]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/platforms/iseries/setup.c
Merge ../linux-2.6
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / platforms / iseries / setup.c
1 /*
2 * Copyright (c) 2000 Mike Corrigan <mikejc@us.ibm.com>
3 * Copyright (c) 1999-2000 Grant Erickson <grant@lcse.umn.edu>
4 *
5 * Description:
6 * Architecture- / platform-specific boot-time initialization code for
7 * the IBM iSeries LPAR. Adapted from original code by Grant Erickson and
8 * code by Gary Thomas, Cort Dougan <cort@fsmlabs.com>, and Dan Malek
9 * <dan@net4x.com>.
10 *
11 * This program is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU General Public License
13 * as published by the Free Software Foundation; either version
14 * 2 of the License, or (at your option) any later version.
15 */
16
17 #undef DEBUG
18
19 #include <linux/config.h>
20 #include <linux/init.h>
21 #include <linux/threads.h>
22 #include <linux/smp.h>
23 #include <linux/param.h>
24 #include <linux/string.h>
25 #include <linux/initrd.h>
26 #include <linux/seq_file.h>
27 #include <linux/kdev_t.h>
28 #include <linux/major.h>
29 #include <linux/root_dev.h>
30 #include <linux/kernel.h>
31
32 #include <asm/processor.h>
33 #include <asm/machdep.h>
34 #include <asm/page.h>
35 #include <asm/mmu.h>
36 #include <asm/pgtable.h>
37 #include <asm/mmu_context.h>
38 #include <asm/cputable.h>
39 #include <asm/sections.h>
40 #include <asm/iommu.h>
41 #include <asm/firmware.h>
42
43 #include <asm/time.h>
44 #include <asm/paca.h>
45 #include <asm/cache.h>
46 #include <asm/sections.h>
47 #include <asm/abs_addr.h>
48 #include <asm/iseries/hv_lp_config.h>
49 #include <asm/iseries/hv_call_event.h>
50 #include <asm/iseries/hv_call_xm.h>
51 #include <asm/iseries/it_lp_queue.h>
52 #include <asm/iseries/mf.h>
53 #include <asm/iseries/hv_lp_event.h>
54 #include <asm/iseries/lpar_map.h>
55
56 #include "naca.h"
57 #include "setup.h"
58 #include "irq.h"
59 #include "vpd_areas.h"
60 #include "processor_vpd.h"
61 #include "main_store.h"
62 #include "call_sm.h"
63 #include "call_hpt.h"
64
65 extern void hvlog(char *fmt, ...);
66
67 #ifdef DEBUG
68 #define DBG(fmt...) hvlog(fmt)
69 #else
70 #define DBG(fmt...)
71 #endif
72
73 /* Function Prototypes */
74 static void build_iSeries_Memory_Map(void);
75 static void iseries_shared_idle(void);
76 static void iseries_dedicated_idle(void);
77 #ifdef CONFIG_PCI
78 extern void iSeries_pci_final_fixup(void);
79 #else
80 static void iSeries_pci_final_fixup(void) { }
81 #endif
82
83 /* Global Variables */
84 int piranha_simulator;
85
86 extern int rd_size; /* Defined in drivers/block/rd.c */
87 extern unsigned long klimit;
88 extern unsigned long embedded_sysmap_start;
89 extern unsigned long embedded_sysmap_end;
90
91 extern unsigned long iSeries_recal_tb;
92 extern unsigned long iSeries_recal_titan;
93
94 static int mf_initialized;
95
96 static unsigned long cmd_mem_limit;
97
98 struct MemoryBlock {
99 unsigned long absStart;
100 unsigned long absEnd;
101 unsigned long logicalStart;
102 unsigned long logicalEnd;
103 };
104
105 /*
106 * Process the main store vpd to determine where the holes in memory are
107 * and return the number of physical blocks and fill in the array of
108 * block data.
109 */
110 static unsigned long iSeries_process_Condor_mainstore_vpd(
111 struct MemoryBlock *mb_array, unsigned long max_entries)
112 {
113 unsigned long holeFirstChunk, holeSizeChunks;
114 unsigned long numMemoryBlocks = 1;
115 struct IoHriMainStoreSegment4 *msVpd =
116 (struct IoHriMainStoreSegment4 *)xMsVpd;
117 unsigned long holeStart = msVpd->nonInterleavedBlocksStartAdr;
118 unsigned long holeEnd = msVpd->nonInterleavedBlocksEndAdr;
119 unsigned long holeSize = holeEnd - holeStart;
120
121 printk("Mainstore_VPD: Condor\n");
122 /*
123 * Determine if absolute memory has any
124 * holes so that we can interpret the
125 * access map we get back from the hypervisor
126 * correctly.
