]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/platforms/cell/spufs/switch.c
Merge branch 'for-2.6.25' of master.kernel.org:/pub/scm/linux/kernel/git/arnd/cell...
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / platforms / cell / spufs / switch.c
1 /*
2 * spu_switch.c
3 *
4 * (C) Copyright IBM Corp. 2005
5 *
6 * Author: Mark Nutter <mnutter@us.ibm.com>
7 *
8 * Host-side part of SPU context switch sequence outlined in
9 * Synergistic Processor Element, Book IV.
10 *
11 * A fully premptive switch of an SPE is very expensive in terms
12 * of time and system resources. SPE Book IV indicates that SPE
13 * allocation should follow a "serially reusable device" model,
14 * in which the SPE is assigned a task until it completes. When
15 * this is not possible, this sequence may be used to premptively
16 * save, and then later (optionally) restore the context of a
17 * program executing on an SPE.
18 *
19 *
20 * This program is free software; you can redistribute it and/or modify
21 * it under the terms of the GNU General Public License as published by
22 * the Free Software Foundation; either version 2, or (at your option)
23 * any later version.
24 *
25 * This program is distributed in the hope that it will be useful,
26 * but WITHOUT ANY WARRANTY; without even the implied warranty of
27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28 * GNU General Public License for more details.
29 *
30 * You should have received a copy of the GNU General Public License
31 * along with this program; if not, write to the Free Software
32 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
33 */
34
35 #include <linux/module.h>
36 #include <linux/errno.h>
37 #include <linux/hardirq.h>
38 #include <linux/sched.h>
39 #include <linux/kernel.h>
40 #include <linux/mm.h>
41 #include <linux/vmalloc.h>
42 #include <linux/smp.h>
43 #include <linux/stddef.h>
44 #include <linux/unistd.h>
45
46 #include <asm/io.h>
47 #include <asm/spu.h>
48 #include <asm/spu_priv1.h>
49 #include <asm/spu_csa.h>
50 #include <asm/mmu_context.h>
51
52 #include "spufs.h"
53
54 #include "spu_save_dump.h"
55 #include "spu_restore_dump.h"
56
57 #if 0
58 #define POLL_WHILE_TRUE(_c) { \
59 do { \
60 } while (_c); \
61 }
62 #else
63 #define RELAX_SPIN_COUNT 1000
64 #define POLL_WHILE_TRUE(_c) { \
65 do { \
66 int _i; \
67 for (_i=0; _i<RELAX_SPIN_COUNT && (_c); _i++) { \
68 cpu_relax(); \
69 } \
70 if (unlikely(_c)) yield(); \
71 else break; \
72 } while (_c); \
73 }
74 #endif /* debug */
75
76 #define POLL_WHILE_FALSE(_c) POLL_WHILE_TRUE(!(_c))
77
78 static inline void acquire_spu_lock(struct spu *spu)
79 {
80 /* Save, Step 1:
81 * Restore, Step 1:
82 * Acquire SPU-specific mutual exclusion lock.
83 * TBD.
84 */
85 }
86
87 static inline void release_spu_lock(struct spu *spu)
88 {
89 /* Restore, Step 76:
90 * Release SPU-specific mutual exclusion lock.
91 * TBD.
92 */
93 }
94
95 static inline int check_spu_isolate(struct spu_state *csa, struct spu *spu)
96 {
97 struct spu_problem __iomem *prob = spu->problem;
98 u32 isolate_state;
99
100 /* Save, Step 2:
101 * Save, Step 6:
102 * If SPU_Status[E,L,IS] any field is '1', this
103 * SPU is in isolate state and cannot be context
104 * saved at this time.
105 */
106 isolate_state = SPU_STATUS_ISOLATED_STATE |
107 SPU_STATUS_ISOLATED_LOAD_STATUS | SPU_STATUS_ISOLATED_EXIT_STATUS;
108 return (in_be32(&prob->spu_status_R) & isolate_state) ? 1 : 0;
109 }
110
111 static inline void disable_interrupts(struct spu_state *csa, struct spu *spu)
112 {
113 /* Save, Step 3:
114 * Restore, Step 2:
115 * Save INT_Mask_class0 in CSA.
116 * Write INT_MASK_class0 with value of 0.
117 * Save INT_Mask_class1 in CSA.
118 * Write INT_MASK_class1 with value of 0.
119 * Save INT_Mask_class2 in CSA.
120 * Write INT_MASK_class2 with value of 0.
121 * Synchronize all three interrupts to be sure
122 * we no longer execute a handler on another CPU.
123 */
124 spin_lock_irq(&spu->register_lock);
125 if (csa) {
126 csa->priv1.int_mask_class0_RW = spu_int_mask_get(spu, 0);
127 csa->priv1.int_mask_class1_RW = spu_int_mask_get(spu, 1);
128 csa->priv1.int_mask_class2_RW = spu_int_mask_get(spu, 2);
129 }
130 spu_int_mask_set(spu, 0, 0ul);
131 spu_int_mask_set(spu, 1, 0ul);
132 spu_int_mask_set(spu, 2, 0ul);
133 eieio();
134 spin_unlock_irq(&spu->register_lock);
135 synchronize_irq(spu->irqs[0]);
136 synchronize_irq(spu->irqs[1]);
137 synchronize_irq(spu->irqs[2]);
138 }
139
140 static inline void set_watchdog_timer(struct spu_state *csa, struct spu *spu)
141 {
142 /* Save, Step 4:
143 * Restore, Step 25.
144 * Set a software watchdog timer, which specifies the
145 * maximum allowable time for a context save sequence.
146 *
147 * For present, this implementation will not set a global
148 * watchdog timer, as virtualization & variable system load
149 * may cause unpredictable execution times.
150 */
151 }
152
153 static inline void inhibit_user_access(struct spu_state *csa, struct spu *spu)
154 {
155 /* Save, Step 5:
156 * Restore, Step 3:
157 * Inhibit user-space access (if provided) to this
158 * SPU by unmapping the virtual pages assigned to
159 * the SPU memory-mapped I/O (MMIO) for problem
160 * state. TBD.
161 */
162 }
163
164 static inline void set_switch_pending(struct spu_state *csa, struct spu *spu)
165 {
166 /* Save, Step 7:
167 * Restore, Step 5:
168 * Set a software context switch pending flag.
169 */
170 set_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
171 mb();
172 }
173
174 static inline void save_mfc_cntl(struct spu_state *csa, struct spu *spu)
175 {
176 struct spu_priv2 __iomem *priv2 = spu->priv2;
177
178 /* Save, Step 8:
179 * Suspend DMA and save MFC_CNTL.
180 */
181 switch (in_be64(&priv2->mfc_control_RW) &
182 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) {
183 case MFC_CNTL_SUSPEND_IN_PROGRESS:
184 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
185 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
186 MFC_CNTL_SUSPEND_COMPLETE);
187 /* fall through */
188 case MFC_CNTL_SUSPEND_COMPLETE:
189 if (csa) {
190 csa->priv2.mfc_control_RW =
191 MFC_CNTL_SUSPEND_MASK |
192 MFC_CNTL_SUSPEND_DMA_QUEUE;
193 }
194 break;
195 case MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION:
196 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
197 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
198 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
199 MFC_CNTL_SUSPEND_COMPLETE);
200 if (csa) {
201 csa->priv2.mfc_control_RW = 0;
202 }
203 break;
204 }
205 }
206
207 static inline void save_spu_runcntl(struct spu_state *csa, struct spu *spu)
208 {
209 struct spu_problem __iomem *prob = spu->problem;
210
211 /* Save, Step 9:
212 * Save SPU_Runcntl in the CSA. This value contains
213 * the "Application Desired State".
214 */
215 csa->prob.spu_runcntl_RW = in_be32(&prob->spu_runcntl_RW);
216 }
217
218 static inline void save_mfc_sr1(struct spu_state *csa, struct spu *spu)
219 {
220 /* Save, Step 10:
221 * Save MFC_SR1 in the CSA.
222 */
223 csa->priv1.mfc_sr1_RW = spu_mfc_sr1_get(spu);
224 }
225
226 static inline void save_spu_status(struct spu_state *csa, struct spu *spu)
227 {
228 struct spu_problem __iomem *prob = spu->problem;
229
230 /* Save, Step 11:
231 * Read SPU_Status[R], and save to CSA.
232 */
233 if ((in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) == 0) {
234 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
235 } else {
236 u32 stopped;
237
238 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
239 eieio();
240 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
241 SPU_STATUS_RUNNING);
242 stopped =
243 SPU_STATUS_INVALID_INSTR | SPU_STATUS_SINGLE_STEP |
244 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
245 if ((in_be32(&prob->spu_status_R) & stopped) == 0)
246 csa->prob.spu_status_R = SPU_STATUS_RUNNING;
247 else
248 csa->prob.spu_status_R = in_be32(&prob->spu_status_R);
249 }
250 }
251
252 static inline void save_mfc_decr(struct spu_state *csa, struct spu *spu)
253 {
254 struct spu_priv2 __iomem *priv2 = spu->priv2;
255
256 /* Save, Step 12:
257 * Read MFC_CNTL[Ds]. Update saved copy of
258 * CSA.MFC_CNTL[Ds].
259 */
260 csa->priv2.mfc_control_RW |=
261 in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DECREMENTER_RUNNING;
262 }
263
264 static inline void halt_mfc_decr(struct spu_state *csa, struct spu *spu)
265 {
266 struct spu_priv2 __iomem *priv2 = spu->priv2;
267
268 /* Save, Step 13:
269 * Write MFC_CNTL[Dh] set to a '1' to halt
270 * the decrementer.
271 */
272 out_be64(&priv2->mfc_control_RW,
273 MFC_CNTL_DECREMENTER_HALTED | MFC_CNTL_SUSPEND_MASK);
274 eieio();
275 }
276
277 static inline void save_timebase(struct spu_state *csa, struct spu *spu)
278 {
279 /* Save, Step 14:
280 * Read PPE Timebase High and Timebase low registers
281 * and save in CSA. TBD.
282 */
283 csa->suspend_time = get_cycles();
284 }
285
286 static inline void remove_other_spu_access(struct spu_state *csa,
287 struct spu *spu)
288 {
289 /* Save, Step 15:
290 * Remove other SPU access to this SPU by unmapping
291 * this SPU's pages from their address space. TBD.
292 */
293 }
294
295 static inline void do_mfc_mssync(struct spu_state *csa, struct spu *spu)
296 {
297 struct spu_problem __iomem *prob = spu->problem;
298
299 /* Save, Step 16:
300 * Restore, Step 11.
301 * Write SPU_MSSync register. Poll SPU_MSSync[P]
302 * for a value of 0.
303 */
304 out_be64(&prob->spc_mssync_RW, 1UL);
305 POLL_WHILE_TRUE(in_be64(&prob->spc_mssync_RW) & MS_SYNC_PENDING);
306 }
307
308 static inline void issue_mfc_tlbie(struct spu_state *csa, struct spu *spu)
309 {
310 /* Save, Step 17:
311 * Restore, Step 12.
