 struct spu_problem __iomem *prob = spu->problem;
988 u32 complete;
989
990 /* Save, Step 54:
991 * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
992 * context save succeeded, otherwise context save
993 * failed.
994 */
995 complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
996 SPU_STATUS_STOPPED_BY_STOP);
997 return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
998 }
999
1000 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
1001 {
1002 /* Restore, Step 4:
1003 * If required, notify the "using application" that
1004 * the SPU task has been terminated. TBD.
1005 */
1006 }
1007
1008 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1009 {
1010 struct spu_priv2 __iomem *priv2 = spu->priv2;
1011
1012 /* Restore, Step 7:
1013 * Restore, Step 47.
1014 * Write MFC_Cntl[Dh,Sc]='1','1' to suspend
1015 * the queue and halt the decrementer.
1016 */
1017 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
1018 MFC_CNTL_DECREMENTER_HALTED);
1019 eieio();
1020 }
1021
1022 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
1023 struct spu *spu)
1024 {
1025 struct spu_priv2 __iomem *priv2 = spu->priv2;
1026
1027 /* Restore, Step 8:
1028 * Restore, Step 47.
1029 * Poll MFC_CNTL[Ss] until 11 is returned.
1030 */
1031 POLL_WHILE_FALSE(in_be64(&priv2->mfc_control_RW) &
1032 MFC_CNTL_SUSPEND_COMPLETE);
1033 }
1034
1035 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
1036 {
1037 struct spu_problem __iomem *prob = spu->problem;
1038
1039 /* Restore, Step 9:
1040 * If SPU_Status[R]=1, stop SPU execution
1041 * and wait for stop to complete.
1042 *
1043 * Returns 1 if SPU_Status[R]=1 on entry.
1044 * 0 otherwise
1045 */
1046 if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
1047 if (in_be32(&prob->spu_status_R) &
1048 SPU_STATUS_ISOLATED_EXIT_STAUTUS) {
1049 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1050 SPU_STATUS_RUNNING);
1051 }
1052 if ((in_be32(&prob->spu_status_R) &
1053 SPU_STATUS_ISOLATED_LOAD_STAUTUS)
1054 || (in_be32(&prob->spu_status_R) &
1055 SPU_STATUS_ISOLATED_STATE)) {
1056 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1057 eieio();
1058 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1059 SPU_STATUS_RUNNING);
1060 out_be32(&prob->spu_runcntl_RW, 0x2);
1061 eieio();
1062 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1063 SPU_STATUS_RUNNING);
1064 }
1065 if (in_be32(&prob->spu_status_R) &
1066 SPU_STATUS_WAITING_FOR_CHANNEL) {
1067 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1068 eieio();
1069 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1070 SPU_STATUS_RUNNING);
1071 }
1072 return 1;
1073 }
1074 return 0;
1075 }
1076
1077 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1078 {
1079 struct spu_problem __iomem *prob = spu->problem;
1080
1081 /* Restore, Step 10:
1082 * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1083 * release SPU from isolate state.
1084 */
1085 if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1086 if (in_be32(&prob->spu_status_R) &
1087 SPU_STATUS_ISOLATED_EXIT_STAUTUS) {
1088 spu_mfc_sr1_set(spu,
1089 MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1090 eieio();
1091 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1092 eieio();
1093 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1094 SPU_STATUS_RUNNING);
1095 }
1096 if ((in_be32(&prob->spu_status_R) &
1097 SPU_STATUS_ISOLATED_LOAD_STAUTUS)
1098 || (in_be32(&prob->spu_status_R) &
1099 SPU_STATUS_ISOLATED_STATE)) {
1100 spu_mfc_sr1_set(spu,
1101 MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1102 eieio();
1103 out_be32(&prob->spu_runcntl_RW, 0x2);
1104 eieio();
1105 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1106 SPU_STATUS_RUNNING);
1107 }
1108 }
1109 }
1110
1111 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1112 {
1113 struct spu_priv2 __iomem *priv2 = spu->priv2;
1114 u64 ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1115 u64 idx;
1116 int i;
1117
1118 /* Restore, Step 20:
1119 */
1120
1121 /* Reset CH 1 */
1122 out_be64(&priv2->spu_chnlcntptr_RW, 1);
1123 out_be64(&priv2->spu_chnldata_RW, 0UL);
1124
1125 /* Reset the following CH: [0,3,4,24,25,27] */
1126 for (i = 0; i < 7; i++) {
1127 idx = ch_indices[i];
1128 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1129 eieio();
1130 out_be64(&priv2->spu_chnldata_RW, 0UL);
1131 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1132 eieio();
1133 }
1134 }
1135
1136 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1137 {
1138 struct spu_priv2 __iomem *priv2 = spu->priv2;
1139 u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1140 u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1141 u64 idx;
1142 int i;
1143
1144 /* Restore, Step 21:
1145 * Reset the following CH: [21, 23, 28, 29, 30]
1146 */
1147 for (i = 0; i < 5; i++) {
1148 idx = ch_indices[i];
1149 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1150 eieio();
1151 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1152 eieio();
1153 }
1154 }
1155
1156 static inline void setup_spu_status_part1(struct spu_state *csa,
1157 struct spu *spu)
1158 {
1159 u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1160 u32 status_I = SPU_STATUS_INVALID_INSTR;
1161 u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1162 u32 status_S = SPU_STATUS_SINGLE_STEP;
1163 u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1164 u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1165 u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1166 u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1167 u32 status_code;
1168
1169 /* Restore, Step 27:
1170 * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1171 * instruction sequence to the end of the SPU based restore
1172 * code (after the "context restored" stop and signal) to
1173 * restore the correct SPU status.