127 */
128 mb_array[0].logicalStart = 0;
129 mb_array[0].logicalEnd = 0x100000000;
130 mb_array[0].absStart = 0;
131 mb_array[0].absEnd = 0x100000000;
132
133 if (holeSize) {
134 numMemoryBlocks = 2;
135 holeStart = holeStart & 0x000fffffffffffff;
136 holeStart = addr_to_chunk(holeStart);
137 holeFirstChunk = holeStart;
138 holeSize = addr_to_chunk(holeSize);
139 holeSizeChunks = holeSize;
140 printk( "Main store hole: start chunk = %0lx, size = %0lx chunks\n",
141 holeFirstChunk, holeSizeChunks );
142 mb_array[0].logicalEnd = holeFirstChunk;
143 mb_array[0].absEnd = holeFirstChunk;
144 mb_array[1].logicalStart = holeFirstChunk;
145 mb_array[1].logicalEnd = 0x100000000 - holeSizeChunks;
146 mb_array[1].absStart = holeFirstChunk + holeSizeChunks;
147 mb_array[1].absEnd = 0x100000000;
148 }
149 return numMemoryBlocks;
150 }
151
152 #define MaxSegmentAreas 32
153 #define MaxSegmentAdrRangeBlocks 128
154 #define MaxAreaRangeBlocks 4
155
156 static unsigned long iSeries_process_Regatta_mainstore_vpd(
157 struct MemoryBlock *mb_array, unsigned long max_entries)
158 {
159 struct IoHriMainStoreSegment5 *msVpdP =
160 (struct IoHriMainStoreSegment5 *)xMsVpd;
161 unsigned long numSegmentBlocks = 0;
162 u32 existsBits = msVpdP->msAreaExists;
163 unsigned long area_num;
164
165 printk("Mainstore_VPD: Regatta\n");
166
167 for (area_num = 0; area_num < MaxSegmentAreas; ++area_num ) {
168 unsigned long numAreaBlocks;
169 struct IoHriMainStoreArea4 *currentArea;
170
171 if (existsBits & 0x80000000) {
172 unsigned long block_num;
173
174 currentArea = &msVpdP->msAreaArray[area_num];
175 numAreaBlocks = currentArea->numAdrRangeBlocks;
176 printk("ms_vpd: processing area %2ld blocks=%ld",
177 area_num, numAreaBlocks);
178 for (block_num = 0; block_num < numAreaBlocks;
179 ++block_num ) {
180 /* Process an address range block */
181 struct MemoryBlock tempBlock;
182 unsigned long i;
183
184 tempBlock.absStart =
185 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockStart;
186 tempBlock.absEnd =
187 (unsigned long)currentArea->xAdrRangeBlock[block_num].blockEnd;
188 tempBlock.logicalStart = 0;
189 tempBlock.logicalEnd = 0;
190 printk("\n block %ld absStart=%016lx absEnd=%016lx",
191 block_num, tempBlock.absStart,
192 tempBlock.absEnd);
193
194 for (i = 0; i < numSegmentBlocks; ++i) {
195 if (mb_array[i].absStart ==
196 tempBlock.absStart)
197 break;
198 }
199 if (i == numSegmentBlocks) {
200 if (numSegmentBlocks == max_entries)
201 panic("iSeries_process_mainstore_vpd: too many memory blocks");
202 mb_array[numSegmentBlocks] = tempBlock;
203 ++numSegmentBlocks;
204 } else
205 printk(" (duplicate)");
206 }
207 printk("\n");
208 }
209 existsBits <<= 1;
210 }
211 /* Now sort the blocks found into ascending sequence */
212 if (numSegmentBlocks > 1) {
213 unsigned long m, n;
214
215 for (m = 0; m < numSegmentBlocks - 1; ++m) {
216 for (n = numSegmentBlocks - 1; m < n; --n) {
217 if (mb_array[n].absStart <
218 mb_array[n-1].absStart) {
219 struct MemoryBlock tempBlock;
220
221 tempBlock = mb_array[n];
222 mb_array[n] = mb_array[n-1];
223 mb_array[n-1] = tempBlock;
224 }
225 }
226 }
227 }
228 /*
229 * Assign "logical" addresses to each block. These
230 * addresses correspond to the hypervisor "bitmap" space.
231 * Convert all addresses into units of 256K chunks.