312 * Restore, Step 48.
313 * Write TLB_Invalidate_Entry[IS,VPN,L,Lp]=0 register.
314 * Then issue a PPE sync instruction.
315 */
316 spu_tlb_invalidate(spu);
317 mb();
318 }
319
320 static inline void handle_pending_interrupts(struct spu_state *csa,
321 struct spu *spu)
322 {
323 /* Save, Step 18:
324 * Handle any pending interrupts from this SPU
325 * here. This is OS or hypervisor specific. One
326 * option is to re-enable interrupts to handle any
327 * pending interrupts, with the interrupt handlers
328 * recognizing the software Context Switch Pending
329 * flag, to ensure the SPU execution or MFC command
330 * queue is not restarted. TBD.
331 */
332 }
333
334 static inline void save_mfc_queues(struct spu_state *csa, struct spu *spu)
335 {
336 struct spu_priv2 __iomem *priv2 = spu->priv2;
337 int i;
338
339 /* Save, Step 19:
340 * If MFC_Cntl[Se]=0 then save
341 * MFC command queues.
342 */
343 if ((in_be64(&priv2->mfc_control_RW) & MFC_CNTL_DMA_QUEUES_EMPTY) == 0) {
344 for (i = 0; i < 8; i++) {
345 csa->priv2.puq[i].mfc_cq_data0_RW =
346 in_be64(&priv2->puq[i].mfc_cq_data0_RW);
347 csa->priv2.puq[i].mfc_cq_data1_RW =
348 in_be64(&priv2->puq[i].mfc_cq_data1_RW);
349 csa->priv2.puq[i].mfc_cq_data2_RW =
350 in_be64(&priv2->puq[i].mfc_cq_data2_RW);
351 csa->priv2.puq[i].mfc_cq_data3_RW =
352 in_be64(&priv2->puq[i].mfc_cq_data3_RW);
353 }
354 for (i = 0; i < 16; i++) {
355 csa->priv2.spuq[i].mfc_cq_data0_RW =
356 in_be64(&priv2->spuq[i].mfc_cq_data0_RW);
357 csa->priv2.spuq[i].mfc_cq_data1_RW =
358 in_be64(&priv2->spuq[i].mfc_cq_data1_RW);
359 csa->priv2.spuq[i].mfc_cq_data2_RW =
360 in_be64(&priv2->spuq[i].mfc_cq_data2_RW);
361 csa->priv2.spuq[i].mfc_cq_data3_RW =
362 in_be64(&priv2->spuq[i].mfc_cq_data3_RW);
363 }
364 }
365 }
366
367 static inline void save_ppu_querymask(struct spu_state *csa, struct spu *spu)
368 {
369 struct spu_problem __iomem *prob = spu->problem;
370
371 /* Save, Step 20:
372 * Save the PPU_QueryMask register
373 * in the CSA.
374 */
375 csa->prob.dma_querymask_RW = in_be32(&prob->dma_querymask_RW);
376 }
377
378 static inline void save_ppu_querytype(struct spu_state *csa, struct spu *spu)
379 {
380 struct spu_problem __iomem *prob = spu->problem;
381
382 /* Save, Step 21:
383 * Save the PPU_QueryType register
384 * in the CSA.
385 */
386 csa->prob.dma_querytype_RW = in_be32(&prob->dma_querytype_RW);
387 }
388
389 static inline void save_ppu_tagstatus(struct spu_state *csa, struct spu *spu)
390 {
391 struct spu_problem __iomem *prob = spu->problem;
392
393 /* Save the Prxy_TagStatus register in the CSA.
394 *
395 * It is unnecessary to restore dma_tagstatus_R, however,
396 * dma_tagstatus_R in the CSA is accessed via backing_ops, so
397 * we must save it.
398 */
399 csa->prob.dma_tagstatus_R = in_be32(&prob->dma_tagstatus_R);
400 }
401
402 static inline void save_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
403 {
404 struct spu_priv2 __iomem *priv2 = spu->priv2;
405
406 /* Save, Step 22:
407 * Save the MFC_CSR_TSQ register
408 * in the LSCSA.
409 */
410 csa->priv2.spu_tag_status_query_RW =
411 in_be64(&priv2->spu_tag_status_query_RW);
412 }
413
414 static inline void save_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
415 {
416 struct spu_priv2 __iomem *priv2 = spu->priv2;
417
418 /* Save, Step 23:
419 * Save the MFC_CSR_CMD1 and MFC_CSR_CMD2
420 * registers in the CSA.
421 */
422 csa->priv2.spu_cmd_buf1_RW = in_be64(&priv2->spu_cmd_buf1_RW);
423 csa->priv2.spu_cmd_buf2_RW = in_be64(&priv2->spu_cmd_buf2_RW);
424 }
425
426 static inline void save_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
427 {
428 struct spu_priv2 __iomem *priv2 = spu->priv2;
429
430 /* Save, Step 24:
431 * Save the MFC_CSR_ATO register in
432 * the CSA.
433 */
434 csa->priv2.spu_atomic_status_RW = in_be64(&priv2->spu_atomic_status_RW);
435 }
436
437 static inline void save_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
438 {
439 /* Save, Step 25:
440 * Save the MFC_TCLASS_ID register in
441 * the CSA.
442 */
443 csa->priv1.mfc_tclass_id_RW = spu_mfc_tclass_id_get(spu);
444 }
445
446 static inline void set_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
447 {
448 /* Save, Step 26:
449 * Restore, Step 23.
450 * Write the MFC_TCLASS_ID register with
451 * the value 0x10000000.
452 */
453 spu_mfc_tclass_id_set(spu, 0x10000000);
454 eieio();
455 }
456
457 static inline void purge_mfc_queue(struct spu_state *csa, struct spu *spu)
458 {
459 struct spu_priv2 __iomem *priv2 = spu->priv2;
460
461 /* Save, Step 27:
462 * Restore, Step 14.
463 * Write MFC_CNTL[Pc]=1 (purge queue).
464 */
465 out_be64(&priv2->mfc_control_RW, MFC_CNTL_PURGE_DMA_REQUEST);
466 eieio();
467 }
468
469 static inline void wait_purge_complete(struct spu_state *csa, struct spu *spu)
470 {
471 struct spu_priv2 __iomem *priv2 = spu->priv2;
472
473 /* Save, Step 28:
474 * Poll MFC_CNTL[Ps] until value '11' is read
475 * (purge complete).
476 */
477 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
478 MFC_CNTL_PURGE_DMA_STATUS_MASK) ==
479 MFC_CNTL_PURGE_DMA_COMPLETE);
480 }
481
482 static inline void setup_mfc_sr1(struct spu_state *csa, struct spu *spu)
483 {
484 /* Save, Step 30:
485 * Restore, Step 18:
486 * Write MFC_SR1 with MFC_SR1[D=0,S=1] and
487 * MFC_SR1[TL,R,Pr,T] set correctly for the
488 * OS specific environment.
489 *
490 * Implementation note: The SPU-side code
491 * for save/restore is privileged, so the
492 * MFC_SR1[Pr] bit is not set.
493 *
494 */
495 spu_mfc_sr1_set(spu, (MFC_STATE1_MASTER_RUN_CONTROL_MASK |
496 MFC_STATE1_RELOCATE_MASK |
497 MFC_STATE1_BUS_TLBIE_MASK));
498 }
499
500 static inline void save_spu_npc(struct spu_state *csa, struct spu *spu)
501 {
502 struct spu_problem __iomem *prob = spu->problem;
503
504 /* Save, Step 31:
505 * Save SPU_NPC in the CSA.
506 */
507 csa->prob.spu_npc_RW = in_be32(&prob->spu_npc_RW);
508 }
509
510 static inline void save_spu_privcntl(struct spu_state *csa, struct spu *spu)
511 {
512 struct spu_priv2 __iomem *priv2 = spu->priv2;
513
514 /* Save, Step 32:
515 * Save SPU_PrivCntl in the CSA.
516 */
517 csa->priv2.spu_privcntl_RW = in_be64(&priv2->spu_privcntl_RW);
518 }
519
520 static inline void reset_spu_privcntl(struct spu_state *csa, struct spu *spu)
521 {
522 struct spu_priv2 __iomem *priv2 = spu->priv2;
523
524 /* Save, Step 33:
525 * Restore, Step 16:
526 * Write SPU_PrivCntl[S,Le,A] fields reset to 0.
527 */
528 out_be64(&priv2->spu_privcntl_RW, 0UL);
529 eieio();
530 }
531
532 static inline void save_spu_lslr(struct spu_state *csa, struct spu *spu)
533 {
534 struct spu_priv2 __iomem *priv2 = spu->priv2;
535
536 /* Save, Step 34:
537 * Save SPU_LSLR in the CSA.
538 */
539 csa->priv2.spu_lslr_RW = in_be64(&priv2->spu_lslr_RW);
540 }
541
542 static inline void reset_spu_lslr(struct spu_state *csa, struct spu *spu)
543 {
544 struct spu_priv2 __iomem *priv2 = spu->priv2;
545
546 /* Save, Step 35:
547 * Restore, Step 17.
548 * Reset SPU_LSLR.
549 */
550 out_be64(&priv2->spu_lslr_RW, LS_ADDR_MASK);
551 eieio();
552 }
553
554 static inline void save_spu_cfg(struct spu_state *csa, struct spu *spu)
555 {
556 struct spu_priv2 __iomem *priv2 = spu->priv2;
557
558 /* Save, Step 36:
559 * Save SPU_Cfg in the CSA.
560 */
561 csa->priv2.spu_cfg_RW = in_be64(&priv2->spu_cfg_RW);
562 }
563
564 static inline void save_pm_trace(struct spu_state *csa, struct spu *spu)
565 {
566 /* Save, Step 37:
567 * Save PM_Trace_Tag_Wait_Mask in the CSA.
568 * Not performed by this implementation.
569 */
570 }
571
572 static inline void save_mfc_rag(struct spu_state *csa, struct spu *spu)
573 {
574 /* Save, Step 38:
575 * Save RA_GROUP_ID register and the
576 * RA_ENABLE reigster in the CSA.
577 */
578 csa->priv1.resource_allocation_groupID_RW =
579 spu_resource_allocation_groupID_get(spu);
580 csa->priv1.resource_allocation_enable_RW =
581 spu_resource_allocation_enable_get(spu);
582 }
583
584 static inline void save_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
585 {
586 struct spu_problem __iomem *prob = spu->problem;
587
588 /* Save, Step 39:
589 * Save MB_Stat register in the CSA.
590 */
591 csa->prob.mb_stat_R = in_be32(&prob->mb_stat_R);
592 }
593
594 static inline void save_ppu_mb(struct spu_state *csa, struct spu *spu)
595 {
596 struct spu_problem __iomem *prob = spu->problem;
597
598 /* Save, Step 40:
599 * Save the PPU_MB register in the CSA.