1174 *
1175 * NOTE: Rather than modifying the SPU executable, we
1176 * instead add a new 'stopped_status' field to the
1177 * LSCSA. The SPU-side restore reads this field and
1178 * takes the appropriate action when exiting.
1179 */
1180
1181 status_code =
1182 (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1183 if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1184
1185 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1186 * by Stop and Signal instruction, followed by 'br -4'.
1187 *
1188 */
1189 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1190 csa->lscsa->stopped_status.slot[1] = status_code;
1191
1192 } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1193
1194 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1195 * by Stop and Signal instruction, followed by
1196 * 'br -4'.
1197 */
1198 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1199 csa->lscsa->stopped_status.slot[1] = status_code;
1200
1201 } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1202
1203 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1204 * followed by 'br -4'.
1205 */
1206 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1207 csa->lscsa->stopped_status.slot[1] = status_code;
1208
1209 } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1210
1211 /* SPU_Status[S,I]=1 - Illegal instruction followed
1212 * by 'br -4'.
1213 */
1214 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1215 csa->lscsa->stopped_status.slot[1] = status_code;
1216
1217 } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1218
1219 /* SPU_Status[P]=1 - Stop and Signal instruction
1220 * followed by 'br -4'.
1221 */
1222 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1223 csa->lscsa->stopped_status.slot[1] = status_code;
1224
1225 } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1226
1227 /* SPU_Status[H]=1 - Halt Conditional, followed
1228 * by 'br -4'.
1229 */
1230 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1231
1232 } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1233
1234 /* SPU_Status[S]=1 - Two nop instructions.
1235 */
1236 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1237
1238 } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1239
1240 /* SPU_Status[I]=1 - Illegal instruction followed
1241 * by 'br -4'.
1242 */
1243 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1244
1245 }
1246 }
1247
1248 static inline void setup_spu_status_part2(struct spu_state *csa,
1249 struct spu *spu)
1250 {
1251 u32 mask;
1252
1253 /* Restore, Step 28:
1254 * If the CSA.SPU_Status[I,S,H,P,R]=0 then
1255 * add a 'br *' instruction to the end of
1256 * the SPU based restore code.
1257 *
1258 * NOTE: Rather than modifying the SPU executable, we
1259 * instead add a new 'stopped_status' field to the
1260 * LSCSA. The SPU-side restore reads this field and
1261 * takes the appropriate action when exiting.
1262 */
1263 mask = SPU_STATUS_INVALID_INSTR |
1264 SPU_STATUS_SINGLE_STEP |
1265 SPU_STATUS_STOPPED_BY_HALT |
1266 SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1267 if (!(csa->prob.spu_status_R & mask)) {
1268 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1269 }
1270 }
1271
1272 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1273 {
1274 /* Restore, Step 29:
1275 * Restore RA_GROUP_ID register and the
1276 * RA_ENABLE reigster from the CSA.
1277 */
1278 spu_resource_allocation_groupID_set(spu,
1279 csa->priv1.resource_allocation_groupID_RW);
1280 spu_resource_allocation_enable_set(spu,
1281 csa->priv1.resource_allocation_enable_RW);
1282 }
1283
1284 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1285 {
1286 unsigned long addr = (unsigned long)&spu_restore_code[0];
1287 unsigned int ls_offset = 0x0;
1288 unsigned int size = sizeof(spu_restore_code);
1289 unsigned int tag = 0;
1290 unsigned int rclass = 0;
1291 unsigned int cmd = MFC_GETFS_CMD;
1292
1293 /* Restore, Step 37:
1294 * Issue MFC DMA command to copy context
1295 * restore code to local storage.
1296 */
1297 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1298 }
1299
1300 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1301 {
1302 /* Restore, Step 34:
1303 * If CSA.MFC_CNTL[Ds]=1 (decrementer was
1304 * running) then adjust decrementer, set
1305 * decrementer running status in LSCSA,
1306 * and set decrementer "wrapped" status
1307 * in LSCSA.
1308 */
1309 if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1310 cycles_t resume_time = get_cycles();
1311 cycles_t delta_time = resume_time - csa->suspend_time;
1312
1313 csa->lscsa->decr.slot[0] -= delta_time;
1314 }
1315 }
1316
1317 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1318 {
1319 /* Restore, Step 35:
1320 * Copy the CSA.PU_MB data into the LSCSA.
1321 */
1322 csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1323 }
1324
1325 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1326 {
1327 /* Restore, Step 36:
1328 * Copy the CSA.PUINT_MB data into the LSCSA.
1329 */
1330 csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1331 }
1332
1333 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1334 {
1335 struct spu_problem __iomem *prob = spu->problem;
1336 u32 complete;
1337
1338 /* Restore, Step 40:
1339 * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1340 * context restore succeeded, otherwise context restore
1341 * failed.
