]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/powerpc/platforms/powernv/npu-dma.c
Merge git://www.linux-watchdog.org/linux-watchdog
[mirror_ubuntu-eoan-kernel.git] / arch / powerpc / platforms / powernv / npu-dma.c
1 /*
2 * This file implements the DMA operations for NVLink devices. The NPU
3 * devices all point to the same iommu table as the parent PCI device.
4 *
5 * Copyright Alistair Popple, IBM Corporation 2015.
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of version 2 of the GNU General Public
9 * License as published by the Free Software Foundation.
10 */
11
12 #include <linux/slab.h>
13 #include <linux/mmu_notifier.h>
14 #include <linux/mmu_context.h>
15 #include <linux/of.h>
16 #include <linux/export.h>
17 #include <linux/pci.h>
18 #include <linux/memblock.h>
19 #include <linux/iommu.h>
20
21 #include <asm/tlb.h>
22 #include <asm/powernv.h>
23 #include <asm/reg.h>
24 #include <asm/opal.h>
25 #include <asm/io.h>
26 #include <asm/iommu.h>
27 #include <asm/pnv-pci.h>
28 #include <asm/msi_bitmap.h>
29 #include <asm/opal.h>
30
31 #include "powernv.h"
32 #include "pci.h"
33
34 #define npu_to_phb(x) container_of(x, struct pnv_phb, npu)
35
36 /*
37 * Other types of TCE cache invalidation are not functional in the
38 * hardware.
39 */
40 static struct pci_dev *get_pci_dev(struct device_node *dn)
41 {
42 return PCI_DN(dn)->pcidev;
43 }
44
45 /* Given a NPU device get the associated PCI device. */
46 struct pci_dev *pnv_pci_get_gpu_dev(struct pci_dev *npdev)
47 {
48 struct device_node *dn;
49 struct pci_dev *gpdev;
50
51 if (WARN_ON(!npdev))
52 return NULL;
53
54 if (WARN_ON(!npdev->dev.of_node))
55 return NULL;
56
57 /* Get assoicated PCI device */
58 dn = of_parse_phandle(npdev->dev.of_node, "ibm,gpu", 0);
59 if (!dn)
60 return NULL;
61
62 gpdev = get_pci_dev(dn);
63 of_node_put(dn);
64
65 return gpdev;
66 }
67 EXPORT_SYMBOL(pnv_pci_get_gpu_dev);
68
69 /* Given the real PCI device get a linked NPU device. */
70 struct pci_dev *pnv_pci_get_npu_dev(struct pci_dev *gpdev, int index)
71 {
72 struct device_node *dn;
73 struct pci_dev *npdev;
74
75 if (WARN_ON(!gpdev))
76 return NULL;
77
78 /* Not all PCI devices have device-tree nodes */
79 if (!gpdev->dev.of_node)
80 return NULL;
81
82 /* Get assoicated PCI device */
83 dn = of_parse_phandle(gpdev->dev.of_node, "ibm,npu", index);
84 if (!dn)
85 return NULL;
86
87 npdev = get_pci_dev(dn);
88 of_node_put(dn);
89
90 return npdev;
91 }
92 EXPORT_SYMBOL(pnv_pci_get_npu_dev);
93
94 #define NPU_DMA_OP_UNSUPPORTED() \
95 dev_err_once(dev, "%s operation unsupported for NVLink devices\n", \
96 __func__)
97
98 static void *dma_npu_alloc(struct device *dev, size_t size,
99 dma_addr_t *dma_handle, gfp_t flag,
100 unsigned long attrs)
101 {
102 NPU_DMA_OP_UNSUPPORTED();
103 return NULL;
104 }
105
106 static void dma_npu_free(struct device *dev, size_t size,
107 void *vaddr, dma_addr_t dma_handle,
108 unsigned long attrs)
109 {
110 NPU_DMA_OP_UNSUPPORTED();
111 }
112
113 static dma_addr_t dma_npu_map_page(struct device *dev, struct page *page,
114 unsigned long offset, size_t size,
115 enum dma_data_direction direction,
116 unsigned long attrs)
117 {
118 NPU_DMA_OP_UNSUPPORTED();
119 return 0;