600 */
601 csa->prob.pu_mb_R = in_be32(&prob->pu_mb_R);
602 }
603
604 static inline void save_ppuint_mb(struct spu_state *csa, struct spu *spu)
605 {
606 struct spu_priv2 __iomem *priv2 = spu->priv2;
607
608 /* Save, Step 41:
609 * Save the PPUINT_MB register in the CSA.
610 */
611 csa->priv2.puint_mb_R = in_be64(&priv2->puint_mb_R);
612 }
613
614 static inline void save_ch_part1(struct spu_state *csa, struct spu *spu)
615 {
616 struct spu_priv2 __iomem *priv2 = spu->priv2;
617 u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
618 int i;
619
620 /* Save, Step 42:
621 */
622
623 /* Save CH 1, without channel count */
624 out_be64(&priv2->spu_chnlcntptr_RW, 1);
625 csa->spu_chnldata_RW[1] = in_be64(&priv2->spu_chnldata_RW);
626
627 /* Save the following CH: [0,3,4,24,25,27] */
628 for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
629 idx = ch_indices[i];
630 out_be64(&priv2->spu_chnlcntptr_RW, idx);
631 eieio();
632 csa->spu_chnldata_RW[idx] = in_be64(&priv2->spu_chnldata_RW);
633 csa->spu_chnlcnt_RW[idx] = in_be64(&priv2->spu_chnlcnt_RW);
634 out_be64(&priv2->spu_chnldata_RW, 0UL);
635 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
636 eieio();
637 }
638 }
639
640 static inline void save_spu_mb(struct spu_state *csa, struct spu *spu)
641 {
642 struct spu_priv2 __iomem *priv2 = spu->priv2;
643 int i;
644
645 /* Save, Step 43:
646 * Save SPU Read Mailbox Channel.
647 */
648 out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
649 eieio();
650 csa->spu_chnlcnt_RW[29] = in_be64(&priv2->spu_chnlcnt_RW);
651 for (i = 0; i < 4; i++) {
652 csa->spu_mailbox_data[i] = in_be64(&priv2->spu_chnldata_RW);
653 }
654 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
655 eieio();
656 }
657
658 static inline void save_mfc_cmd(struct spu_state *csa, struct spu *spu)
659 {
660 struct spu_priv2 __iomem *priv2 = spu->priv2;
661
662 /* Save, Step 44:
663 * Save MFC_CMD Channel.
664 */
665 out_be64(&priv2->spu_chnlcntptr_RW, 21UL);
666 eieio();
667 csa->spu_chnlcnt_RW[21] = in_be64(&priv2->spu_chnlcnt_RW);
668 eieio();
669 }
670
671 static inline void reset_ch(struct spu_state *csa, struct spu *spu)
672 {
673 struct spu_priv2 __iomem *priv2 = spu->priv2;
674 u64 ch_indices[4] = { 21UL, 23UL, 28UL, 30UL };
675 u64 ch_counts[4] = { 16UL, 1UL, 1UL, 1UL };
676 u64 idx;
677 int i;
678
679 /* Save, Step 45:
680 * Reset the following CH: [21, 23, 28, 30]
681 */
682 for (i = 0; i < 4; i++) {
683 idx = ch_indices[i];
684 out_be64(&priv2->spu_chnlcntptr_RW, idx);
685 eieio();
686 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
687 eieio();
688 }
689 }
690
691 static inline void resume_mfc_queue(struct spu_state *csa, struct spu *spu)
692 {
693 struct spu_priv2 __iomem *priv2 = spu->priv2;
694
695 /* Save, Step 46:
696 * Restore, Step 25.
697 * Write MFC_CNTL[Sc]=0 (resume queue processing).
698 */
699 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESUME_DMA_QUEUE);
700 }
701
702 static inline void setup_mfc_slbs(struct spu_state *csa, struct spu *spu,
703 unsigned int *code, int code_size)
704 {
705 /* Save, Step 47:
706 * Restore, Step 30.
707 * If MFC_SR1[R]=1, write 0 to SLB_Invalidate_All
708 * register, then initialize SLB_VSID and SLB_ESID
709 * to provide access to SPU context save code and
710 * LSCSA.
711 *
712 * This implementation places both the context
713 * switch code and LSCSA in kernel address space.
714 *
715 * Further this implementation assumes that the
716 * MFC_SR1[R]=1 (in other words, assume that
717 * translation is desired by OS environment).
718 */
719 spu_invalidate_slbs(spu);
720 spu_setup_kernel_slbs(spu, csa->lscsa, code, code_size);
721 }
722
723 static inline void set_switch_active(struct spu_state *csa, struct spu *spu)
724 {
725 /* Save, Step 48:
726 * Restore, Step 23.
727 * Change the software context switch pending flag
728 * to context switch active.
729 *
730 * This implementation does not uses a switch active flag.
731 */
732 clear_bit(SPU_CONTEXT_SWITCH_PENDING, &spu->flags);
733 mb();
734 }
735
736 static inline void enable_interrupts(struct spu_state *csa, struct spu *spu)
737 {
738 unsigned long class1_mask = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
739 CLASS1_ENABLE_STORAGE_FAULT_INTR;
740
741 /* Save, Step 49:
742 * Restore, Step 22:
743 * Reset and then enable interrupts, as
744 * needed by OS.
745 *
746 * This implementation enables only class1
747 * (translation) interrupts.
748 */
749 spin_lock_irq(&spu->register_lock);
750 spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
751 spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
752 spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
753 spu_int_mask_set(spu, 0, 0ul);
754 spu_int_mask_set(spu, 1, class1_mask);
755 spu_int_mask_set(spu, 2, 0ul);
756 spin_unlock_irq(&spu->register_lock);
757 }
758
759 static inline int send_mfc_dma(struct spu *spu, unsigned long ea,
760 unsigned int ls_offset, unsigned int size,
761 unsigned int tag, unsigned int rclass,
762 unsigned int cmd)
763 {
764 struct spu_problem __iomem *prob = spu->problem;
765 union mfc_tag_size_class_cmd command;
766 unsigned int transfer_size;
767 volatile unsigned int status = 0x0;
768
769 while (size > 0) {
770 transfer_size =
771 (size > MFC_MAX_DMA_SIZE) ? MFC_MAX_DMA_SIZE : size;
772 command.u.mfc_size = transfer_size;
773 command.u.mfc_tag = tag;
774 command.u.mfc_rclassid = rclass;
775 command.u.mfc_cmd = cmd;
776 do {
777 out_be32(&prob->mfc_lsa_W, ls_offset);
778 out_be64(&prob->mfc_ea_W, ea);
779 out_be64(&prob->mfc_union_W.all64, command.all64);
780 status =
781 in_be32(&prob->mfc_union_W.by32.mfc_class_cmd32);
782 if (unlikely(status & 0x2)) {
783 cpu_relax();
784 }
785 } while (status & 0x3);
786 size -= transfer_size;
787 ea += transfer_size;
788 ls_offset += transfer_size;
789 }
790 return 0;
791 }
792
793 static inline void save_ls_16kb(struct spu_state *csa, struct spu *spu)
794 {
795 unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
796 unsigned int ls_offset = 0x0;
797 unsigned int size = 16384;
798 unsigned int tag = 0;
799 unsigned int rclass = 0;
800 unsigned int cmd = MFC_PUT_CMD;
801
802 /* Save, Step 50:
803 * Issue a DMA command to copy the first 16K bytes
804 * of local storage to the CSA.
805 */
806 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
807 }
808
809 static inline void set_spu_npc(struct spu_state *csa, struct spu *spu)
810 {
811 struct spu_problem __iomem *prob = spu->problem;
812
813 /* Save, Step 51:
814 * Restore, Step 31.
815 * Write SPU_NPC[IE]=0 and SPU_NPC[LSA] to entry
816 * point address of context save code in local
817 * storage.
818 *
819 * This implementation uses SPU-side save/restore
820 * programs with entry points at LSA of 0.
821 */
822 out_be32(&prob->spu_npc_RW, 0);
823 eieio();
824 }
825
826 static inline void set_signot1(struct spu_state *csa, struct spu *spu)
827 {
828 struct spu_problem __iomem *prob = spu->problem;
829 union {
830 u64 ull;
831 u32 ui[2];
832 } addr64;
833
834 /* Save, Step 52:
835 * Restore, Step 32:
836 * Write SPU_Sig_Notify_1 register with upper 32-bits
837 * of the CSA.LSCSA effective address.
838 */
839 addr64.ull = (u64) csa->lscsa;
840 out_be32(&prob->signal_notify1, addr64.ui[0]);
841 eieio();
842 }
843
844 static inline void set_signot2(struct spu_state *csa, struct spu *spu)
845 {
846 struct spu_problem __iomem *prob = spu->problem;
847 union {
848 u64 ull;
849 u32 ui[2];
850 } addr64;
851
852 /* Save, Step 53:
853 * Restore, Step 33:
854 * Write SPU_Sig_Notify_2 register with lower 32-bits
855 * of the CSA.LSCSA effective address.
856 */
857 addr64.ull = (u64) csa->lscsa;
858 out_be32(&prob->signal_notify2, addr64.ui[1]);
859 eieio();
860 }
861
862 static inline void send_save_code(struct spu_state *csa, struct spu *spu)
863 {
864 unsigned long addr = (unsigned long)&spu_save_code[0];
865 unsigned int ls_offset = 0x0;
866 unsigned int size = sizeof(spu_save_code);
867 unsigned int tag = 0;
868 unsigned int rclass = 0;
869 unsigned int cmd = MFC_GETFS_CMD;
870
871 /* Save, Step 54:
872 * Issue a DMA command to copy context save code
873 * to local storage and start SPU.
874 */
875 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
876 }
877
878 static inline void set_ppu_querymask(struct spu_state *csa, struct spu *spu)
879 {
880 struct spu_problem __iomem *prob = spu->problem;
881
882 /* Save, Step 55:
883 * Restore, Step 38.
884 * Write PPU_QueryMask=1 (enable Tag Group 0)
885 * and issue eieio instruction.
886 */
887 out_be32(&prob->dma_querymask_RW, MFC_TAGID_TO_TAGMASK(0));
888 eieio();
889 }
890
891 static inline void wait_tag_complete(struct spu_state *csa, struct spu *spu)
892 {
893 struct spu_problem __iomem *prob = spu->problem;
894 u32 mask = MFC_TAGID_TO_TAGMASK(0);
895 unsigned long flags;
896
897 /* Save, Step 56:
898 * Restore, Step 39.
899 * Restore, Step 39.
900 * Restore, Step 46.
901 * Poll PPU_TagStatus[gn] until 01 (Tag group 0 complete)
902 * or write PPU_QueryType[TS]=01 and wait for Tag Group
903 * Complete Interrupt. Write INT_Stat_Class0 or
904 * INT_Stat_Class2 with value of 'handled'.