1342 */
1343 complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1344 SPU_STATUS_STOPPED_BY_STOP);
1345 return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1346 }
1347
1348 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1349 {
1350 struct spu_priv2 __iomem *priv2 = spu->priv2;
1351
1352 /* Restore, Step 41:
1353 * Restore SPU_PrivCntl from the CSA.
1354 */
1355 out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1356 eieio();
1357 }
1358
1359 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1360 {
1361 struct spu_problem __iomem *prob = spu->problem;
1362 u32 mask;
1363
1364 /* Restore, Step 42:
1365 * If any CSA.SPU_Status[I,S,H,P]=1, then
1366 * restore the error or single step state.
1367 */
1368 mask = SPU_STATUS_INVALID_INSTR |
1369 SPU_STATUS_SINGLE_STEP |
1370 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1371 if (csa->prob.spu_status_R & mask) {
1372 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1373 eieio();
1374 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1375 SPU_STATUS_RUNNING);
1376 }
1377 }
1378
1379 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1380 {
1381 struct spu_problem __iomem *prob = spu->problem;
1382 u32 mask;
1383
1384 /* Restore, Step 43:
1385 * If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1386 * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1387 * then write '00' to SPU_RunCntl[R0R1] and wait
1388 * for SPU_Status[R]=0.
1389 */
1390 mask = SPU_STATUS_INVALID_INSTR |
1391 SPU_STATUS_SINGLE_STEP |
1392 SPU_STATUS_STOPPED_BY_HALT |
1393 SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1394 if (!(csa->prob.spu_status_R & mask)) {
1395 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1396 eieio();
1397 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1398 SPU_STATUS_RUNNING);
1399 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1400 eieio();
1401 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1402 SPU_STATUS_RUNNING);
1403 }
1404 }
1405
1406 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1407 {
1408 unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1409 unsigned int ls_offset = 0x0;
1410 unsigned int size = 16384;
1411 unsigned int tag = 0;
1412 unsigned int rclass = 0;
1413 unsigned int cmd = MFC_GET_CMD;
1414
1415 /* Restore, Step 44:
1416 * Issue a DMA command to restore the first
1417 * 16kb of local storage from CSA.
1418 */
1419 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1420 }
1421
1422 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1423 {
1424 /* Restore, Step 49:
1425 * Write INT_MASK_class0 with value of 0.
1426 * Write INT_MASK_class1 with value of 0.
1427 * Write INT_MASK_class2 with value of 0.
1428 * Write INT_STAT_class0 with value of -1.
1429 * Write INT_STAT_class1 with value of -1.
1430 * Write INT_STAT_class2 with value of -1.
1431 */
1432 spin_lock_irq(&spu->register_lock);
1433 spu_int_mask_set(spu, 0, 0ul);
1434 spu_int_mask_set(spu, 1, 0ul);
1435 spu_int_mask_set(spu, 2, 0ul);
1436 spu_int_stat_clear(spu, 0, ~0ul);
1437 spu_int_stat_clear(spu, 1, ~0ul);
1438 spu_int_stat_clear(spu, 2, ~0ul);
1439 spin_unlock_irq(&spu->register_lock);
1440 }
1441
1442 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1443 {
1444 struct spu_priv2 __iomem *priv2 = spu->priv2;
1445 int i;
1446
1447 /* Restore, Step 50:
1448 * If MFC_Cntl[Se]!=0 then restore
1449 * MFC command queues.
1450 */
1451 if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1452 for (i = 0; i < 8; i++) {
1453 out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1454 csa->priv2.puq[i].mfc_cq_data0_RW);
1455 out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1456 csa->priv2.puq[i].mfc_cq_data1_RW);
1457 out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1458 csa->priv2.puq[i].mfc_cq_data2_RW);
1459 out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1460 csa->priv2.puq[i].mfc_cq_data3_RW);
1461 }
1462 for (i = 0; i < 16; i++) {
1463 out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1464 csa->priv2.spuq[i].mfc_cq_data0_RW);
1465 out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1466 csa->priv2.spuq[i].mfc_cq_data1_RW);
1467 out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1468 csa->priv2.spuq[i].mfc_cq_data2_RW);
1469 out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1470 csa->priv2.spuq[i].mfc_cq_data3_RW);
1471 }
1472 }
1473 eieio();
1474 }
1475
1476 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1477 {
1478 struct spu_problem __iomem *prob = spu->problem;
1479
1480 /* Restore, Step 51:
1481 * Restore the PPU_QueryMask register from CSA.
1482 */
1483 out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1484 eieio();
1485 }
1486
1487 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1488 {
1489 struct spu_problem __iomem *prob = spu->problem;
1490
1491 /* Restore, Step 52:
1492 * Restore the PPU_QueryType register from CSA.
1493 */
1494 out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1495 eieio();
1496 }
1497
1498 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1499 {
1500 struct spu_priv2 __iomem *priv2 = spu->priv2;
1501
1502 /* Restore, Step 53:
1503 * Restore the MFC_CSR_TSQ register from CSA.
1504 */
1505 out_be64(&priv2->spu_tag_status_query_RW,
1506 csa->priv2.spu_tag_status_query_RW);
1507 eieio();
1508 }
1509
1510 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1511 {
1512 struct spu_priv2 __iomem *priv2 = spu->priv2;
1513
1514 /* Restore, Step 54:
1515 * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1516 * registers from CSA.