232 */
233 {
234 unsigned long i, nextBitmapAddress;
235
236 printk("ms_vpd: %ld sorted memory blocks\n", numSegmentBlocks);
237 nextBitmapAddress = 0;
238 for (i = 0; i < numSegmentBlocks; ++i) {
239 unsigned long length = mb_array[i].absEnd -
240 mb_array[i].absStart;
241
242 mb_array[i].logicalStart = nextBitmapAddress;
243 mb_array[i].logicalEnd = nextBitmapAddress + length;
244 nextBitmapAddress += length;
245 printk(" Bitmap range: %016lx - %016lx\n"
246 " Absolute range: %016lx - %016lx\n",
247 mb_array[i].logicalStart,
248 mb_array[i].logicalEnd,
249 mb_array[i].absStart, mb_array[i].absEnd);
250 mb_array[i].absStart = addr_to_chunk(mb_array[i].absStart &
251 0x000fffffffffffff);
252 mb_array[i].absEnd = addr_to_chunk(mb_array[i].absEnd &
253 0x000fffffffffffff);
254 mb_array[i].logicalStart =
255 addr_to_chunk(mb_array[i].logicalStart);
256 mb_array[i].logicalEnd = addr_to_chunk(mb_array[i].logicalEnd);
257 }
258 }
259
260 return numSegmentBlocks;
261 }
262
263 static unsigned long iSeries_process_mainstore_vpd(struct MemoryBlock *mb_array,
264 unsigned long max_entries)
265 {
266 unsigned long i;
267 unsigned long mem_blocks = 0;
268
269 if (cpu_has_feature(CPU_FTR_SLB))
270 mem_blocks = iSeries_process_Regatta_mainstore_vpd(mb_array,
271 max_entries);
272 else
273 mem_blocks = iSeries_process_Condor_mainstore_vpd(mb_array,
274 max_entries);
275
276 printk("Mainstore_VPD: numMemoryBlocks = %ld \n", mem_blocks);
277 for (i = 0; i < mem_blocks; ++i) {
278 printk("Mainstore_VPD: block %3ld logical chunks %016lx - %016lx\n"
279 " abs chunks %016lx - %016lx\n",
280 i, mb_array[i].logicalStart, mb_array[i].logicalEnd,
281 mb_array[i].absStart, mb_array[i].absEnd);
282 }
283 return mem_blocks;
284 }
285
286 static void __init iSeries_get_cmdline(void)
287 {
288 char *p, *q;
289
290 /* copy the command line parameter from the primary VSP */
291 HvCallEvent_dmaToSp(cmd_line, 2 * 64* 1024, 256,
292 HvLpDma_Direction_RemoteToLocal);
293
294 p = cmd_line;
295 q = cmd_line + 255;
296 while(p < q) {
297 if (!*p || *p == '\n')
298 break;
299 ++p;
300 }
301 *p = 0;
302 }
303
304 static void __init iSeries_init_early(void)
305 {
306 DBG(" -> iSeries_init_early()\n");
307
308 ppc64_firmware_features = FW_FEATURE_ISERIES;
309
310 ppc64_interrupt_controller = IC_ISERIES;
311
312 #if defined(CONFIG_BLK_DEV_INITRD)
313 /*
314 * If the init RAM disk has been configured and there is
315 * a non-zero starting address for it, set it up
316 */
317 if (naca.xRamDisk) {
318 initrd_start = (unsigned long)__va(naca.xRamDisk);
319 initrd_end = initrd_start + naca.xRamDiskSize * HW_PAGE_SIZE;
320 initrd_below_start_ok = 1; // ramdisk in kernel space
321 ROOT_DEV = Root_RAM0;
322 if (((rd_size * 1024) / HW_PAGE_SIZE) < naca.xRamDiskSize)
323 rd_size = (naca.xRamDiskSize * HW_PAGE_SIZE) / 1024;
324 } else
325 #endif /* CONFIG_BLK_DEV_INITRD */
326 {
327 /* ROOT_DEV = MKDEV(VIODASD_MAJOR, 1); */
328 }
329
330 iSeries_recal_tb = get_tb();
331 iSeries_recal_titan = HvCallXm_loadTod();
332
333 /*
334 * Initialize the hash table management pointers
335 */
336 hpte_init_iSeries();
337
338 /*
339 * Initialize the DMA/TCE management
340 */
341 iommu_init_early_iSeries();
342
343 /* Initialize machine-dependency vectors */
344 #ifdef CONFIG_SMP
345 smp_init_iSeries();
346 #endif
347 if (itLpNaca.xPirEnvironMode == 0)
348 piranha_simulator = 1;
349
350 /* Associate Lp Event Queue 0 with processor 0 */
351 HvCallEvent_setLpEventQueueInterruptProc(0, 0);
352
353 mf_init();
354 mf_initialized = 1;
355 mb();
356
357 /* If we were passed an initrd, set the ROOT_DEV properly if the values
358 * look sensible. If not, clear initrd reference.