120 }
121
122 static int dma_npu_map_sg(struct device *dev, struct scatterlist *sglist,
123 int nelems, enum dma_data_direction direction,
124 unsigned long attrs)
125 {
126 NPU_DMA_OP_UNSUPPORTED();
127 return 0;
128 }
129
130 static int dma_npu_dma_supported(struct device *dev, u64 mask)
131 {
132 NPU_DMA_OP_UNSUPPORTED();
133 return 0;
134 }
135
136 static u64 dma_npu_get_required_mask(struct device *dev)
137 {
138 NPU_DMA_OP_UNSUPPORTED();
139 return 0;
140 }
141
142 static const struct dma_map_ops dma_npu_ops = {
143 .map_page = dma_npu_map_page,
144 .map_sg = dma_npu_map_sg,
145 .alloc = dma_npu_alloc,
146 .free = dma_npu_free,
147 .dma_supported = dma_npu_dma_supported,
148 .get_required_mask = dma_npu_get_required_mask,
149 };
150
151 /*
152 * Returns the PE assoicated with the PCI device of the given
153 * NPU. Returns the linked pci device if pci_dev != NULL.
154 */
155 static struct pnv_ioda_pe *get_gpu_pci_dev_and_pe(struct pnv_ioda_pe *npe,
156 struct pci_dev **gpdev)
157 {
158 struct pnv_phb *phb;
159 struct pci_controller *hose;
160 struct pci_dev *pdev;
161 struct pnv_ioda_pe *pe;
162 struct pci_dn *pdn;
163
164 pdev = pnv_pci_get_gpu_dev(npe->pdev);
165 if (!pdev)
166 return NULL;
167
168 pdn = pci_get_pdn(pdev);
169 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
170 return NULL;
171
172 hose = pci_bus_to_host(pdev->bus);
173 phb = hose->private_data;
174 pe = &phb->ioda.pe_array[pdn->pe_number];
175
176 if (gpdev)
177 *gpdev = pdev;
178
179 return pe;
180 }
181
182 long pnv_npu_set_window(struct pnv_ioda_pe *npe, int num,
183 struct iommu_table *tbl)
184 {
185 struct pnv_phb *phb = npe->phb;
186 int64_t rc;
187 const unsigned long size = tbl->it_indirect_levels ?
188 tbl->it_level_size : tbl->it_size;
189 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
190 const __u64 win_size = tbl->it_size << tbl->it_page_shift;
191
192 pe_info(npe, "Setting up window %llx..%llx pg=%lx\n",
193 start_addr, start_addr + win_size - 1,
194 IOMMU_PAGE_SIZE(tbl));
195
196 rc = opal_pci_map_pe_dma_window(phb->opal_id,
197 npe->pe_number,
198 npe->pe_number,
199 tbl->it_indirect_levels + 1,
200 __pa(tbl->it_base),
201 size << 3,
202 IOMMU_PAGE_SIZE(tbl));
203 if (rc) {
204 pe_err(npe, "Failed to configure TCE table, err %lld\n", rc);
205 return rc;
206 }
207 pnv_pci_ioda2_tce_invalidate_entire(phb, false);
208
209 /* Add the table to the list so its TCE cache will get invalidated */
210 pnv_pci_link_table_and_group(phb->hose->node, num,
211 tbl, &npe->table_group);
212
213 return 0;
214 }
215
216 long pnv_npu_unset_window(struct pnv_ioda_pe *npe, int num)
217 {
218 struct pnv_phb *phb = npe->phb;
219 int64_t rc;
220
221 pe_info(npe, "Removing DMA window\n");
222
223 rc = opal_pci_map_pe_dma_window(phb->opal_id, npe->pe_number,
224 npe->pe_number,
225 0/* levels */, 0/* table address */,
226 0/* table size */, 0/* page size */);
227 if (rc) {
228 pe_err(npe, "Unmapping failed, ret = %lld\n", rc);
229 return rc;
230 }
231 pnv_pci_ioda2_tce_invalidate_entire(phb, false);
232
233 pnv_pci_unlink_table_and_group(npe->table_group.tables[num],
234 &npe->table_group);
235
236 return 0;
237 }
238
239 /*
240 * Enables 32 bit DMA on NPU.