1517 */
1518 out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1519 out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1520 eieio();
1521 }
1522
1523 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1524 {
1525 struct spu_priv2 __iomem *priv2 = spu->priv2;
1526
1527 /* Restore, Step 55:
1528 * Restore the MFC_CSR_ATO register from CSA.
1529 */
1530 out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1531 }
1532
1533 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1534 {
1535 /* Restore, Step 56:
1536 * Restore the MFC_TCLASS_ID register from CSA.
1537 */
1538 spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1539 eieio();
1540 }
1541
1542 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1543 {
1544 u64 ch0_cnt, ch0_data;
1545 u64 ch1_data;
1546
1547 /* Restore, Step 57:
1548 * Set the Lock Line Reservation Lost Event by:
1549 * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1550 * 2. If CSA.SPU_Channel_0_Count=0 and
1551 * CSA.SPU_Wr_Event_Mask[Lr]=1 and
1552 * CSA.SPU_Event_Status[Lr]=0 then set
1553 * CSA.SPU_Event_Status_Count=1.
1554 */
1555 ch0_cnt = csa->spu_chnlcnt_RW[0];
1556 ch0_data = csa->spu_chnldata_RW[0];
1557 ch1_data = csa->spu_chnldata_RW[1];
1558 csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1559 if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1560 (ch1_data & MFC_LLR_LOST_EVENT)) {
1561 csa->spu_chnlcnt_RW[0] = 1;
1562 }
1563 }
1564
1565 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1566 {
1567 /* Restore, Step 58:
1568 * If the status of the CSA software decrementer
1569 * "wrapped" flag is set, OR in a '1' to
1570 * CSA.SPU_Event_Status[Tm].
1571 */
1572 if (csa->lscsa->decr_status.slot[0] == 1) {
1573 csa->spu_chnldata_RW[0] |= 0x20;
1574 }
1575 if ((csa->lscsa->decr_status.slot[0] == 1) &&
1576 (csa->spu_chnlcnt_RW[0] == 0 &&
1577 ((csa->spu_chnldata_RW[2] & 0x20) == 0x0) &&
1578 ((csa->spu_chnldata_RW[0] & 0x20) != 0x1))) {
1579 csa->spu_chnlcnt_RW[0] = 1;
1580 }
1581 }
1582
1583 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1584 {
1585 struct spu_priv2 __iomem *priv2 = spu->priv2;
1586 u64 idx, ch_indices[7] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1587 int i;
1588
1589 /* Restore, Step 59:
1590 */
1591
1592 /* Restore CH 1 without count */
1593 out_be64(&priv2->spu_chnlcntptr_RW, 1);
1594 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[1]);
1595
1596 /* Restore the following CH: [0,3,4,24,25,27] */
1597 for (i = 0; i < 7; i++) {
1598 idx = ch_indices[i];
1599 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1600 eieio();
1601 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1602 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1603 eieio();
1604 }
1605 }
1606
1607 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1608 {
1609 struct spu_priv2 __iomem *priv2 = spu->priv2;
1610 u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1611 u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1612 u64 idx;
1613 int i;
1614
1615 /* Restore, Step 60:
1616 * Restore the following CH: [9,21,23].
1617 */
1618 ch_counts[0] = 1UL;
1619 ch_counts[1] = csa->spu_chnlcnt_RW[21];
1620 ch_counts[2] = 1UL;
1621 for (i = 0; i < 3; i++) {
1622 idx = ch_indices[i];
1623 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1624 eieio();
1625 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1626 eieio();
1627 }
1628 }
1629
1630 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1631 {
1632 struct spu_priv2 __iomem *priv2 = spu->priv2;
1633
1634 /* Restore, Step 61:
1635 * Restore the SPU_LSLR register from CSA.
1636 */
1637 out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1638 eieio();
1639 }
1640
1641 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1642 {
1643 struct spu_priv2 __iomem *priv2 = spu->priv2;
1644
1645 /* Restore, Step 62:
1646 * Restore the SPU_Cfg register from CSA.
1647 */
1648 out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1649 eieio();
1650 }
1651
1652 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1653 {
1654 /* Restore, Step 63:
1655 * Restore PM_Trace_Tag_Wait_Mask from CSA.
1656 * Not performed by this implementation.
1657 */
1658 }
1659
1660 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1661 {
1662 struct spu_problem __iomem *prob = spu->problem;
1663
1664 /* Restore, Step 64:
1665 * Restore SPU_NPC from CSA.
1666 */
1667 out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1668 eieio();
1669 }
1670
1671 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1672 {
1673 struct spu_priv2 __iomem *priv2 = spu->priv2;
1674 int i;
1675
1676 /* Restore, Step 65:
1677 * Restore MFC_RdSPU_MB from CSA.
1678 */
1679 out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1680 eieio();
1681 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1682 for (i = 0; i < 4; i++) {
1683 out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1684 }
1685 eieio();
1686 }
1687
1688 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1689 {
1690 struct spu_problem __iomem *prob = spu->problem;
1691 u32 dummy = 0;
1692
1693 /* Restore, Step 66:
1694 * If CSA.MB_Stat[P]=0 (mailbox empty) then
1695 * read from the PPU_MB register.