359 */
360 #ifdef CONFIG_BLK_DEV_INITRD
361 if (initrd_start >= KERNELBASE && initrd_end >= KERNELBASE &&
362 initrd_end > initrd_start)
363 ROOT_DEV = Root_RAM0;
364 else
365 initrd_start = initrd_end = 0;
366 #endif /* CONFIG_BLK_DEV_INITRD */
367
368 DBG(" <- iSeries_init_early()\n");
369 }
370
371 struct mschunks_map mschunks_map = {
372 /* XXX We don't use these, but Piranha might need them. */
373 .chunk_size = MSCHUNKS_CHUNK_SIZE,
374 .chunk_shift = MSCHUNKS_CHUNK_SHIFT,
375 .chunk_mask = MSCHUNKS_OFFSET_MASK,
376 };
377 EXPORT_SYMBOL(mschunks_map);
378
379 void mschunks_alloc(unsigned long num_chunks)
380 {
381 klimit = _ALIGN(klimit, sizeof(u32));
382 mschunks_map.mapping = (u32 *)klimit;
383 klimit += num_chunks * sizeof(u32);
384 mschunks_map.num_chunks = num_chunks;
385 }
386
387 /*
388 * The iSeries may have very large memories ( > 128 GB ) and a partition
389 * may get memory in "chunks" that may be anywhere in the 2**52 real
390 * address space. The chunks are 256K in size. To map this to the
391 * memory model Linux expects, the AS/400 specific code builds a
392 * translation table to translate what Linux thinks are "physical"
393 * addresses to the actual real addresses. This allows us to make
394 * it appear to Linux that we have contiguous memory starting at
395 * physical address zero while in fact this could be far from the truth.
396 * To avoid confusion, I'll let the words physical and/or real address
397 * apply to the Linux addresses while I'll use "absolute address" to
398 * refer to the actual hardware real address.
399 *
400 * build_iSeries_Memory_Map gets information from the Hypervisor and
401 * looks at the Main Store VPD to determine the absolute addresses
402 * of the memory that has been assigned to our partition and builds
403 * a table used to translate Linux's physical addresses to these
404 * absolute addresses. Absolute addresses are needed when
405 * communicating with the hypervisor (e.g. to build HPT entries)
406 */
407
408 static void __init build_iSeries_Memory_Map(void)
409 {
410 u32 loadAreaFirstChunk, loadAreaLastChunk, loadAreaSize;
411 u32 nextPhysChunk;
412 u32 hptFirstChunk, hptLastChunk, hptSizeChunks, hptSizePages;
413 u32 totalChunks,moreChunks;
414 u32 currChunk, thisChunk, absChunk;
415 u32 currDword;
416 u32 chunkBit;
417 u64 map;
418 struct MemoryBlock mb[32];
419 unsigned long numMemoryBlocks, curBlock;
420
421 /* Chunk size on iSeries is 256K bytes */
422 totalChunks = (u32)HvLpConfig_getMsChunks();
423 mschunks_alloc(totalChunks);
424
425 /*
426 * Get absolute address of our load area
427 * and map it to physical address 0
428 * This guarantees that the loadarea ends up at physical 0
429 * otherwise, it might not be returned by PLIC as the first
430 * chunks
431 */
432
433 loadAreaFirstChunk = (u32)addr_to_chunk(itLpNaca.xLoadAreaAddr);
434 loadAreaSize = itLpNaca.xLoadAreaChunks;
435
436 /*
437 * Only add the pages already mapped here.
438 * Otherwise we might add the hpt pages
439 * The rest of the pages of the load area
440 * aren't in the HPT yet and can still
441 * be assigned an arbitrary physical address
442 */
443 if ((loadAreaSize * 64) > HvPagesToMap)
444 loadAreaSize = HvPagesToMap / 64;
445
446 loadAreaLastChunk = loadAreaFirstChunk + loadAreaSize - 1;
447
448 /*
449 * TODO Do we need to do something if the HPT is in the 64MB load area?