241 */
242 static void pnv_npu_dma_set_32(struct pnv_ioda_pe *npe)
243 {
244 struct pci_dev *gpdev;
245 struct pnv_ioda_pe *gpe;
246 int64_t rc;
247
248 /*
249 * Find the assoicated PCI devices and get the dma window
250 * information from there.
251 */
252 if (!npe->pdev || !(npe->flags & PNV_IODA_PE_DEV))
253 return;
254
255 gpe = get_gpu_pci_dev_and_pe(npe, &gpdev);
256 if (!gpe)
257 return;
258
259 rc = pnv_npu_set_window(npe, 0, gpe->table_group.tables[0]);
260
261 /*
262 * We don't initialise npu_pe->tce32_table as we always use
263 * dma_npu_ops which are nops.
264 */
265 set_dma_ops(&npe->pdev->dev, &dma_npu_ops);
266 }
267
268 /*
269 * Enables bypass mode on the NPU. The NPU only supports one
270 * window per link, so bypass needs to be explicitly enabled or
271 * disabled. Unlike for a PHB3 bypass and non-bypass modes can't be
272 * active at the same time.
273 */
274 static int pnv_npu_dma_set_bypass(struct pnv_ioda_pe *npe)
275 {
276 struct pnv_phb *phb = npe->phb;
277 int64_t rc = 0;
278 phys_addr_t top = memblock_end_of_DRAM();
279
280 if (phb->type != PNV_PHB_NPU || !npe->pdev)
281 return -EINVAL;
282
283 rc = pnv_npu_unset_window(npe, 0);
284 if (rc != OPAL_SUCCESS)
285 return rc;
286
287 /* Enable the bypass window */
288
289 top = roundup_pow_of_two(top);
290 dev_info(&npe->pdev->dev, "Enabling bypass for PE %x\n",
291 npe->pe_number);
292 rc = opal_pci_map_pe_dma_window_real(phb->opal_id,
293 npe->pe_number, npe->pe_number,
294 0 /* bypass base */, top);
295
296 if (rc == OPAL_SUCCESS)
297 pnv_pci_ioda2_tce_invalidate_entire(phb, false);
298
299 return rc;
300 }
301
302 void pnv_npu_try_dma_set_bypass(struct pci_dev *gpdev, bool bypass)
303 {
304 int i;
305 struct pnv_phb *phb;
306 struct pci_dn *pdn;
307 struct pnv_ioda_pe *npe;
308 struct pci_dev *npdev;
309
310 for (i = 0; ; ++i) {
311 npdev = pnv_pci_get_npu_dev(gpdev, i);
312
313 if (!npdev)
314 break;
315
316 pdn = pci_get_pdn(npdev);
317 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
318 return;
319
320 phb = pci_bus_to_host(npdev->bus)->private_data;
321
322 /* We only do bypass if it's enabled on the linked device */
323 npe = &phb->ioda.pe_array[pdn->pe_number];
324
325 if (bypass) {
326 dev_info(&npdev->dev,
327 "Using 64-bit DMA iommu bypass\n");
328 pnv_npu_dma_set_bypass(npe);
329 } else {
330 dev_info(&npdev->dev, "Using 32-bit DMA via iommu\n");
331 pnv_npu_dma_set_32(npe);
332 }
333 }
334 }
335
336 /* Switch ownership from platform code to external user (e.g. VFIO) */
337 void pnv_npu_take_ownership(struct pnv_ioda_pe *npe)
338 {
339 struct pnv_phb *phb = npe->phb;
340 int64_t rc;
341
342 /*
343 * Note: NPU has just a single TVE in the hardware which means that
344 * while used by the kernel, it can have either 32bit window or
345 * DMA bypass but never both. So we deconfigure 32bit window only
346 * if it was enabled at the moment of ownership change.