1696 */
1697 if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1698 dummy = in_be32(&prob->pu_mb_R);
1699 eieio();
1700 }
1701 }
1702
1703 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1704 {
1705 struct spu_priv2 __iomem *priv2 = spu->priv2;
1706 u64 dummy = 0UL;
1707
1708 /* Restore, Step 66:
1709 * If CSA.MB_Stat[I]=0 (mailbox empty) then
1710 * read from the PPUINT_MB register.
1711 */
1712 if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1713 dummy = in_be64(&priv2->puint_mb_R);
1714 eieio();
1715 spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1716 eieio();
1717 }
1718 }
1719
1720 static inline void restore_mfc_slbs(struct spu_state *csa, struct spu *spu)
1721 {
1722 struct spu_priv2 __iomem *priv2 = spu->priv2;
1723 int i;
1724
1725 /* Restore, Step 68:
1726 * If MFC_SR1[R]='1', restore SLBs from CSA.
1727 */
1728 if (csa->priv1.mfc_sr1_RW & MFC_STATE1_RELOCATE_MASK) {
1729 for (i = 0; i < 8; i++) {
1730 out_be64(&priv2->slb_index_W, i);
1731 eieio();
1732 out_be64(&priv2->slb_esid_RW, csa->slb_esid_RW[i]);
1733 out_be64(&priv2->slb_vsid_RW, csa->slb_vsid_RW[i]);
1734 eieio();
1735 }
1736 out_be64(&priv2->slb_index_W, csa->priv2.slb_index_W);
1737 eieio();
1738 }
1739 }
1740
1741 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1742 {
1743 /* Restore, Step 69:
1744 * Restore the MFC_SR1 register from CSA.
1745 */
1746 spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1747 eieio();
1748 }
1749
1750 static inline void restore_other_spu_access(struct spu_state *csa,
1751 struct spu *spu)
1752 {
1753 /* Restore, Step 70:
1754 * Restore other SPU mappings to this SPU. TBD.
1755 */
1756 }
1757
1758 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1759 {
1760 struct spu_problem __iomem *prob = spu->problem;
1761
1762 /* Restore, Step 71:
1763 * If CSA.SPU_Status[R]=1 then write
1764 * SPU_RunCntl[R0R1]='01'.
1765 */
1766 if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1767 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1768 eieio();
1769 }
1770 }
1771
1772 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1773 {
1774 struct spu_priv2 __iomem *priv2 = spu->priv2;
1775
1776 /* Restore, Step 72:
1777 * Restore the MFC_CNTL register for the CSA.
1778 */
1779 out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1780 eieio();
1781 }
1782
1783 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1784 {
1785 /* Restore, Step 73:
1786 * Enable user-space access (if provided) to this
1787 * SPU by mapping the virtual pages assigned to
1788 * the SPU memory-mapped I/O (MMIO) for problem
1789 * state. TBD.
1790 */
1791 }
1792
1793 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1794 {
1795 /* Restore, Step 74:
1796 * Reset the "context switch active" flag.
1797 */
1798 clear_bit(SPU_CONTEXT_SWITCH_ACTIVE, &spu->flags);
1799 mb();
1800 }
1801
1802 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1803 {
1804 /* Restore, Step 75:
1805 * Re-enable SPU interrupts.
1806 */
1807 spin_lock_irq(&spu->register_lock);
1808 spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1809 spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1810 spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1811 spin_unlock_irq(&spu->register_lock);
1812 }
1813
1814 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1815 {
1816 /*
1817 * Combined steps 2-18 of SPU context save sequence, which
1818 * quiesce the SPU state (disable SPU execution, MFC command
1819 * queues, decrementer, SPU interrupts, etc.).
1820 *
1821 * Returns 0 on success.
1822 * 2 if failed step 2.
1823 * 6 if failed step 6.
1824 */
1825
1826 if (check_spu_isolate(prev, spu)) { /* Step 2. */
1827 return 2;
1828 }
1829 disable_interrupts(prev, spu); /* Step 3. */
1830 set_watchdog_timer(prev, spu); /* Step 4. */
1831 inhibit_user_access(prev, spu); /* Step 5. */
1832 if (check_spu_isolate(prev, spu)) { /* Step 6. */
1833 return 6;
1834 }
1835 set_switch_pending(prev, spu); /* Step 7. */
1836 save_mfc_cntl(prev, spu); /* Step 8. */
1837 save_spu_runcntl(prev, spu); /* Step 9. */
1838 save_mfc_sr1(prev, spu); /* Step 10. */
1839 save_spu_status(prev, spu); /* Step 11. */
1840 save_mfc_decr(prev, spu); /* Step 12. */
1841 halt_mfc_decr(prev, spu); /* Step 13. */
1842 save_timebase(prev, spu); /* Step 14. */
1843 remove_other_spu_access(prev, spu); /* Step 15. */
1844 do_mfc_mssync(prev, spu); /* Step 16. */
1845 issue_mfc_tlbie(prev, spu); /* Step 17. */
1846 handle_pending_interrupts(prev, spu); /* Step 18. */
1847
1848 return 0;
1849 }
1850
1851 static void save_csa(struct spu_state *prev, struct spu *spu)
1852 {
1853 /*
1854 * Combine steps 19-44 of SPU context save sequence, which
1855 * save regions of the privileged & problem state areas.