450 * This would be required if the itLpNaca.xLoadAreaChunks includes
451 * the HPT size
452 */
453
454 printk("Mapping load area - physical addr = 0000000000000000\n"
455 " absolute addr = %016lx\n",
456 chunk_to_addr(loadAreaFirstChunk));
457 printk("Load area size %dK\n", loadAreaSize * 256);
458
459 for (nextPhysChunk = 0; nextPhysChunk < loadAreaSize; ++nextPhysChunk)
460 mschunks_map.mapping[nextPhysChunk] =
461 loadAreaFirstChunk + nextPhysChunk;
462
463 /*
464 * Get absolute address of our HPT and remember it so
465 * we won't map it to any physical address
466 */
467 hptFirstChunk = (u32)addr_to_chunk(HvCallHpt_getHptAddress());
468 hptSizePages = (u32)HvCallHpt_getHptPages();
469 hptSizeChunks = hptSizePages >>
470 (MSCHUNKS_CHUNK_SHIFT - HW_PAGE_SHIFT);
471 hptLastChunk = hptFirstChunk + hptSizeChunks - 1;
472
473 printk("HPT absolute addr = %016lx, size = %dK\n",
474 chunk_to_addr(hptFirstChunk), hptSizeChunks * 256);
475
476 ppc64_pft_size = __ilog2(hptSizePages * HW_PAGE_SIZE);
477
478 /*
479 * The actual hashed page table is in the hypervisor,
480 * we have no direct access
481 */
482 htab_address = NULL;
483
484 /*
485 * Determine if absolute memory has any
486 * holes so that we can interpret the
487 * access map we get back from the hypervisor
488 * correctly.
489 */
490 numMemoryBlocks = iSeries_process_mainstore_vpd(mb, 32);
491
492 /*
493 * Process the main store access map from the hypervisor
494 * to build up our physical -> absolute translation table
495 */
496 curBlock = 0;
497 currChunk = 0;
498 currDword = 0;
499 moreChunks = totalChunks;
500
501 while (moreChunks) {
502 map = HvCallSm_get64BitsOfAccessMap(itLpNaca.xLpIndex,
503 currDword);
504 thisChunk = currChunk;
505 while (map) {
506 chunkBit = map >> 63;
507 map <<= 1;
508 if (chunkBit) {
509 --moreChunks;
510 while (thisChunk >= mb[curBlock].logicalEnd) {
511 ++curBlock;
512 if (curBlock >= numMemoryBlocks)
513 panic("out of memory blocks");
514 }
515 if (thisChunk < mb[curBlock].logicalStart)
516 panic("memory block error");
517
518 absChunk = mb[curBlock].absStart +
519 (thisChunk - mb[curBlock].logicalStart);
520 if (((absChunk < hptFirstChunk) ||
521 (absChunk > hptLastChunk)) &&
522 ((absChunk < loadAreaFirstChunk) ||
523 (absChunk > loadAreaLastChunk))) {
524 mschunks_map.mapping[nextPhysChunk] =
525 absChunk;
526 ++nextPhysChunk;
527 }
528 }
529 ++thisChunk;
530 }
531 ++currDword;
532 currChunk += 64;
533 }
534
535 /*
536 * main store size (in chunks) is
537 * totalChunks - hptSizeChunks
538 * which should be equal to
539 * nextPhysChunk
540 */
541 systemcfg->physicalMemorySize = chunk_to_addr(nextPhysChunk);
542 }
543
544 /*
545 * Document me.
546 */
547 static void __init iSeries_setup_arch(void)
548 {
549 unsigned procIx = get_paca()->lppaca.dyn_hv_phys_proc_index;
550
551 if (get_paca()->lppaca.shared_proc) {
552 ppc_md.idle_loop = iseries_shared_idle;
553 printk(KERN_INFO "Using shared processor idle loop\n");
554 } else {
555 ppc_md.idle_loop = iseries_dedicated_idle;
556 printk(KERN_INFO "Using dedicated idle loop\n");
557 }
558
559 /* Setup the Lp Event Queue */
560 setup_hvlpevent_queue();
561
562 printk("Max logical processors = %d\n",
563 itVpdAreas.xSlicMaxLogicalProcs);
564 printk("Max physical processors = %d\n",
565 itVpdAreas.xSlicMaxPhysicalProcs);
566
567 systemcfg->processor = xIoHriProcessorVpd[procIx].xPVR;
568 printk("Processor version = %x\n", systemcfg->processor);
569 }
570
571 static void iSeries_show_cpuinfo(struct seq_file *m)
572 {
573 seq_printf(m, "machine\t\t: 64-bit iSeries Logical Partition\n");
574 }
575
576 /*
577 * Document me.
578 * and Implement me.
579 */
580 static int iSeries_get_irq(struct pt_regs *regs)
581 {
582 /* -2 means ignore this interrupt */
583 return -2;
584 }
585
586 /*
587 * Document me.