905 */
906 POLL_WHILE_FALSE(in_be32(&prob->dma_tagstatus_R) & mask);
907
908 local_irq_save(flags);
909 spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
910 spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
911 local_irq_restore(flags);
912 }
913
914 static inline void wait_spu_stopped(struct spu_state *csa, struct spu *spu)
915 {
916 struct spu_problem __iomem *prob = spu->problem;
917 unsigned long flags;
918
919 /* Save, Step 57:
920 * Restore, Step 40.
921 * Poll until SPU_Status[R]=0 or wait for SPU Class 0
922 * or SPU Class 2 interrupt. Write INT_Stat_class0
923 * or INT_Stat_class2 with value of handled.
924 */
925 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
926
927 local_irq_save(flags);
928 spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
929 spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
930 local_irq_restore(flags);
931 }
932
933 static inline int check_save_status(struct spu_state *csa, struct spu *spu)
934 {
935 struct spu_problem __iomem *prob = spu->problem;
936 u32 complete;
937
938 /* Save, Step 54:
939 * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
940 * context save succeeded, otherwise context save
941 * failed.
942 */
943 complete = ((SPU_SAVE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
944 SPU_STATUS_STOPPED_BY_STOP);
945 return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
946 }
947
948 static inline void terminate_spu_app(struct spu_state *csa, struct spu *spu)
949 {
950 /* Restore, Step 4:
951 * If required, notify the "using application" that
952 * the SPU task has been terminated. TBD.
953 */
954 }
955
956 static inline void suspend_mfc_and_halt_decr(struct spu_state *csa,
957 struct spu *spu)
958 {
959 struct spu_priv2 __iomem *priv2 = spu->priv2;
960
961 /* Restore, Step 7:
962 * Write MFC_Cntl[Dh,Sc,Sm]='1','1','0' to suspend
963 * the queue and halt the decrementer.
964 */
965 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE |
966 MFC_CNTL_DECREMENTER_HALTED);
967 eieio();
968 }
969
970 static inline void wait_suspend_mfc_complete(struct spu_state *csa,
971 struct spu *spu)
972 {
973 struct spu_priv2 __iomem *priv2 = spu->priv2;
974
975 /* Restore, Step 8:
976 * Restore, Step 47.
977 * Poll MFC_CNTL[Ss] until 11 is returned.
978 */
979 POLL_WHILE_FALSE((in_be64(&priv2->mfc_control_RW) &
980 MFC_CNTL_SUSPEND_DMA_STATUS_MASK) ==
981 MFC_CNTL_SUSPEND_COMPLETE);
982 }
983
984 static inline int suspend_spe(struct spu_state *csa, struct spu *spu)
985 {
986 struct spu_problem __iomem *prob = spu->problem;
987
988 /* Restore, Step 9:
989 * If SPU_Status[R]=1, stop SPU execution
990 * and wait for stop to complete.
991 *
992 * Returns 1 if SPU_Status[R]=1 on entry.
993 * 0 otherwise
994 */
995 if (in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING) {
996 if (in_be32(&prob->spu_status_R) &
997 SPU_STATUS_ISOLATED_EXIT_STATUS) {
998 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
999 SPU_STATUS_RUNNING);
1000 }
1001 if ((in_be32(&prob->spu_status_R) &
1002 SPU_STATUS_ISOLATED_LOAD_STATUS)
1003 || (in_be32(&prob->spu_status_R) &
1004 SPU_STATUS_ISOLATED_STATE)) {
1005 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1006 eieio();
1007 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1008 SPU_STATUS_RUNNING);
1009 out_be32(&prob->spu_runcntl_RW, 0x2);
1010 eieio();
1011 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1012 SPU_STATUS_RUNNING);
1013 }
1014 if (in_be32(&prob->spu_status_R) &
1015 SPU_STATUS_WAITING_FOR_CHANNEL) {
1016 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1017 eieio();
1018 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1019 SPU_STATUS_RUNNING);
1020 }
1021 return 1;
1022 }
1023 return 0;
1024 }
1025
1026 static inline void clear_spu_status(struct spu_state *csa, struct spu *spu)
1027 {
1028 struct spu_problem __iomem *prob = spu->problem;
1029
1030 /* Restore, Step 10:
1031 * If SPU_Status[R]=0 and SPU_Status[E,L,IS]=1,
1032 * release SPU from isolate state.
1033 */
1034 if (!(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING)) {
1035 if (in_be32(&prob->spu_status_R) &
1036 SPU_STATUS_ISOLATED_EXIT_STATUS) {
1037 spu_mfc_sr1_set(spu,
1038 MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1039 eieio();
1040 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1041 eieio();
1042 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1043 SPU_STATUS_RUNNING);
1044 }
1045 if ((in_be32(&prob->spu_status_R) &
1046 SPU_STATUS_ISOLATED_LOAD_STATUS)
1047 || (in_be32(&prob->spu_status_R) &
1048 SPU_STATUS_ISOLATED_STATE)) {
1049 spu_mfc_sr1_set(spu,
1050 MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1051 eieio();
1052 out_be32(&prob->spu_runcntl_RW, 0x2);
1053 eieio();
1054 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1055 SPU_STATUS_RUNNING);
1056 }
1057 }
1058 }
1059
1060 static inline void reset_ch_part1(struct spu_state *csa, struct spu *spu)
1061 {
1062 struct spu_priv2 __iomem *priv2 = spu->priv2;
1063 u64 ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1064 u64 idx;
1065 int i;
1066
1067 /* Restore, Step 20:
1068 */
1069
1070 /* Reset CH 1 */
1071 out_be64(&priv2->spu_chnlcntptr_RW, 1);
1072 out_be64(&priv2->spu_chnldata_RW, 0UL);
1073
1074 /* Reset the following CH: [0,3,4,24,25,27] */
1075 for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1076 idx = ch_indices[i];
1077 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1078 eieio();
1079 out_be64(&priv2->spu_chnldata_RW, 0UL);
1080 out_be64(&priv2->spu_chnlcnt_RW, 0UL);
1081 eieio();
1082 }
1083 }
1084
1085 static inline void reset_ch_part2(struct spu_state *csa, struct spu *spu)
1086 {
1087 struct spu_priv2 __iomem *priv2 = spu->priv2;
1088 u64 ch_indices[5] = { 21UL, 23UL, 28UL, 29UL, 30UL };
1089 u64 ch_counts[5] = { 16UL, 1UL, 1UL, 0UL, 1UL };
1090 u64 idx;
1091 int i;
1092
1093 /* Restore, Step 21:
1094 * Reset the following CH: [21, 23, 28, 29, 30]
1095 */
1096 for (i = 0; i < 5; i++) {
1097 idx = ch_indices[i];
1098 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1099 eieio();
1100 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1101 eieio();
1102 }
1103 }
1104
1105 static inline void setup_spu_status_part1(struct spu_state *csa,
1106 struct spu *spu)
1107 {
1108 u32 status_P = SPU_STATUS_STOPPED_BY_STOP;
1109 u32 status_I = SPU_STATUS_INVALID_INSTR;
1110 u32 status_H = SPU_STATUS_STOPPED_BY_HALT;
1111 u32 status_S = SPU_STATUS_SINGLE_STEP;
1112 u32 status_S_I = SPU_STATUS_SINGLE_STEP | SPU_STATUS_INVALID_INSTR;
1113 u32 status_S_P = SPU_STATUS_SINGLE_STEP | SPU_STATUS_STOPPED_BY_STOP;
1114 u32 status_P_H = SPU_STATUS_STOPPED_BY_HALT |SPU_STATUS_STOPPED_BY_STOP;
1115 u32 status_P_I = SPU_STATUS_STOPPED_BY_STOP |SPU_STATUS_INVALID_INSTR;
1116 u32 status_code;
1117
1118 /* Restore, Step 27:
1119 * If the CSA.SPU_Status[I,S,H,P]=1 then add the correct
1120 * instruction sequence to the end of the SPU based restore
1121 * code (after the "context restored" stop and signal) to
1122 * restore the correct SPU status.
1123 *
1124 * NOTE: Rather than modifying the SPU executable, we
1125 * instead add a new 'stopped_status' field to the
1126 * LSCSA. The SPU-side restore reads this field and
1127 * takes the appropriate action when exiting.
1128 */
1129
1130 status_code =
1131 (csa->prob.spu_status_R >> SPU_STOP_STATUS_SHIFT) & 0xFFFF;
1132 if ((csa->prob.spu_status_R & status_P_I) == status_P_I) {
1133
1134 /* SPU_Status[P,I]=1 - Illegal Instruction followed
1135 * by Stop and Signal instruction, followed by 'br -4'.
1136 *
1137 */
1138 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_I;
1139 csa->lscsa->stopped_status.slot[1] = status_code;
1140
1141 } else if ((csa->prob.spu_status_R & status_P_H) == status_P_H) {
1142
1143 /* SPU_Status[P,H]=1 - Halt Conditional, followed
1144 * by Stop and Signal instruction, followed by
1145 * 'br -4'.
1146 */
1147 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P_H;
1148 csa->lscsa->stopped_status.slot[1] = status_code;
1149
1150 } else if ((csa->prob.spu_status_R & status_S_P) == status_S_P) {
1151
1152 /* SPU_Status[S,P]=1 - Stop and Signal instruction
1153 * followed by 'br -4'.
1154 */
1155 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_P;
1156 csa->lscsa->stopped_status.slot[1] = status_code;
1157
1158 } else if ((csa->prob.spu_status_R & status_S_I) == status_S_I) {
1159
1160 /* SPU_Status[S,I]=1 - Illegal instruction followed
1161 * by 'br -4'.
1162 */
1163 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S_I;
1164 csa->lscsa->stopped_status.slot[1] = status_code;
1165
1166 } else if ((csa->prob.spu_status_R & status_P) == status_P) {
1167
1168 /* SPU_Status[P]=1 - Stop and Signal instruction
1169 * followed by 'br -4'.
1170 */
1171 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_P;
1172 csa->lscsa->stopped_status.slot[1] = status_code;
1173
1174 } else if ((csa->prob.spu_status_R & status_H) == status_H) {
1175
1176 /* SPU_Status[H]=1 - Halt Conditional, followed
1177 * by 'br -4'.
1178 */
1179 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_H;
1180
1181 } else if ((csa->prob.spu_status_R & status_S) == status_S) {
1182
1183 /* SPU_Status[S]=1 - Two nop instructions.
1184 */
1185 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_S;
1186
1187 } else if ((csa->prob.spu_status_R & status_I) == status_I) {
1188
1189 /* SPU_Status[I]=1 - Illegal instruction followed
1190 * by 'br -4'.
1191 */
1192 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_I;
1193
1194 }
1195 }
1196
1197 static inline void setup_spu_status_part2(struct spu_state *csa,
1198 struct spu *spu)
1199 {
1200 u32 mask;
1201
1202 /* Restore, Step 28:
1203 * If the CSA.SPU_Status[I,S,H,P,R]=0 then
1204 * add a 'br *' instruction to the end of
1205 * the SPU based restore code.