1856 */
1857
1858 save_mfc_queues(prev, spu); /* Step 19. */
1859 save_ppu_querymask(prev, spu); /* Step 20. */
1860 save_ppu_querytype(prev, spu); /* Step 21. */
1861 save_mfc_csr_tsq(prev, spu); /* Step 22. */
1862 save_mfc_csr_cmd(prev, spu); /* Step 23. */
1863 save_mfc_csr_ato(prev, spu); /* Step 24. */
1864 save_mfc_tclass_id(prev, spu); /* Step 25. */
1865 set_mfc_tclass_id(prev, spu); /* Step 26. */
1866 purge_mfc_queue(prev, spu); /* Step 27. */
1867 wait_purge_complete(prev, spu); /* Step 28. */
1868 save_mfc_slbs(prev, spu); /* Step 29. */
1869 setup_mfc_sr1(prev, spu); /* Step 30. */
1870 save_spu_npc(prev, spu); /* Step 31. */
1871 save_spu_privcntl(prev, spu); /* Step 32. */
1872 reset_spu_privcntl(prev, spu); /* Step 33. */
1873 save_spu_lslr(prev, spu); /* Step 34. */
1874 reset_spu_lslr(prev, spu); /* Step 35. */
1875 save_spu_cfg(prev, spu); /* Step 36. */
1876 save_pm_trace(prev, spu); /* Step 37. */
1877 save_mfc_rag(prev, spu); /* Step 38. */
1878 save_ppu_mb_stat(prev, spu); /* Step 39. */
1879 save_ppu_mb(prev, spu); /* Step 40. */
1880 save_ppuint_mb(prev, spu); /* Step 41. */
1881 save_ch_part1(prev, spu); /* Step 42. */
1882 save_spu_mb(prev, spu); /* Step 43. */
1883 save_mfc_cmd(prev, spu); /* Step 44. */
1884 reset_ch(prev, spu); /* Step 45. */
1885 }
1886
1887 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1888 {
1889 /*
1890 * Perform steps 46-57 of SPU context save sequence,
1891 * which save regions of the local store and register
1892 * file.
1893 */
1894
1895 resume_mfc_queue(prev, spu); /* Step 46. */
1896 setup_mfc_slbs(prev, spu); /* Step 47. */
1897 set_switch_active(prev, spu); /* Step 48. */
1898 enable_interrupts(prev, spu); /* Step 49. */
1899 save_ls_16kb(prev, spu); /* Step 50. */
1900 set_spu_npc(prev, spu); /* Step 51. */
1901 set_signot1(prev, spu); /* Step 52. */
1902 set_signot2(prev, spu); /* Step 53. */
1903 send_save_code(prev, spu); /* Step 54. */
1904 set_ppu_querymask(prev, spu); /* Step 55. */
1905 wait_tag_complete(prev, spu); /* Step 56. */
1906 wait_spu_stopped(prev, spu); /* Step 57. */
1907 }
1908
1909 static void harvest(struct spu_state *prev, struct spu *spu)
1910 {
1911 /*
1912 * Perform steps 2-25 of SPU context restore sequence,
1913 * which resets an SPU either after a failed save, or
1914 * when using SPU for first time.
1915 */
1916
1917 disable_interrupts(prev, spu); /* Step 2. */
1918 inhibit_user_access(prev, spu); /* Step 3. */
1919 terminate_spu_app(prev, spu); /* Step 4. */
1920 set_switch_pending(prev, spu); /* Step 5. */
1921 remove_other_spu_access(prev, spu); /* Step 6. */
1922 suspend_mfc(prev, spu); /* Step 7. */
1923 wait_suspend_mfc_complete(prev, spu); /* Step 8. */
1924 if (!suspend_spe(prev, spu)) /* Step 9. */
1925 clear_spu_status(prev, spu); /* Step 10. */
1926 do_mfc_mssync(prev, spu); /* Step 11. */
1927 issue_mfc_tlbie(prev, spu); /* Step 12. */
1928 handle_pending_interrupts(prev, spu); /* Step 13. */
1929 purge_mfc_queue(prev, spu); /* Step 14. */
1930 wait_purge_complete(prev, spu); /* Step 15. */
1931 reset_spu_privcntl(prev, spu); /* Step 16. */
1932 reset_spu_lslr(prev, spu); /* Step 17. */
1933 setup_mfc_sr1(prev, spu); /* Step 18. */
1934 invalidate_slbs(prev, spu); /* Step 19. */
1935 reset_ch_part1(prev, spu); /* Step 20. */
1936 reset_ch_part2(prev, spu); /* Step 21. */
1937 enable_interrupts(prev, spu); /* Step 22. */
1938 set_switch_active(prev, spu); /* Step 23. */
1939 set_mfc_tclass_id(prev, spu); /* Step 24. */
1940 resume_mfc_queue(prev, spu); /* Step 25. */
1941 }
1942
1943 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1944 {
1945 /*
1946 * Perform steps 26-40 of SPU context restore sequence,
1947 * which restores regions of the local store and register
1948 * file.