588 */
589 static void iSeries_restart(char *cmd)
590 {
591 mf_reboot();
592 }
593
594 /*
595 * Document me.
596 */
597 static void iSeries_power_off(void)
598 {
599 mf_power_off();
600 }
601
602 /*
603 * Document me.
604 */
605 static void iSeries_halt(void)
606 {
607 mf_power_off();
608 }
609
610 static void __init iSeries_progress(char * st, unsigned short code)
611 {
612 printk("Progress: [%04x] - %s\n", (unsigned)code, st);
613 if (!piranha_simulator && mf_initialized) {
614 if (code != 0xffff)
615 mf_display_progress(code);
616 else
617 mf_clear_src();
618 }
619 }
620
621 static void __init iSeries_fixup_klimit(void)
622 {
623 /*
624 * Change klimit to take into account any ram disk
625 * that may be included
626 */
627 if (naca.xRamDisk)
628 klimit = KERNELBASE + (u64)naca.xRamDisk +
629 (naca.xRamDiskSize * HW_PAGE_SIZE);
630 else {
631 /*
632 * No ram disk was included - check and see if there
633 * was an embedded system map. Change klimit to take
634 * into account any embedded system map
635 */
636 if (embedded_sysmap_end)
637 klimit = KERNELBASE + ((embedded_sysmap_end + 4095) &
638 0xfffffffffffff000);
639 }
640 }
641
642 static int __init iSeries_src_init(void)
643 {
644 /* clear the progress line */
645 ppc_md.progress(" ", 0xffff);
646 return 0;
647 }
648
649 late_initcall(iSeries_src_init);
650
651 static inline void process_iSeries_events(void)
652 {
653 asm volatile ("li 0,0x5555; sc" : : : "r0", "r3");
654 }
655
656 static void yield_shared_processor(void)
657 {
658 unsigned long tb;
659
660 HvCall_setEnabledInterrupts(HvCall_MaskIPI |
661 HvCall_MaskLpEvent |
662 HvCall_MaskLpProd |
663 HvCall_MaskTimeout);
664
665 tb = get_tb();
666 /* Compute future tb value when yield should expire */
667 HvCall_yieldProcessor(HvCall_YieldTimed, tb+tb_ticks_per_jiffy);
668
669 /*
670 * The decrementer stops during the yield. Force a fake decrementer
671 * here and let the timer_interrupt code sort out the actual time.
672 */
673 get_paca()->lppaca.int_dword.fields.decr_int = 1;
674 process_iSeries_events();
675 }
676
677 static void iseries_shared_idle(void)
678 {
679 while (1) {
680 while (!need_resched() && !hvlpevent_is_pending()) {
681 local_irq_disable();
682 ppc64_runlatch_off();
683
684 /* Recheck with irqs off */
685 if (!need_resched() && !hvlpevent_is_pending())
686 yield_shared_processor();
687
688 HMT_medium();
689 local_irq_enable();
690 }
691
692 ppc64_runlatch_on();
693
694 if (hvlpevent_is_pending())
695 process_iSeries_events();
696
697 schedule();
698 }
699 }
700
701 static void iseries_dedicated_idle(void)
702 {
703 long oldval;
704
705 while (1) {
706 oldval = test_and_clear_thread_flag(TIF_NEED_RESCHED);
707
708 if (!oldval) {
709 set_thread_flag(TIF_POLLING_NRFLAG);
710
711 while (!need_resched()) {
712 ppc64_runlatch_off();
713 HMT_low();
714
715 if (hvlpevent_is_pending()) {
716 HMT_medium();
717 ppc64_runlatch_on();
718 process_iSeries_events();
719 }
720 }
721
722 HMT_medium();
723 clear_thread_flag(TIF_POLLING_NRFLAG);
724 } else {
725 set_need_resched();
726 }
727
728 ppc64_runlatch_on();
729 schedule();
730 }
731 }
732
733 #ifndef CONFIG_PCI
734 void __init iSeries_init_IRQ(void) { }
735 #endif
736
737 static int __init iseries_probe(int platform)
738 {
739 return PLATFORM_ISERIES_LPAR == platform;
740 }
741
742 struct machdep_calls __initdata iseries_md = {
743 .setup_arch = iSeries_setup_arch,
744 .show_cpuinfo = iSeries_show_cpuinfo,