1206 *
1207 * NOTE: Rather than modifying the SPU executable, we
1208 * instead add a new 'stopped_status' field to the
1209 * LSCSA. The SPU-side restore reads this field and
1210 * takes the appropriate action when exiting.
1211 */
1212 mask = SPU_STATUS_INVALID_INSTR |
1213 SPU_STATUS_SINGLE_STEP |
1214 SPU_STATUS_STOPPED_BY_HALT |
1215 SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1216 if (!(csa->prob.spu_status_R & mask)) {
1217 csa->lscsa->stopped_status.slot[0] = SPU_STOPPED_STATUS_R;
1218 }
1219 }
1220
1221 static inline void restore_mfc_rag(struct spu_state *csa, struct spu *spu)
1222 {
1223 /* Restore, Step 29:
1224 * Restore RA_GROUP_ID register and the
1225 * RA_ENABLE reigster from the CSA.
1226 */
1227 spu_resource_allocation_groupID_set(spu,
1228 csa->priv1.resource_allocation_groupID_RW);
1229 spu_resource_allocation_enable_set(spu,
1230 csa->priv1.resource_allocation_enable_RW);
1231 }
1232
1233 static inline void send_restore_code(struct spu_state *csa, struct spu *spu)
1234 {
1235 unsigned long addr = (unsigned long)&spu_restore_code[0];
1236 unsigned int ls_offset = 0x0;
1237 unsigned int size = sizeof(spu_restore_code);
1238 unsigned int tag = 0;
1239 unsigned int rclass = 0;
1240 unsigned int cmd = MFC_GETFS_CMD;
1241
1242 /* Restore, Step 37:
1243 * Issue MFC DMA command to copy context
1244 * restore code to local storage.
1245 */
1246 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1247 }
1248
1249 static inline void setup_decr(struct spu_state *csa, struct spu *spu)
1250 {
1251 /* Restore, Step 34:
1252 * If CSA.MFC_CNTL[Ds]=1 (decrementer was
1253 * running) then adjust decrementer, set
1254 * decrementer running status in LSCSA,
1255 * and set decrementer "wrapped" status
1256 * in LSCSA.
1257 */
1258 if (csa->priv2.mfc_control_RW & MFC_CNTL_DECREMENTER_RUNNING) {
1259 cycles_t resume_time = get_cycles();
1260 cycles_t delta_time = resume_time - csa->suspend_time;
1261
1262 csa->lscsa->decr_status.slot[0] = SPU_DECR_STATUS_RUNNING;
1263 if (csa->lscsa->decr.slot[0] < delta_time) {
1264 csa->lscsa->decr_status.slot[0] |=
1265 SPU_DECR_STATUS_WRAPPED;
1266 }
1267
1268 csa->lscsa->decr.slot[0] -= delta_time;
1269 } else {
1270 csa->lscsa->decr_status.slot[0] = 0;
1271 }
1272 }
1273
1274 static inline void setup_ppu_mb(struct spu_state *csa, struct spu *spu)
1275 {
1276 /* Restore, Step 35:
1277 * Copy the CSA.PU_MB data into the LSCSA.
1278 */
1279 csa->lscsa->ppu_mb.slot[0] = csa->prob.pu_mb_R;
1280 }
1281
1282 static inline void setup_ppuint_mb(struct spu_state *csa, struct spu *spu)
1283 {
1284 /* Restore, Step 36:
1285 * Copy the CSA.PUINT_MB data into the LSCSA.
1286 */
1287 csa->lscsa->ppuint_mb.slot[0] = csa->priv2.puint_mb_R;
1288 }
1289
1290 static inline int check_restore_status(struct spu_state *csa, struct spu *spu)
1291 {
1292 struct spu_problem __iomem *prob = spu->problem;
1293 u32 complete;
1294
1295 /* Restore, Step 40:
1296 * If SPU_Status[P]=1 and SPU_Status[SC] = "success",
1297 * context restore succeeded, otherwise context restore
1298 * failed.
1299 */
1300 complete = ((SPU_RESTORE_COMPLETE << SPU_STOP_STATUS_SHIFT) |
1301 SPU_STATUS_STOPPED_BY_STOP);
1302 return (in_be32(&prob->spu_status_R) != complete) ? 1 : 0;
1303 }
1304
1305 static inline void restore_spu_privcntl(struct spu_state *csa, struct spu *spu)
1306 {
1307 struct spu_priv2 __iomem *priv2 = spu->priv2;
1308
1309 /* Restore, Step 41:
1310 * Restore SPU_PrivCntl from the CSA.
1311 */
1312 out_be64(&priv2->spu_privcntl_RW, csa->priv2.spu_privcntl_RW);
1313 eieio();
1314 }
1315
1316 static inline void restore_status_part1(struct spu_state *csa, struct spu *spu)
1317 {
1318 struct spu_problem __iomem *prob = spu->problem;
1319 u32 mask;
1320
1321 /* Restore, Step 42:
1322 * If any CSA.SPU_Status[I,S,H,P]=1, then
1323 * restore the error or single step state.
1324 */
1325 mask = SPU_STATUS_INVALID_INSTR |
1326 SPU_STATUS_SINGLE_STEP |
1327 SPU_STATUS_STOPPED_BY_HALT | SPU_STATUS_STOPPED_BY_STOP;
1328 if (csa->prob.spu_status_R & mask) {
1329 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1330 eieio();
1331 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1332 SPU_STATUS_RUNNING);
1333 }
1334 }
1335
1336 static inline void restore_status_part2(struct spu_state *csa, struct spu *spu)
1337 {
1338 struct spu_problem __iomem *prob = spu->problem;
1339 u32 mask;
1340
1341 /* Restore, Step 43:
1342 * If all CSA.SPU_Status[I,S,H,P,R]=0 then write
1343 * SPU_RunCntl[R0R1]='01', wait for SPU_Status[R]=1,
1344 * then write '00' to SPU_RunCntl[R0R1] and wait
1345 * for SPU_Status[R]=0.
1346 */
1347 mask = SPU_STATUS_INVALID_INSTR |
1348 SPU_STATUS_SINGLE_STEP |
1349 SPU_STATUS_STOPPED_BY_HALT |
1350 SPU_STATUS_STOPPED_BY_STOP | SPU_STATUS_RUNNING;
1351 if (!(csa->prob.spu_status_R & mask)) {
1352 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1353 eieio();
1354 POLL_WHILE_FALSE(in_be32(&prob->spu_status_R) &
1355 SPU_STATUS_RUNNING);
1356 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1357 eieio();
1358 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) &
1359 SPU_STATUS_RUNNING);
1360 }
1361 }
1362
1363 static inline void restore_ls_16kb(struct spu_state *csa, struct spu *spu)
1364 {
1365 unsigned long addr = (unsigned long)&csa->lscsa->ls[0];
1366 unsigned int ls_offset = 0x0;
1367 unsigned int size = 16384;
1368 unsigned int tag = 0;
1369 unsigned int rclass = 0;
1370 unsigned int cmd = MFC_GET_CMD;
1371
1372 /* Restore, Step 44:
1373 * Issue a DMA command to restore the first
1374 * 16kb of local storage from CSA.
1375 */
1376 send_mfc_dma(spu, addr, ls_offset, size, tag, rclass, cmd);
1377 }
1378
1379 static inline void suspend_mfc(struct spu_state *csa, struct spu *spu)
1380 {
1381 struct spu_priv2 __iomem *priv2 = spu->priv2;
1382
1383 /* Restore, Step 47.
1384 * Write MFC_Cntl[Sc,Sm]='1','0' to suspend
1385 * the queue.
1386 */
1387 out_be64(&priv2->mfc_control_RW, MFC_CNTL_SUSPEND_DMA_QUEUE);
1388 eieio();
1389 }
1390
1391 static inline void clear_interrupts(struct spu_state *csa, struct spu *spu)
1392 {
1393 /* Restore, Step 49:
1394 * Write INT_MASK_class0 with value of 0.
1395 * Write INT_MASK_class1 with value of 0.
1396 * Write INT_MASK_class2 with value of 0.
1397 * Write INT_STAT_class0 with value of -1.
1398 * Write INT_STAT_class1 with value of -1.
1399 * Write INT_STAT_class2 with value of -1.
1400 */
1401 spin_lock_irq(&spu->register_lock);
1402 spu_int_mask_set(spu, 0, 0ul);
1403 spu_int_mask_set(spu, 1, 0ul);
1404 spu_int_mask_set(spu, 2, 0ul);
1405 spu_int_stat_clear(spu, 0, CLASS0_INTR_MASK);
1406 spu_int_stat_clear(spu, 1, CLASS1_INTR_MASK);
1407 spu_int_stat_clear(spu, 2, CLASS2_INTR_MASK);
1408 spin_unlock_irq(&spu->register_lock);
1409 }
1410
1411 static inline void restore_mfc_queues(struct spu_state *csa, struct spu *spu)
1412 {
1413 struct spu_priv2 __iomem *priv2 = spu->priv2;
1414 int i;
1415
1416 /* Restore, Step 50:
1417 * If MFC_Cntl[Se]!=0 then restore
1418 * MFC command queues.
1419 */
1420 if ((csa->priv2.mfc_control_RW & MFC_CNTL_DMA_QUEUES_EMPTY_MASK) == 0) {
1421 for (i = 0; i < 8; i++) {
1422 out_be64(&priv2->puq[i].mfc_cq_data0_RW,
1423 csa->priv2.puq[i].mfc_cq_data0_RW);
1424 out_be64(&priv2->puq[i].mfc_cq_data1_RW,
1425 csa->priv2.puq[i].mfc_cq_data1_RW);
1426 out_be64(&priv2->puq[i].mfc_cq_data2_RW,
1427 csa->priv2.puq[i].mfc_cq_data2_RW);
1428 out_be64(&priv2->puq[i].mfc_cq_data3_RW,
1429 csa->priv2.puq[i].mfc_cq_data3_RW);
1430 }
1431 for (i = 0; i < 16; i++) {
1432 out_be64(&priv2->spuq[i].mfc_cq_data0_RW,
1433 csa->priv2.spuq[i].mfc_cq_data0_RW);
1434 out_be64(&priv2->spuq[i].mfc_cq_data1_RW,
1435 csa->priv2.spuq[i].mfc_cq_data1_RW);
1436 out_be64(&priv2->spuq[i].mfc_cq_data2_RW,
1437 csa->priv2.spuq[i].mfc_cq_data2_RW);
1438 out_be64(&priv2->spuq[i].mfc_cq_data3_RW,
1439 csa->priv2.spuq[i].mfc_cq_data3_RW);
1440 }
1441 }
1442 eieio();
1443 }
1444
1445 static inline void restore_ppu_querymask(struct spu_state *csa, struct spu *spu)
1446 {
1447 struct spu_problem __iomem *prob = spu->problem;
1448
1449 /* Restore, Step 51:
1450 * Restore the PPU_QueryMask register from CSA.