1949 */
1950
1951 set_watchdog_timer(next, spu); /* Step 26. */
1952 setup_spu_status_part1(next, spu); /* Step 27. */
1953 setup_spu_status_part2(next, spu); /* Step 28. */
1954 restore_mfc_rag(next, spu); /* Step 29. */
1955 setup_mfc_slbs(next, spu); /* Step 30. */
1956 set_spu_npc(next, spu); /* Step 31. */
1957 set_signot1(next, spu); /* Step 32. */
1958 set_signot2(next, spu); /* Step 33. */
1959 setup_decr(next, spu); /* Step 34. */
1960 setup_ppu_mb(next, spu); /* Step 35. */
1961 setup_ppuint_mb(next, spu); /* Step 36. */
1962 send_restore_code(next, spu); /* Step 37. */
1963 set_ppu_querymask(next, spu); /* Step 38. */
1964 wait_tag_complete(next, spu); /* Step 39. */
1965 wait_spu_stopped(next, spu); /* Step 40. */
1966 }
1967
1968 static void restore_csa(struct spu_state *next, struct spu *spu)
1969 {
1970 /*
1971 * Combine steps 41-76 of SPU context restore sequence, which
1972 * restore regions of the privileged & problem state areas.
1973 */
1974
1975 restore_spu_privcntl(next, spu); /* Step 41. */
1976 restore_status_part1(next, spu); /* Step 42. */
1977 restore_status_part2(next, spu); /* Step 43. */
1978 restore_ls_16kb(next, spu); /* Step 44. */
1979 wait_tag_complete(next, spu); /* Step 45. */
1980 suspend_mfc(next, spu); /* Step 46. */
1981 wait_suspend_mfc_complete(next, spu); /* Step 47. */
1982 issue_mfc_tlbie(next, spu); /* Step 48. */
1983 clear_interrupts(next, spu); /* Step 49. */
1984 restore_mfc_queues(next, spu); /* Step 50. */
1985 restore_ppu_querymask(next, spu); /* Step 51. */
1986 restore_ppu_querytype(next, spu); /* Step 52. */
1987 restore_mfc_csr_tsq(next, spu); /* Step 53. */
1988 restore_mfc_csr_cmd(next, spu); /* Step 54. */
1989 restore_mfc_csr_ato(next, spu); /* Step 55. */
1990 restore_mfc_tclass_id(next, spu); /* Step 56. */
1991 set_llr_event(next, spu); /* Step 57. */
1992 restore_decr_wrapped(next, spu); /* Step 58. */
1993 restore_ch_part1(next, spu); /* Step 59. */
1994 restore_ch_part2(next, spu); /* Step 60. */
1995 restore_spu_lslr(next, spu); /* Step 61. */
1996 restore_spu_cfg(next, spu); /* Step 62. */
1997 restore_pm_trace(next, spu); /* Step 63. */
1998 restore_spu_npc(next, spu); /* Step 64. */
1999 restore_spu_mb(next, spu); /* Step 65. */
2000 check_ppu_mb_stat(next, spu); /* Step 66. */
2001 check_ppuint_mb_stat(next, spu); /* Step 67. */
2002 restore_mfc_slbs(next, spu); /* Step 68. */
2003 restore_mfc_sr1(next, spu); /* Step 69. */
2004 restore_other_spu_access(next, spu); /* Step 70. */
2005 restore_spu_runcntl(next, spu); /* Step 71. */
2006 restore_mfc_cntl(next, spu); /* Step 72. */
2007 enable_user_access(next, spu); /* Step 73. */
2008 reset_switch_active(next, spu); /* Step 74. */
2009 reenable_interrupts(next, spu); /* Step 75. */
2010 }
2011
2012 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2013 {
2014 int rc;
2015
2016 /*
2017 * SPU context save can be broken into three phases:
2018 *
2019 * (a) quiesce [steps 2-16].
2020 * (b) save of CSA, performed by PPE [steps 17-42]
2021 * (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2022 *
2023 * Returns 0 on success.
2024 * 2,6 if failed to quiece SPU
2025 * 53 if SPU-side of save failed.
2026 */
2027
2028 rc = quiece_spu(prev, spu); /* Steps 2-16. */
2029 switch (rc) {
2030 default:
2031 case 2:
2032 case 6:
2033 harvest(prev, spu);
2034 return rc;
2035 break;
2036 case 0:
2037 break;
2038 }
2039 save_csa(prev, spu); /* Steps 17-43. */
2040 save_lscsa(prev, spu); /* Steps 44-53. */
2041 return check_save_status(prev, spu); /* Step 54. */
2042 }
2043
2044 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2045 {
2046 int rc;
2047
2048 /*
2049 * SPU context restore can be broken into three phases:
2050 *
2051 * (a) harvest (or reset) SPU [steps 2-24].
2052 * (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2053 * (c) restore CSA [steps 41-76], performed by PPE.
2054 *
2055 * The 'harvest' step is not performed here, but rather
2056 * as needed below.
2057 */
2058
2059 restore_lscsa(next, spu); /* Steps 24-39. */
2060 rc = check_restore_status(next, spu); /* Step 40. */
2061 switch (rc) {
2062 default:
2063 /* Failed. Return now. */
2064 return rc;
2065 break;
2066 case 0:
2067 /* Fall through to next step. */
2068 break;
2069 }
2070 restore_csa(next, spu);
2071
2072 return 0;
2073 }
2074
2075 /**
2076 * spu_save - SPU context save, with locking.
2077 * @prev: pointer to SPU context save area, to be saved.
2078 * @spu: pointer to SPU iomem structure.
2079 *
2080 * Acquire locks, perform the save operation then return.