745 .init_IRQ = iSeries_init_IRQ,
746 .get_irq = iSeries_get_irq,
747 .init_early = iSeries_init_early,
748 .pcibios_fixup = iSeries_pci_final_fixup,
749 .restart = iSeries_restart,
750 .power_off = iSeries_power_off,
751 .halt = iSeries_halt,
752 .get_boot_time = iSeries_get_boot_time,
753 .set_rtc_time = iSeries_set_rtc_time,
754 .get_rtc_time = iSeries_get_rtc_time,
755 .calibrate_decr = generic_calibrate_decr,
756 .progress = iSeries_progress,
757 .probe = iseries_probe,
758 /* XXX Implement enable_pmcs for iSeries */
759 };
760
761 struct blob {
762 unsigned char data[PAGE_SIZE];
763 unsigned long next;
764 };
765
766 struct iseries_flat_dt {
767 struct boot_param_header header;
768 u64 reserve_map[2];
769 struct blob dt;
770 struct blob strings;
771 };
772
773 struct iseries_flat_dt iseries_dt;
774
775 void dt_init(struct iseries_flat_dt *dt)
776 {
777 dt->header.off_mem_rsvmap =
778 offsetof(struct iseries_flat_dt, reserve_map);
779 dt->header.off_dt_struct = offsetof(struct iseries_flat_dt, dt);
780 dt->header.off_dt_strings = offsetof(struct iseries_flat_dt, strings);
781 dt->header.totalsize = sizeof(struct iseries_flat_dt);
782 dt->header.dt_strings_size = sizeof(struct blob);
783
784 /* There is no notion of hardware cpu id on iSeries */
785 dt->header.boot_cpuid_phys = smp_processor_id();
786
787 dt->dt.next = (unsigned long)&dt->dt.data;
788 dt->strings.next = (unsigned long)&dt->strings.data;
789
790 dt->header.magic = OF_DT_HEADER;
791 dt->header.version = 0x10;
792 dt->header.last_comp_version = 0x10;
793
794 dt->reserve_map[0] = 0;
795 dt->reserve_map[1] = 0;
796 }
797
798 void dt_check_blob(struct blob *b)
799 {
800 if (b->next >= (unsigned long)&b->next) {
801 DBG("Ran out of space in flat device tree blob!\n");
802 BUG();
803 }
804 }
805
806 void dt_push_u32(struct iseries_flat_dt *dt, u32 value)
807 {
808 *((u32*)dt->dt.next) = value;
809 dt->dt.next += sizeof(u32);
810
811 dt_check_blob(&dt->dt);
812 }
813
814 void dt_push_u64(struct iseries_flat_dt *dt, u64 value)
815 {
816 *((u64*)dt->dt.next) = value;
817 dt->dt.next += sizeof(u64);
818
819 dt_check_blob(&dt->dt);
820 }
821
822 unsigned long dt_push_bytes(struct blob *blob, char *data, int len)
823 {
824 unsigned long start = blob->next - (unsigned long)blob->data;
825
826 memcpy((char *)blob->next, data, len);
827 blob->next = _ALIGN(blob->next + len, 4);
828
829 dt_check_blob(blob);
830
831 return start;
832 }
833
834 void dt_start_node(struct iseries_flat_dt *dt, char *name)
835 {
836 dt_push_u32(dt, OF_DT_BEGIN_NODE);
837 dt_push_bytes(&dt->dt, name, strlen(name) + 1);
838 }
839
840 #define dt_end_node(dt) dt_push_u32(dt, OF_DT_END_NODE)
841
842 void dt_prop(struct iseries_flat_dt *dt, char *name, char *data, int len)
843 {
844 unsigned long offset;
845
846 dt_push_u32(dt, OF_DT_PROP);
847
848 /* Length of the data */
849 dt_push_u32(dt, len);
850
851 /* Put the property name in the string blob. */
852 offset = dt_push_bytes(&dt->strings, name, strlen(name) + 1);
853
854 /* The offset of the properties name in the string blob. */
855 dt_push_u32(dt, (u32)offset);
856
857 /* The actual data. */
858 dt_push_bytes(&dt->dt, data, len);
859 }
860
861 void dt_prop_str(struct iseries_flat_dt *dt, char *name, char *data)
862 {
863 dt_prop(dt, name, data, strlen(data) + 1); /* + 1 for NULL */
864 }
865
866 void dt_prop_u32(struct iseries_flat_dt *dt, char *name, u32 data)
867 {
868 dt_prop(dt, name, (char *)&data, sizeof(u32));