1451 */
1452 out_be32(&prob->dma_querymask_RW, csa->prob.dma_querymask_RW);
1453 eieio();
1454 }
1455
1456 static inline void restore_ppu_querytype(struct spu_state *csa, struct spu *spu)
1457 {
1458 struct spu_problem __iomem *prob = spu->problem;
1459
1460 /* Restore, Step 52:
1461 * Restore the PPU_QueryType register from CSA.
1462 */
1463 out_be32(&prob->dma_querytype_RW, csa->prob.dma_querytype_RW);
1464 eieio();
1465 }
1466
1467 static inline void restore_mfc_csr_tsq(struct spu_state *csa, struct spu *spu)
1468 {
1469 struct spu_priv2 __iomem *priv2 = spu->priv2;
1470
1471 /* Restore, Step 53:
1472 * Restore the MFC_CSR_TSQ register from CSA.
1473 */
1474 out_be64(&priv2->spu_tag_status_query_RW,
1475 csa->priv2.spu_tag_status_query_RW);
1476 eieio();
1477 }
1478
1479 static inline void restore_mfc_csr_cmd(struct spu_state *csa, struct spu *spu)
1480 {
1481 struct spu_priv2 __iomem *priv2 = spu->priv2;
1482
1483 /* Restore, Step 54:
1484 * Restore the MFC_CSR_CMD1 and MFC_CSR_CMD2
1485 * registers from CSA.
1486 */
1487 out_be64(&priv2->spu_cmd_buf1_RW, csa->priv2.spu_cmd_buf1_RW);
1488 out_be64(&priv2->spu_cmd_buf2_RW, csa->priv2.spu_cmd_buf2_RW);
1489 eieio();
1490 }
1491
1492 static inline void restore_mfc_csr_ato(struct spu_state *csa, struct spu *spu)
1493 {
1494 struct spu_priv2 __iomem *priv2 = spu->priv2;
1495
1496 /* Restore, Step 55:
1497 * Restore the MFC_CSR_ATO register from CSA.
1498 */
1499 out_be64(&priv2->spu_atomic_status_RW, csa->priv2.spu_atomic_status_RW);
1500 }
1501
1502 static inline void restore_mfc_tclass_id(struct spu_state *csa, struct spu *spu)
1503 {
1504 /* Restore, Step 56:
1505 * Restore the MFC_TCLASS_ID register from CSA.
1506 */
1507 spu_mfc_tclass_id_set(spu, csa->priv1.mfc_tclass_id_RW);
1508 eieio();
1509 }
1510
1511 static inline void set_llr_event(struct spu_state *csa, struct spu *spu)
1512 {
1513 u64 ch0_cnt, ch0_data;
1514 u64 ch1_data;
1515
1516 /* Restore, Step 57:
1517 * Set the Lock Line Reservation Lost Event by:
1518 * 1. OR CSA.SPU_Event_Status with bit 21 (Lr) set to 1.
1519 * 2. If CSA.SPU_Channel_0_Count=0 and
1520 * CSA.SPU_Wr_Event_Mask[Lr]=1 and
1521 * CSA.SPU_Event_Status[Lr]=0 then set
1522 * CSA.SPU_Event_Status_Count=1.
1523 */
1524 ch0_cnt = csa->spu_chnlcnt_RW[0];
1525 ch0_data = csa->spu_chnldata_RW[0];
1526 ch1_data = csa->spu_chnldata_RW[1];
1527 csa->spu_chnldata_RW[0] |= MFC_LLR_LOST_EVENT;
1528 if ((ch0_cnt == 0) && !(ch0_data & MFC_LLR_LOST_EVENT) &&
1529 (ch1_data & MFC_LLR_LOST_EVENT)) {
1530 csa->spu_chnlcnt_RW[0] = 1;
1531 }
1532 }
1533
1534 static inline void restore_decr_wrapped(struct spu_state *csa, struct spu *spu)
1535 {
1536 /* Restore, Step 58:
1537 * If the status of the CSA software decrementer
1538 * "wrapped" flag is set, OR in a '1' to
1539 * CSA.SPU_Event_Status[Tm].
1540 */
1541 if (!(csa->lscsa->decr_status.slot[0] & SPU_DECR_STATUS_WRAPPED))
1542 return;
1543
1544 if ((csa->spu_chnlcnt_RW[0] == 0) &&
1545 (csa->spu_chnldata_RW[1] & 0x20) &&
1546 !(csa->spu_chnldata_RW[0] & 0x20))
1547 csa->spu_chnlcnt_RW[0] = 1;
1548
1549 csa->spu_chnldata_RW[0] |= 0x20;
1550 }
1551
1552 static inline void restore_ch_part1(struct spu_state *csa, struct spu *spu)
1553 {
1554 struct spu_priv2 __iomem *priv2 = spu->priv2;
1555 u64 idx, ch_indices[] = { 0UL, 3UL, 4UL, 24UL, 25UL, 27UL };
1556 int i;
1557
1558 /* Restore, Step 59:
1559 * Restore the following CH: [0,3,4,24,25,27]
1560 */
1561 for (i = 0; i < ARRAY_SIZE(ch_indices); i++) {
1562 idx = ch_indices[i];
1563 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1564 eieio();
1565 out_be64(&priv2->spu_chnldata_RW, csa->spu_chnldata_RW[idx]);
1566 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[idx]);
1567 eieio();
1568 }
1569 }
1570
1571 static inline void restore_ch_part2(struct spu_state *csa, struct spu *spu)
1572 {
1573 struct spu_priv2 __iomem *priv2 = spu->priv2;
1574 u64 ch_indices[3] = { 9UL, 21UL, 23UL };
1575 u64 ch_counts[3] = { 1UL, 16UL, 1UL };
1576 u64 idx;
1577 int i;
1578
1579 /* Restore, Step 60:
1580 * Restore the following CH: [9,21,23].
1581 */
1582 ch_counts[0] = 1UL;
1583 ch_counts[1] = csa->spu_chnlcnt_RW[21];
1584 ch_counts[2] = 1UL;
1585 for (i = 0; i < 3; i++) {
1586 idx = ch_indices[i];
1587 out_be64(&priv2->spu_chnlcntptr_RW, idx);
1588 eieio();
1589 out_be64(&priv2->spu_chnlcnt_RW, ch_counts[i]);
1590 eieio();
1591 }
1592 }
1593
1594 static inline void restore_spu_lslr(struct spu_state *csa, struct spu *spu)
1595 {
1596 struct spu_priv2 __iomem *priv2 = spu->priv2;
1597
1598 /* Restore, Step 61:
1599 * Restore the SPU_LSLR register from CSA.
1600 */
1601 out_be64(&priv2->spu_lslr_RW, csa->priv2.spu_lslr_RW);
1602 eieio();
1603 }
1604
1605 static inline void restore_spu_cfg(struct spu_state *csa, struct spu *spu)
1606 {
1607 struct spu_priv2 __iomem *priv2 = spu->priv2;
1608
1609 /* Restore, Step 62:
1610 * Restore the SPU_Cfg register from CSA.
1611 */
1612 out_be64(&priv2->spu_cfg_RW, csa->priv2.spu_cfg_RW);
1613 eieio();
1614 }
1615
1616 static inline void restore_pm_trace(struct spu_state *csa, struct spu *spu)
1617 {
1618 /* Restore, Step 63:
1619 * Restore PM_Trace_Tag_Wait_Mask from CSA.
1620 * Not performed by this implementation.
1621 */
1622 }
1623
1624 static inline void restore_spu_npc(struct spu_state *csa, struct spu *spu)
1625 {
1626 struct spu_problem __iomem *prob = spu->problem;
1627
1628 /* Restore, Step 64:
1629 * Restore SPU_NPC from CSA.
1630 */
1631 out_be32(&prob->spu_npc_RW, csa->prob.spu_npc_RW);
1632 eieio();
1633 }
1634
1635 static inline void restore_spu_mb(struct spu_state *csa, struct spu *spu)
1636 {
1637 struct spu_priv2 __iomem *priv2 = spu->priv2;
1638 int i;
1639
1640 /* Restore, Step 65:
1641 * Restore MFC_RdSPU_MB from CSA.
1642 */
1643 out_be64(&priv2->spu_chnlcntptr_RW, 29UL);
1644 eieio();
1645 out_be64(&priv2->spu_chnlcnt_RW, csa->spu_chnlcnt_RW[29]);
1646 for (i = 0; i < 4; i++) {
1647 out_be64(&priv2->spu_chnldata_RW, csa->spu_mailbox_data[i]);
1648 }
1649 eieio();
1650 }
1651
1652 static inline void check_ppu_mb_stat(struct spu_state *csa, struct spu *spu)
1653 {
1654 struct spu_problem __iomem *prob = spu->problem;
1655 u32 dummy = 0;
1656
1657 /* Restore, Step 66:
1658 * If CSA.MB_Stat[P]=0 (mailbox empty) then
1659 * read from the PPU_MB register.
1660 */
1661 if ((csa->prob.mb_stat_R & 0xFF) == 0) {
1662 dummy = in_be32(&prob->pu_mb_R);
1663 eieio();
1664 }
1665 }
1666
1667 static inline void check_ppuint_mb_stat(struct spu_state *csa, struct spu *spu)
1668 {
1669 struct spu_priv2 __iomem *priv2 = spu->priv2;
1670 u64 dummy = 0UL;
1671
1672 /* Restore, Step 66:
1673 * If CSA.MB_Stat[I]=0 (mailbox empty) then
1674 * read from the PPUINT_MB register.
1675 */
1676 if ((csa->prob.mb_stat_R & 0xFF0000) == 0) {
1677 dummy = in_be64(&priv2->puint_mb_R);
1678 eieio();
1679 spu_int_stat_clear(spu, 2, CLASS2_ENABLE_MAILBOX_INTR);
1680 eieio();
1681 }
1682 }
1683
1684 static inline void restore_mfc_sr1(struct spu_state *csa, struct spu *spu)
1685 {
1686 /* Restore, Step 69:
1687 * Restore the MFC_SR1 register from CSA.
1688 */
1689 spu_mfc_sr1_set(spu, csa->priv1.mfc_sr1_RW);
1690 eieio();
1691 }
1692
1693 static inline void restore_other_spu_access(struct spu_state *csa,
1694 struct spu *spu)
1695 {
1696 /* Restore, Step 70:
1697 * Restore other SPU mappings to this SPU. TBD.
1698 */
1699 }
1700
1701 static inline void restore_spu_runcntl(struct spu_state *csa, struct spu *spu)
1702 {
1703 struct spu_problem __iomem *prob = spu->problem;
1704
1705 /* Restore, Step 71:
1706 * If CSA.SPU_Status[R]=1 then write
1707 * SPU_RunCntl[R0R1]='01'.
1708 */
1709 if (csa->prob.spu_status_R & SPU_STATUS_RUNNING) {
1710 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_RUNNABLE);
1711 eieio();
1712 }
1713 }
1714
1715 static inline void restore_mfc_cntl(struct spu_state *csa, struct spu *spu)
1716 {
1717 struct spu_priv2 __iomem *priv2 = spu->priv2;
1718
1719 /* Restore, Step 72:
1720 * Restore the MFC_CNTL register for the CSA.