347 */
348 if (npe->table_group.tables[0]) {
349 pnv_npu_unset_window(npe, 0);
350 return;
351 }
352
353 /* Disable bypass */
354 rc = opal_pci_map_pe_dma_window_real(phb->opal_id,
355 npe->pe_number, npe->pe_number,
356 0 /* bypass base */, 0);
357 if (rc) {
358 pe_err(npe, "Failed to disable bypass, err %lld\n", rc);
359 return;
360 }
361 pnv_pci_ioda2_tce_invalidate_entire(npe->phb, false);
362 }
363
364 struct pnv_ioda_pe *pnv_pci_npu_setup_iommu(struct pnv_ioda_pe *npe)
365 {
366 struct pnv_phb *phb = npe->phb;
367 struct pci_bus *pbus = phb->hose->bus;
368 struct pci_dev *npdev, *gpdev = NULL, *gptmp;
369 struct pnv_ioda_pe *gpe = get_gpu_pci_dev_and_pe(npe, &gpdev);
370
371 if (!gpe || !gpdev)
372 return NULL;
373
374 list_for_each_entry(npdev, &pbus->devices, bus_list) {
375 gptmp = pnv_pci_get_gpu_dev(npdev);
376
377 if (gptmp != gpdev)
378 continue;
379
380 pe_info(gpe, "Attached NPU %s\n", dev_name(&npdev->dev));
381 iommu_group_add_device(gpe->table_group.group, &npdev->dev);
382 }
383
384 return gpe;
385 }
386
387 /* Maximum number of nvlinks per npu */
388 #define NV_MAX_LINKS 6
389
390 /* Maximum index of npu2 hosts in the system. Always < NV_MAX_NPUS */
391 static int max_npu2_index;
392
393 struct npu_context {
394 struct mm_struct *mm;
395 struct pci_dev *npdev[NV_MAX_NPUS][NV_MAX_LINKS];
396 struct mmu_notifier mn;
397 struct kref kref;
398
399 /* Callback to stop translation requests on a given GPU */
400 struct npu_context *(*release_cb)(struct npu_context *, void *);
401
402 /*
403 * Private pointer passed to the above callback for usage by
404 * device drivers.
405 */
406 void *priv;
407 };
408
409 /*
410 * Find a free MMIO ATSD register and mark it in use. Return -ENOSPC
411 * if none are available.
412 */
413 static int get_mmio_atsd_reg(struct npu *npu)
414 {
415 int i;
416
417 for (i = 0; i < npu->mmio_atsd_count; i++) {
418 if (!test_and_set_bit(i, &npu->mmio_atsd_usage))
419 return i;
420 }
421
422 return -ENOSPC;
423 }
424
425 static void put_mmio_atsd_reg(struct npu *npu, int reg)
426 {
427 clear_bit(reg, &npu->mmio_atsd_usage);
428 }
429
430 /* MMIO ATSD register offsets */
431 #define XTS_ATSD_AVA 1
432 #define XTS_ATSD_STAT 2
433
434 static int mmio_launch_invalidate(struct npu *npu, unsigned long launch,
435 unsigned long va)
436 {
437 int mmio_atsd_reg;
438
439 do {
440 mmio_atsd_reg = get_mmio_atsd_reg(npu);
441 cpu_relax();
442 } while (mmio_atsd_reg < 0);
443
444 __raw_writeq(cpu_to_be64(va),
445 npu->mmio_atsd_regs[mmio_atsd_reg] + XTS_ATSD_AVA);
446 eieio();
447 __raw_writeq(cpu_to_be64(launch), npu->mmio_atsd_regs[mmio_atsd_reg]);
448
449 return mmio_atsd_reg;
450 }
451
452 static int mmio_invalidate_pid(struct npu *npu, unsigned long pid, bool flush)
453 {
454 unsigned long launch;
455
456 /* IS set to invalidate matching PID */
457 launch = PPC_BIT(12);
458
459 /* PRS set to process-scoped */
460 launch |= PPC_BIT(13);
461
462 /* AP */
463 launch |= (u64) mmu_get_ap(mmu_virtual_psize) << PPC_BITLSHIFT(17);