869 }
870
871 void dt_prop_u64(struct iseries_flat_dt *dt, char *name, u64 data)
872 {
873 dt_prop(dt, name, (char *)&data, sizeof(u64));
874 }
875
876 void dt_prop_u64_list(struct iseries_flat_dt *dt, char *name, u64 *data, int n)
877 {
878 dt_prop(dt, name, (char *)data, sizeof(u64) * n);
879 }
880
881 void dt_prop_empty(struct iseries_flat_dt *dt, char *name)
882 {
883 dt_prop(dt, name, NULL, 0);
884 }
885
886 void dt_cpus(struct iseries_flat_dt *dt)
887 {
888 unsigned char buf[32];
889 unsigned char *p;
890 unsigned int i, index;
891 struct IoHriProcessorVpd *d;
892
893 /* yuck */
894 snprintf(buf, 32, "PowerPC,%s", cur_cpu_spec->cpu_name);
895 p = strchr(buf, ' ');
896 if (!p) p = buf + strlen(buf);
897
898 dt_start_node(dt, "cpus");
899 dt_prop_u32(dt, "#address-cells", 1);
900 dt_prop_u32(dt, "#size-cells", 0);
901
902 for (i = 0; i < NR_CPUS; i++) {
903 if (paca[i].lppaca.dyn_proc_status >= 2)
904 continue;
905
906 snprintf(p, 32 - (p - buf), "@%d", i);
907 dt_start_node(dt, buf);
908
909 dt_prop_str(dt, "device_type", "cpu");
910
911 index = paca[i].lppaca.dyn_hv_phys_proc_index;
912 d = &xIoHriProcessorVpd[index];
913
914 dt_prop_u32(dt, "i-cache-size", d->xInstCacheSize * 1024);
915 dt_prop_u32(dt, "i-cache-line-size", d->xInstCacheOperandSize);
916
917 dt_prop_u32(dt, "d-cache-size", d->xDataL1CacheSizeKB * 1024);
918 dt_prop_u32(dt, "d-cache-line-size", d->xDataCacheOperandSize);
919
920 /* magic conversions to Hz copied from old code */
921 dt_prop_u32(dt, "clock-frequency",
922 ((1UL << 34) * 1000000) / d->xProcFreq);
923 dt_prop_u32(dt, "timebase-frequency",
924 ((1UL << 32) * 1000000) / d->xTimeBaseFreq);
925
926 dt_prop_u32(dt, "reg", i);
927
928 dt_end_node(dt);
929 }
930
931 dt_end_node(dt);
932 }
933
934 void build_flat_dt(struct iseries_flat_dt *dt)
935 {
936 u64 tmp[2];
937
938 dt_init(dt);
939
940 dt_start_node(dt, "");
941
942 dt_prop_u32(dt, "#address-cells", 2);
943 dt_prop_u32(dt, "#size-cells", 2);
944
945 /* /memory */
946 dt_start_node(dt, "memory@0");
947 dt_prop_str(dt, "name", "memory");
948 dt_prop_str(dt, "device_type", "memory");
949 tmp[0] = 0;
950 tmp[1] = systemcfg->physicalMemorySize;
951 dt_prop_u64_list(dt, "reg", tmp, 2);
952 dt_end_node(dt);
953
954 /* /chosen */
955 dt_start_node(dt, "chosen");
956 dt_prop_u32(dt, "linux,platform", PLATFORM_ISERIES_LPAR);
957 if (cmd_mem_limit)
958 dt_prop_u64(dt, "linux,memory-limit", cmd_mem_limit);
959 dt_end_node(dt);
960
961 dt_cpus(dt);
962
963 dt_end_node(dt);
964
965 dt_push_u32(dt, OF_DT_END);
966 }
967
968 void * __init iSeries_early_setup(void)
969 {
970 iSeries_fixup_klimit();
971
972 /*
973 * Initialize the table which translate Linux physical addresses to
974 * AS/400 absolute addresses
975 */
976 build_iSeries_Memory_Map();
977
978 iSeries_get_cmdline();
979
980 /* Save unparsed command line copy for /proc/cmdline */
981 strlcpy(saved_command_line, cmd_line, COMMAND_LINE_SIZE);
982
983 /* Parse early parameters, in particular mem=x */
984 parse_early_param();
985
986 build_flat_dt(&iseries_dt);
987
988 return (void *) __pa(&iseries_dt);
989 }
990
991 /*
992 * On iSeries we just parse the mem=X option from the command line.
993 * On pSeries it's a bit more complicated, see prom_init_mem()
994 */
995 static int __init early_parsemem(char *p)
996 {
997 if (p)
998 cmd_mem_limit = ALIGN(memparse(p, &p), PAGE_SIZE);
999 return 0;
1000 }
1001 early_param("mem", early_parsemem);