1721 */
1722 out_be64(&priv2->mfc_control_RW, csa->priv2.mfc_control_RW);
1723 eieio();
1724 /*
1725 * FIXME: this is to restart a DMA that we were processing
1726 * before the save. better remember the fault information
1727 * in the csa instead.
1728 */
1729 if ((csa->priv2.mfc_control_RW & MFC_CNTL_SUSPEND_DMA_QUEUE_MASK)) {
1730 out_be64(&priv2->mfc_control_RW, MFC_CNTL_RESTART_DMA_COMMAND);
1731 eieio();
1732 }
1733 }
1734
1735 static inline void enable_user_access(struct spu_state *csa, struct spu *spu)
1736 {
1737 /* Restore, Step 73:
1738 * Enable user-space access (if provided) to this
1739 * SPU by mapping the virtual pages assigned to
1740 * the SPU memory-mapped I/O (MMIO) for problem
1741 * state. TBD.
1742 */
1743 }
1744
1745 static inline void reset_switch_active(struct spu_state *csa, struct spu *spu)
1746 {
1747 /* Restore, Step 74:
1748 * Reset the "context switch active" flag.
1749 * Not performed by this implementation.
1750 */
1751 }
1752
1753 static inline void reenable_interrupts(struct spu_state *csa, struct spu *spu)
1754 {
1755 /* Restore, Step 75:
1756 * Re-enable SPU interrupts.
1757 */
1758 spin_lock_irq(&spu->register_lock);
1759 spu_int_mask_set(spu, 0, csa->priv1.int_mask_class0_RW);
1760 spu_int_mask_set(spu, 1, csa->priv1.int_mask_class1_RW);
1761 spu_int_mask_set(spu, 2, csa->priv1.int_mask_class2_RW);
1762 spin_unlock_irq(&spu->register_lock);
1763 }
1764
1765 static int quiece_spu(struct spu_state *prev, struct spu *spu)
1766 {
1767 /*
1768 * Combined steps 2-18 of SPU context save sequence, which
1769 * quiesce the SPU state (disable SPU execution, MFC command
1770 * queues, decrementer, SPU interrupts, etc.).
1771 *
1772 * Returns 0 on success.
1773 * 2 if failed step 2.
1774 * 6 if failed step 6.
1775 */
1776
1777 if (check_spu_isolate(prev, spu)) { /* Step 2. */
1778 return 2;
1779 }
1780 disable_interrupts(prev, spu); /* Step 3. */
1781 set_watchdog_timer(prev, spu); /* Step 4. */
1782 inhibit_user_access(prev, spu); /* Step 5. */
1783 if (check_spu_isolate(prev, spu)) { /* Step 6. */
1784 return 6;
1785 }
1786 set_switch_pending(prev, spu); /* Step 7. */
1787 save_mfc_cntl(prev, spu); /* Step 8. */
1788 save_spu_runcntl(prev, spu); /* Step 9. */
1789 save_mfc_sr1(prev, spu); /* Step 10. */
1790 save_spu_status(prev, spu); /* Step 11. */
1791 save_mfc_decr(prev, spu); /* Step 12. */
1792 halt_mfc_decr(prev, spu); /* Step 13. */
1793 save_timebase(prev, spu); /* Step 14. */
1794 remove_other_spu_access(prev, spu); /* Step 15. */
1795 do_mfc_mssync(prev, spu); /* Step 16. */
1796 issue_mfc_tlbie(prev, spu); /* Step 17. */
1797 handle_pending_interrupts(prev, spu); /* Step 18. */
1798
1799 return 0;
1800 }
1801
1802 static void save_csa(struct spu_state *prev, struct spu *spu)
1803 {
1804 /*
1805 * Combine steps 19-44 of SPU context save sequence, which
1806 * save regions of the privileged & problem state areas.
1807 */
1808
1809 save_mfc_queues(prev, spu); /* Step 19. */
1810 save_ppu_querymask(prev, spu); /* Step 20. */
1811 save_ppu_querytype(prev, spu); /* Step 21. */
1812 save_ppu_tagstatus(prev, spu); /* NEW. */
1813 save_mfc_csr_tsq(prev, spu); /* Step 22. */
1814 save_mfc_csr_cmd(prev, spu); /* Step 23. */
1815 save_mfc_csr_ato(prev, spu); /* Step 24. */
1816 save_mfc_tclass_id(prev, spu); /* Step 25. */
1817 set_mfc_tclass_id(prev, spu); /* Step 26. */
1818 purge_mfc_queue(prev, spu); /* Step 27. */
1819 wait_purge_complete(prev, spu); /* Step 28. */
1820 setup_mfc_sr1(prev, spu); /* Step 30. */
1821 save_spu_npc(prev, spu); /* Step 31. */
1822 save_spu_privcntl(prev, spu); /* Step 32. */
1823 reset_spu_privcntl(prev, spu); /* Step 33. */
1824 save_spu_lslr(prev, spu); /* Step 34. */
1825 reset_spu_lslr(prev, spu); /* Step 35. */
1826 save_spu_cfg(prev, spu); /* Step 36. */
1827 save_pm_trace(prev, spu); /* Step 37. */
1828 save_mfc_rag(prev, spu); /* Step 38. */
1829 save_ppu_mb_stat(prev, spu); /* Step 39. */
1830 save_ppu_mb(prev, spu); /* Step 40. */
1831 save_ppuint_mb(prev, spu); /* Step 41. */
1832 save_ch_part1(prev, spu); /* Step 42. */
1833 save_spu_mb(prev, spu); /* Step 43. */
1834 save_mfc_cmd(prev, spu); /* Step 44. */
1835 reset_ch(prev, spu); /* Step 45. */
1836 }
1837
1838 static void save_lscsa(struct spu_state *prev, struct spu *spu)
1839 {
1840 /*
1841 * Perform steps 46-57 of SPU context save sequence,
1842 * which save regions of the local store and register
1843 * file.
1844 */
1845
1846 resume_mfc_queue(prev, spu); /* Step 46. */
1847 /* Step 47. */
1848 setup_mfc_slbs(prev, spu, spu_save_code, sizeof(spu_save_code));
1849 set_switch_active(prev, spu); /* Step 48. */
1850 enable_interrupts(prev, spu); /* Step 49. */
1851 save_ls_16kb(prev, spu); /* Step 50. */
1852 set_spu_npc(prev, spu); /* Step 51. */
1853 set_signot1(prev, spu); /* Step 52. */
1854 set_signot2(prev, spu); /* Step 53. */
1855 send_save_code(prev, spu); /* Step 54. */
1856 set_ppu_querymask(prev, spu); /* Step 55. */
1857 wait_tag_complete(prev, spu); /* Step 56. */
1858 wait_spu_stopped(prev, spu); /* Step 57. */
1859 }
1860
1861 static void force_spu_isolate_exit(struct spu *spu)
1862 {
1863 struct spu_problem __iomem *prob = spu->problem;
1864 struct spu_priv2 __iomem *priv2 = spu->priv2;
1865
1866 /* Stop SPE execution and wait for completion. */
1867 out_be32(&prob->spu_runcntl_RW, SPU_RUNCNTL_STOP);
1868 iobarrier_rw();
1869 POLL_WHILE_TRUE(in_be32(&prob->spu_status_R) & SPU_STATUS_RUNNING);
1870
1871 /* Restart SPE master runcntl. */
1872 spu_mfc_sr1_set(spu, MFC_STATE1_MASTER_RUN_CONTROL_MASK);
1873 iobarrier_w();
1874
1875 /* Initiate isolate exit request and wait for completion. */
1876 out_be64(&priv2->spu_privcntl_RW, 4LL);
1877 iobarrier_w();
1878 out_be32(&prob->spu_runcntl_RW, 2);
1879 iobarrier_rw();
1880 POLL_WHILE_FALSE((in_be32(&prob->spu_status_R)
1881 & SPU_STATUS_STOPPED_BY_STOP));
1882
1883 /* Reset load request to normal. */
1884 out_be64(&priv2->spu_privcntl_RW, SPU_PRIVCNT_LOAD_REQUEST_NORMAL);
1885 iobarrier_w();
1886 }
1887
1888 /**
1889 * stop_spu_isolate
1890 * Check SPU run-control state and force isolated
1891 * exit function as necessary.
1892 */
1893 static void stop_spu_isolate(struct spu *spu)
1894 {
1895 struct spu_problem __iomem *prob = spu->problem;
1896
1897 if (in_be32(&prob->spu_status_R) & SPU_STATUS_ISOLATED_STATE) {
1898 /* The SPU is in isolated state; the only way
1899 * to get it out is to perform an isolated
1900 * exit (clean) operation.
1901 */
1902 force_spu_isolate_exit(spu);
1903 }
1904 }
1905
1906 static void harvest(struct spu_state *prev, struct spu *spu)
1907 {
1908 /*
1909 * Perform steps 2-25 of SPU context restore sequence,
1910 * which resets an SPU either after a failed save, or
1911 * when using SPU for first time.
1912 */
1913
1914 disable_interrupts(prev, spu); /* Step 2. */
1915 inhibit_user_access(prev, spu); /* Step 3. */
1916 terminate_spu_app(prev, spu); /* Step 4. */
1917 set_switch_pending(prev, spu); /* Step 5. */
1918 stop_spu_isolate(spu); /* NEW. */
1919 remove_other_spu_access(prev, spu); /* Step 6. */
1920 suspend_mfc_and_halt_decr(prev, spu); /* Step 7. */
1921 wait_suspend_mfc_complete(prev, spu); /* Step 8. */
1922 if (!suspend_spe(prev, spu)) /* Step 9. */
1923 clear_spu_status(prev, spu); /* Step 10. */
1924 do_mfc_mssync(prev, spu); /* Step 11. */
1925 issue_mfc_tlbie(prev, spu); /* Step 12. */
1926 handle_pending_interrupts(prev, spu); /* Step 13. */
1927 purge_mfc_queue(prev, spu); /* Step 14. */
1928 wait_purge_complete(prev, spu); /* Step 15. */
1929 reset_spu_privcntl(prev, spu); /* Step 16. */
1930 reset_spu_lslr(prev, spu); /* Step 17. */
1931 setup_mfc_sr1(prev, spu); /* Step 18. */
1932 spu_invalidate_slbs(spu); /* Step 19. */
1933 reset_ch_part1(prev, spu); /* Step 20. */
1934 reset_ch_part2(prev, spu); /* Step 21. */
1935 enable_interrupts(prev, spu); /* Step 22. */
1936 set_switch_active(prev, spu); /* Step 23. */
1937 set_mfc_tclass_id(prev, spu); /* Step 24. */
1938 resume_mfc_queue(prev, spu); /* Step 25. */
1939 }
1940
1941 static void restore_lscsa(struct spu_state *next, struct spu *spu)
1942 {
1943 /*
1944 * Perform steps 26-40 of SPU context restore sequence,
1945 * which restores regions of the local store and register
1946 * file.