464
465 /* PID */
466 launch |= pid << PPC_BITLSHIFT(38);
467
468 /* No flush */
469 launch |= !flush << PPC_BITLSHIFT(39);
470
471 /* Invalidating the entire process doesn't use a va */
472 return mmio_launch_invalidate(npu, launch, 0);
473 }
474
475 static int mmio_invalidate_va(struct npu *npu, unsigned long va,
476 unsigned long pid, bool flush)
477 {
478 unsigned long launch;
479
480 /* IS set to invalidate target VA */
481 launch = 0;
482
483 /* PRS set to process scoped */
484 launch |= PPC_BIT(13);
485
486 /* AP */
487 launch |= (u64) mmu_get_ap(mmu_virtual_psize) << PPC_BITLSHIFT(17);
488
489 /* PID */
490 launch |= pid << PPC_BITLSHIFT(38);
491
492 /* No flush */
493 launch |= !flush << PPC_BITLSHIFT(39);
494
495 return mmio_launch_invalidate(npu, launch, va);
496 }
497
498 #define mn_to_npu_context(x) container_of(x, struct npu_context, mn)
499
500 struct mmio_atsd_reg {
501 struct npu *npu;
502 int reg;
503 };
504
505 static void mmio_invalidate_wait(
506 struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS], bool flush)
507 {
508 struct npu *npu;
509 int i, reg;
510
511 /* Wait for all invalidations to complete */
512 for (i = 0; i <= max_npu2_index; i++) {
513 if (mmio_atsd_reg[i].reg < 0)
514 continue;
515
516 /* Wait for completion */
517 npu = mmio_atsd_reg[i].npu;
518 reg = mmio_atsd_reg[i].reg;
519 while (__raw_readq(npu->mmio_atsd_regs[reg] + XTS_ATSD_STAT))
520 cpu_relax();
521
522 put_mmio_atsd_reg(npu, reg);
523
524 /*
525 * The GPU requires two flush ATSDs to ensure all entries have
526 * been flushed. We use PID 0 as it will never be used for a
527 * process on the GPU.
528 */
529 if (flush)
530 mmio_invalidate_pid(npu, 0, true);
531 }
532 }
533
534 /*
535 * Invalidate either a single address or an entire PID depending on
536 * the value of va.
537 */
538 static void mmio_invalidate(struct npu_context *npu_context, int va,
539 unsigned long address, bool flush)
540 {
541 int i, j;
542 struct npu *npu;
543 struct pnv_phb *nphb;
544 struct pci_dev *npdev;
545 struct mmio_atsd_reg mmio_atsd_reg[NV_MAX_NPUS];
546 unsigned long pid = npu_context->mm->context.id;
547
548 /*
549 * Loop over all the NPUs this process is active on and launch
550 * an invalidate.
551 */
552 for (i = 0; i <= max_npu2_index; i++) {
553 mmio_atsd_reg[i].reg = -1;
554 for (j = 0; j < NV_MAX_LINKS; j++) {
555 npdev = npu_context->npdev[i][j];
556 if (!npdev)
557 continue;
558
559 nphb = pci_bus_to_host(npdev->bus)->private_data;
560 npu = &nphb->npu;
561 mmio_atsd_reg[i].npu = npu;
562
563 if (va)
564 mmio_atsd_reg[i].reg =
565 mmio_invalidate_va(npu, address, pid,
566 flush);
567 else
568 mmio_atsd_reg[i].reg =
569 mmio_invalidate_pid(npu, pid, flush);
570
571 /*
572 * The NPU hardware forwards the shootdown to all GPUs
573 * so we only have to launch one shootdown per NPU.
574 */
575 break;
576 }
577 }
578
579 /*
580 * Unfortunately the nest mmu does not support flushing specific
581 * addresses so we have to flush the whole mm.