2081 */
2082 int spu_save(struct spu_state *prev, struct spu *spu)
2083 {
2084 int rc;
2085
2086 acquire_spu_lock(spu); /* Step 1. */
2087 rc = __do_spu_save(prev, spu); /* Steps 2-53. */
2088 release_spu_lock(spu);
2089 if (rc) {
2090 panic("%s failed on SPU[%d], rc=%d.\n",
2091 __func__, spu->number, rc);
2092 }
2093 return rc;
2094 }
2095 EXPORT_SYMBOL_GPL(spu_save);
2096
2097 /**
2098 * spu_restore - SPU context restore, with harvest and locking.
2099 * @new: pointer to SPU context save area, to be restored.
2100 * @spu: pointer to SPU iomem structure.
2101 *
2102 * Perform harvest + restore, as we may not be coming
2103 * from a previous successful save operation, and the
2104 * hardware state is unknown.
2105 */
2106 int spu_restore(struct spu_state *new, struct spu *spu)
2107 {
2108 int rc;
2109
2110 acquire_spu_lock(spu);
2111 harvest(NULL, spu);
2112 spu->dar = 0;
2113 spu->dsisr = 0;
2114 spu->slb_replace = 0;
2115 spu->class_0_pending = 0;
2116 rc = __do_spu_restore(new, spu);
2117 release_spu_lock(spu);
2118 if (rc) {
2119 panic("%s failed on SPU[%d] rc=%d.\n",
2120 __func__, spu->number, rc);
2121 }
2122 return rc;
2123 }
2124 EXPORT_SYMBOL_GPL(spu_restore);
2125
2126 /**
2127 * spu_harvest - SPU harvest (reset) operation
2128 * @spu: pointer to SPU iomem structure.
2129 *
2130 * Perform SPU harvest (reset) operation.
2131 */
2132 void spu_harvest(struct spu *spu)
2133 {
2134 acquire_spu_lock(spu);
2135 harvest(NULL, spu);
2136 release_spu_lock(spu);
2137 }
2138
2139 static void init_prob(struct spu_state *csa)
2140 {
2141 csa->spu_chnlcnt_RW[9] = 1;
2142 csa->spu_chnlcnt_RW[21] = 16;
2143 csa->spu_chnlcnt_RW[23] = 1;
2144 csa->spu_chnlcnt_RW[28] = 1;
2145 csa->spu_chnlcnt_RW[30] = 1;
2146 csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2147 csa->prob.mb_stat_R = 0x000400;
2148 }
2149
2150 static void init_priv1(struct spu_state *csa)
2151 {
2152 /* Enable decode, relocate, tlbie response, master runcntl. */
2153 csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2154 MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2155 MFC_STATE1_PROBLEM_STATE_MASK |
2156 MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2157
2158 /* Set storage description. */
2159 csa->priv1.mfc_sdr_RW = mfspr(SPRN_SDR1);
2160
2161 /* Enable OS-specific set of interrupts. */
2162 csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2163 CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2164 CLASS0_ENABLE_SPU_ERROR_INTR;
2165 csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2166 CLASS1_ENABLE_STORAGE_FAULT_INTR;
2167 csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2168 CLASS2_ENABLE_SPU_HALT_INTR |
2169 CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2170 }
2171
2172 static void init_priv2(struct spu_state *csa)
2173 {
2174 csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2175 csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2176 MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2177 MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2178 }
2179
2180 /**
2181 * spu_alloc_csa - allocate and initialize an SPU context save area.
2182 *
2183 * Allocate and initialize the contents of an SPU context save area.
2184 * This includes enabling address translation, interrupt masks, etc.,
2185 * as appropriate for the given OS environment.
2186 *
2187 * Note that storage for the 'lscsa' is allocated separately,
2188 * as it is by far the largest of the context save regions,
2189 * and may need to be pinned or otherwise specially aligned.
2190 */
2191 void spu_init_csa(struct spu_state *csa)
2192 {
2193 struct spu_lscsa *lscsa;
2194 unsigned char *p;
2195
2196 if (!csa)
2197 return;
2198 memset(csa, 0, sizeof(struct spu_state));
2199
2200 lscsa = vmalloc(sizeof(struct spu_lscsa));
2201 if (!lscsa)
2202 return;
2203
2204 memset(lscsa, 0, sizeof(struct spu_lscsa));
2205 csa->lscsa = lscsa;
2206 csa->register_lock = SPIN_LOCK_UNLOCKED;
2207
2208 /* Set LS pages reserved to allow for user-space mapping. */
2209 for (p = lscsa->ls; p < lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2210 SetPageReserved(vmalloc_to_page(p));
2211
2212 init_prob(csa);
2213 init_priv1(csa);
2214 init_priv2(csa);
2215 }
2216 EXPORT_SYMBOL_GPL(spu_init_csa);
2217
2218 void spu_fini_csa(struct spu_state *csa)
2219 {
2220 /* Clear reserved bit before vfree. */
2221 unsigned char *p;
2222 for (p = csa->lscsa->ls; p < csa->lscsa->ls + LS_SIZE; p += PAGE_SIZE)
2223 ClearPageReserved(vmalloc_to_page(p));
2224
2225 vfree(csa->lscsa);
2226 }
2227 EXPORT_SYMBOL_GPL(spu_fini_csa);