1947 */
1948
1949 set_watchdog_timer(next, spu); /* Step 26. */
1950 setup_spu_status_part1(next, spu); /* Step 27. */
1951 setup_spu_status_part2(next, spu); /* Step 28. */
1952 restore_mfc_rag(next, spu); /* Step 29. */
1953 /* Step 30. */
1954 setup_mfc_slbs(next, spu, spu_restore_code, sizeof(spu_restore_code));
1955 set_spu_npc(next, spu); /* Step 31. */
1956 set_signot1(next, spu); /* Step 32. */
1957 set_signot2(next, spu); /* Step 33. */
1958 setup_decr(next, spu); /* Step 34. */
1959 setup_ppu_mb(next, spu); /* Step 35. */
1960 setup_ppuint_mb(next, spu); /* Step 36. */
1961 send_restore_code(next, spu); /* Step 37. */
1962 set_ppu_querymask(next, spu); /* Step 38. */
1963 wait_tag_complete(next, spu); /* Step 39. */
1964 wait_spu_stopped(next, spu); /* Step 40. */
1965 }
1966
1967 static void restore_csa(struct spu_state *next, struct spu *spu)
1968 {
1969 /*
1970 * Combine steps 41-76 of SPU context restore sequence, which
1971 * restore regions of the privileged & problem state areas.
1972 */
1973
1974 restore_spu_privcntl(next, spu); /* Step 41. */
1975 restore_status_part1(next, spu); /* Step 42. */
1976 restore_status_part2(next, spu); /* Step 43. */
1977 restore_ls_16kb(next, spu); /* Step 44. */
1978 wait_tag_complete(next, spu); /* Step 45. */
1979 suspend_mfc(next, spu); /* Step 46. */
1980 wait_suspend_mfc_complete(next, spu); /* Step 47. */
1981 issue_mfc_tlbie(next, spu); /* Step 48. */
1982 clear_interrupts(next, spu); /* Step 49. */
1983 restore_mfc_queues(next, spu); /* Step 50. */
1984 restore_ppu_querymask(next, spu); /* Step 51. */
1985 restore_ppu_querytype(next, spu); /* Step 52. */
1986 restore_mfc_csr_tsq(next, spu); /* Step 53. */
1987 restore_mfc_csr_cmd(next, spu); /* Step 54. */
1988 restore_mfc_csr_ato(next, spu); /* Step 55. */
1989 restore_mfc_tclass_id(next, spu); /* Step 56. */
1990 set_llr_event(next, spu); /* Step 57. */
1991 restore_decr_wrapped(next, spu); /* Step 58. */
1992 restore_ch_part1(next, spu); /* Step 59. */
1993 restore_ch_part2(next, spu); /* Step 60. */
1994 restore_spu_lslr(next, spu); /* Step 61. */
1995 restore_spu_cfg(next, spu); /* Step 62. */
1996 restore_pm_trace(next, spu); /* Step 63. */
1997 restore_spu_npc(next, spu); /* Step 64. */
1998 restore_spu_mb(next, spu); /* Step 65. */
1999 check_ppu_mb_stat(next, spu); /* Step 66. */
2000 check_ppuint_mb_stat(next, spu); /* Step 67. */
2001 spu_invalidate_slbs(spu); /* Modified Step 68. */
2002 restore_mfc_sr1(next, spu); /* Step 69. */
2003 restore_other_spu_access(next, spu); /* Step 70. */
2004 restore_spu_runcntl(next, spu); /* Step 71. */
2005 restore_mfc_cntl(next, spu); /* Step 72. */
2006 enable_user_access(next, spu); /* Step 73. */
2007 reset_switch_active(next, spu); /* Step 74. */
2008 reenable_interrupts(next, spu); /* Step 75. */
2009 }
2010
2011 static int __do_spu_save(struct spu_state *prev, struct spu *spu)
2012 {
2013 int rc;
2014
2015 /*
2016 * SPU context save can be broken into three phases:
2017 *
2018 * (a) quiesce [steps 2-16].
2019 * (b) save of CSA, performed by PPE [steps 17-42]
2020 * (c) save of LSCSA, mostly performed by SPU [steps 43-52].
2021 *
2022 * Returns 0 on success.
2023 * 2,6 if failed to quiece SPU
2024 * 53 if SPU-side of save failed.
2025 */
2026
2027 rc = quiece_spu(prev, spu); /* Steps 2-16. */
2028 switch (rc) {
2029 default:
2030 case 2:
2031 case 6:
2032 harvest(prev, spu);
2033 return rc;
2034 break;
2035 case 0:
2036 break;
2037 }
2038 save_csa(prev, spu); /* Steps 17-43. */
2039 save_lscsa(prev, spu); /* Steps 44-53. */
2040 return check_save_status(prev, spu); /* Step 54. */
2041 }
2042
2043 static int __do_spu_restore(struct spu_state *next, struct spu *spu)
2044 {
2045 int rc;
2046
2047 /*
2048 * SPU context restore can be broken into three phases:
2049 *
2050 * (a) harvest (or reset) SPU [steps 2-24].
2051 * (b) restore LSCSA [steps 25-40], mostly performed by SPU.
2052 * (c) restore CSA [steps 41-76], performed by PPE.
2053 *
2054 * The 'harvest' step is not performed here, but rather
2055 * as needed below.
2056 */
2057
2058 restore_lscsa(next, spu); /* Steps 24-39. */
2059 rc = check_restore_status(next, spu); /* Step 40. */
2060 switch (rc) {
2061 default:
2062 /* Failed. Return now. */
2063 return rc;
2064 break;
2065 case 0:
2066 /* Fall through to next step. */
2067 break;
2068 }
2069 restore_csa(next, spu);
2070
2071 return 0;
2072 }
2073
2074 /**
2075 * spu_save - SPU context save, with locking.
2076 * @prev: pointer to SPU context save area, to be saved.
2077 * @spu: pointer to SPU iomem structure.
2078 *
2079 * Acquire locks, perform the save operation then return.
2080 */
2081 int spu_save(struct spu_state *prev, struct spu *spu)
2082 {
2083 int rc;
2084
2085 acquire_spu_lock(spu); /* Step 1. */
2086 rc = __do_spu_save(prev, spu); /* Steps 2-53. */
2087 release_spu_lock(spu);
2088 if (rc != 0 && rc != 2 && rc != 6) {
2089 panic("%s failed on SPU[%d], rc=%d.\n",
2090 __func__, spu->number, rc);
2091 }
2092 return 0;
2093 }
2094 EXPORT_SYMBOL_GPL(spu_save);
2095
2096 /**
2097 * spu_restore - SPU context restore, with harvest and locking.
2098 * @new: pointer to SPU context save area, to be restored.
2099 * @spu: pointer to SPU iomem structure.
2100 *
2101 * Perform harvest + restore, as we may not be coming
2102 * from a previous successful save operation, and the
2103 * hardware state is unknown.
2104 */
2105 int spu_restore(struct spu_state *new, struct spu *spu)
2106 {
2107 int rc;
2108
2109 acquire_spu_lock(spu);
2110 harvest(NULL, spu);
2111 spu->slb_replace = 0;
2112 rc = __do_spu_restore(new, spu);
2113 release_spu_lock(spu);
2114 if (rc) {
2115 panic("%s failed on SPU[%d] rc=%d.\n",
2116 __func__, spu->number, rc);
2117 }
2118 return rc;
2119 }
2120 EXPORT_SYMBOL_GPL(spu_restore);
2121
2122 static void init_prob(struct spu_state *csa)
2123 {
2124 csa->spu_chnlcnt_RW[9] = 1;
2125 csa->spu_chnlcnt_RW[21] = 16;
2126 csa->spu_chnlcnt_RW[23] = 1;
2127 csa->spu_chnlcnt_RW[28] = 1;
2128 csa->spu_chnlcnt_RW[30] = 1;
2129 csa->prob.spu_runcntl_RW = SPU_RUNCNTL_STOP;
2130 csa->prob.mb_stat_R = 0x000400;
2131 }
2132
2133 static void init_priv1(struct spu_state *csa)
2134 {
2135 /* Enable decode, relocate, tlbie response, master runcntl. */
2136 csa->priv1.mfc_sr1_RW = MFC_STATE1_LOCAL_STORAGE_DECODE_MASK |
2137 MFC_STATE1_MASTER_RUN_CONTROL_MASK |
2138 MFC_STATE1_PROBLEM_STATE_MASK |
2139 MFC_STATE1_RELOCATE_MASK | MFC_STATE1_BUS_TLBIE_MASK;
2140
2141 /* Enable OS-specific set of interrupts. */
2142 csa->priv1.int_mask_class0_RW = CLASS0_ENABLE_DMA_ALIGNMENT_INTR |
2143 CLASS0_ENABLE_INVALID_DMA_COMMAND_INTR |
2144 CLASS0_ENABLE_SPU_ERROR_INTR;
2145 csa->priv1.int_mask_class1_RW = CLASS1_ENABLE_SEGMENT_FAULT_INTR |
2146 CLASS1_ENABLE_STORAGE_FAULT_INTR;
2147 csa->priv1.int_mask_class2_RW = CLASS2_ENABLE_SPU_STOP_INTR |
2148 CLASS2_ENABLE_SPU_HALT_INTR |
2149 CLASS2_ENABLE_SPU_DMA_TAG_GROUP_COMPLETE_INTR;
2150 }
2151
2152 static void init_priv2(struct spu_state *csa)
2153 {
2154 csa->priv2.spu_lslr_RW = LS_ADDR_MASK;
2155 csa->priv2.mfc_control_RW = MFC_CNTL_RESUME_DMA_QUEUE |
2156 MFC_CNTL_NORMAL_DMA_QUEUE_OPERATION |
2157 MFC_CNTL_DMA_QUEUES_EMPTY_MASK;
2158 }
2159
2160 /**
2161 * spu_alloc_csa - allocate and initialize an SPU context save area.
2162 *
2163 * Allocate and initialize the contents of an SPU context save area.
2164 * This includes enabling address translation, interrupt masks, etc.,
2165 * as appropriate for the given OS environment.
2166 *
2167 * Note that storage for the 'lscsa' is allocated separately,
2168 * as it is by far the largest of the context save regions,
2169 * and may need to be pinned or otherwise specially aligned.
2170 */
2171 int spu_init_csa(struct spu_state *csa)
2172 {
2173 int rc;
2174
2175 if (!csa)
2176 return -EINVAL;
2177 memset(csa, 0, sizeof(struct spu_state));
2178
2179 rc = spu_alloc_lscsa(csa);
2180 if (rc)
2181 return rc;
2182
2183 spin_lock_init(&csa->register_lock);
2184
2185 init_prob(csa);
2186 init_priv1(csa);
2187 init_priv2(csa);
2188
2189 return 0;
2190 }
2191
2192 void spu_fini_csa(struct spu_state *csa)
2193 {
2194 spu_free_lscsa(csa);
2195 }