582 */
583 flush_tlb_mm(npu_context->mm);
584
585 mmio_invalidate_wait(mmio_atsd_reg, flush);
586 if (flush)
587 /* Wait for the flush to complete */
588 mmio_invalidate_wait(mmio_atsd_reg, false);
589 }
590
591 static void pnv_npu2_mn_release(struct mmu_notifier *mn,
592 struct mm_struct *mm)
593 {
594 struct npu_context *npu_context = mn_to_npu_context(mn);
595
596 /* Call into device driver to stop requests to the NMMU */
597 if (npu_context->release_cb)
598 npu_context->release_cb(npu_context, npu_context->priv);
599
600 /*
601 * There should be no more translation requests for this PID, but we
602 * need to ensure any entries for it are removed from the TLB.
603 */
604 mmio_invalidate(npu_context, 0, 0, true);
605 }
606
607 static void pnv_npu2_mn_change_pte(struct mmu_notifier *mn,
608 struct mm_struct *mm,
609 unsigned long address,
610 pte_t pte)
611 {
612 struct npu_context *npu_context = mn_to_npu_context(mn);
613
614 mmio_invalidate(npu_context, 1, address, true);
615 }
616
617 static void pnv_npu2_mn_invalidate_page(struct mmu_notifier *mn,
618 struct mm_struct *mm,
619 unsigned long address)
620 {
621 struct npu_context *npu_context = mn_to_npu_context(mn);
622
623 mmio_invalidate(npu_context, 1, address, true);
624 }
625
626 static void pnv_npu2_mn_invalidate_range(struct mmu_notifier *mn,
627 struct mm_struct *mm,
628 unsigned long start, unsigned long end)
629 {
630 struct npu_context *npu_context = mn_to_npu_context(mn);
631 unsigned long address;
632
633 for (address = start; address < end; address += PAGE_SIZE)
634 mmio_invalidate(npu_context, 1, address, false);
635
636 /* Do the flush only on the final addess == end */
637 mmio_invalidate(npu_context, 1, address, true);
638 }
639
640 static const struct mmu_notifier_ops nv_nmmu_notifier_ops = {
641 .release = pnv_npu2_mn_release,
642 .change_pte = pnv_npu2_mn_change_pte,
643 .invalidate_page = pnv_npu2_mn_invalidate_page,
644 .invalidate_range = pnv_npu2_mn_invalidate_range,
645 };
646
647 /*
648 * Call into OPAL to setup the nmmu context for the current task in
649 * the NPU. This must be called to setup the context tables before the
650 * GPU issues ATRs. pdev should be a pointed to PCIe GPU device.
651 *
652 * A release callback should be registered to allow a device driver to
653 * be notified that it should not launch any new translation requests
654 * as the final TLB invalidate is about to occur.
655 *
656 * Returns an error if there no contexts are currently available or a
657 * npu_context which should be passed to pnv_npu2_handle_fault().
658 *
659 * mmap_sem must be held in write mode.
660 */
661 struct npu_context *pnv_npu2_init_context(struct pci_dev *gpdev,
662 unsigned long flags,
663 struct npu_context *(*cb)(struct npu_context *, void *),
664 void *priv)
665 {
666 int rc;
667 u32 nvlink_index;
668 struct device_node *nvlink_dn;
669 struct mm_struct *mm = current->mm;
670 struct pnv_phb *nphb;
671 struct npu *npu;
672 struct npu_context *npu_context;
673
674 /*
675 * At present we don't support GPUs connected to multiple NPUs and I'm
676 * not sure the hardware does either.
677 */
678 struct pci_dev *npdev = pnv_pci_get_npu_dev(gpdev, 0);
679
680 if (!firmware_has_feature(FW_FEATURE_OPAL))
681 return ERR_PTR(-ENODEV);
682
683 if (!npdev)
684 /* No nvlink associated with this GPU device */
685 return ERR_PTR(-ENODEV);
686
687 if (!mm || mm->context.id == 0) {
688 /*
689 * Kernel thread contexts are not supported and context id 0 is
690 * reserved on the GPU.
691 */
692 return ERR_PTR(-EINVAL);
693 }
694
695 nphb = pci_bus_to_host(npdev->bus)->private_data;
696 npu = &nphb->npu;
697
698 /*
699 * Setup the NPU context table for a particular GPU. These need to be
700 * per-GPU as we need the tables to filter ATSDs when there are no
701 * active contexts on a particular GPU.
702 */
703 rc = opal_npu_init_context(nphb->opal_id, mm->context.id, flags,
704 PCI_DEVID(gpdev->bus->number, gpdev->devfn));
705 if (rc < 0)
706 return ERR_PTR(-ENOSPC);
707
708 /*
709 * We store the npu pci device so we can more easily get at the
710 * associated npus.
711 */
712 npu_context = mm->context.npu_context;
713 if (!npu_context) {
714 npu_context = kzalloc(sizeof(struct npu_context), GFP_KERNEL);
715 if (!npu_context)
716 return ERR_PTR(-ENOMEM);
717
718 mm->context.npu_context = npu_context;
719 npu_context->mm = mm;
720 npu_context->mn.ops = &nv_nmmu_notifier_ops;
721 __mmu_notifier_register(&npu_context->mn, mm);
722 kref_init(&npu_context->kref);
723 } else {
724 kref_get(&npu_context->kref);
725 }
726
727 npu_context->release_cb = cb;
728 npu_context->priv = priv;
729 nvlink_dn = of_parse_phandle(npdev->dev.of_node, "ibm,nvlink", 0);
730 if (WARN_ON(of_property_read_u32(nvlink_dn, "ibm,npu-link-index",
731 &nvlink_index)))
732 return ERR_PTR(-ENODEV);
733 npu_context->npdev[npu->index][nvlink_index] = npdev;
734
735 return npu_context;
736 }
737 EXPORT_SYMBOL(pnv_npu2_init_context);
738
739 static void pnv_npu2_release_context(struct kref *kref)
740 {
741 struct npu_context *npu_context =
742 container_of(kref, struct npu_context, kref);
743
744 npu_context->mm->context.npu_context = NULL;
745 mmu_notifier_unregister(&npu_context->mn,
746 npu_context->mm);
747
748 kfree(npu_context);
749 }
750
751 void pnv_npu2_destroy_context(struct npu_context *npu_context,
752 struct pci_dev *gpdev)
753 {
754 struct pnv_phb *nphb;
755 struct npu *npu;
756 struct pci_dev *npdev = pnv_pci_get_npu_dev(gpdev, 0);
757 struct device_node *nvlink_dn;
758 u32 nvlink_index;
759
760 if (WARN_ON(!npdev))
761 return;
762
763 if (!firmware_has_feature(FW_FEATURE_OPAL))
764 return;
765
766 nphb = pci_bus_to_host(npdev->bus)->private_data;
767 npu = &nphb->npu;
768 nvlink_dn = of_parse_phandle(npdev->dev.of_node, "ibm,nvlink", 0);
769 if (WARN_ON(of_property_read_u32(nvlink_dn, "ibm,npu-link-index",
770 &nvlink_index)))
771 return;
772 npu_context->npdev[npu->index][nvlink_index] = NULL;
773 opal_npu_destroy_context(nphb->opal_id, npu_context->mm->context.id,
774 PCI_DEVID(gpdev->bus->number, gpdev->devfn));
775 kref_put(&npu_context->kref, pnv_npu2_release_context);
776 }
777 EXPORT_SYMBOL(pnv_npu2_destroy_context);
778
779 /*
780 * Assumes mmap_sem is held for the contexts associated mm.
781 */
782 int pnv_npu2_handle_fault(struct npu_context *context, uintptr_t *ea,
783 unsigned long *flags, unsigned long *status, int count)
784 {
785 u64 rc = 0, result = 0;
786 int i, is_write;
787 struct page *page[1];
788
789 /* mmap_sem should be held so the struct_mm must be present */
790 struct mm_struct *mm = context->mm;
791
792 if (!firmware_has_feature(FW_FEATURE_OPAL))
793 return -ENODEV;
794
795 WARN_ON(!rwsem_is_locked(&mm->mmap_sem));
796
797 for (i = 0; i < count; i++) {
798 is_write = flags[i] & NPU2_WRITE;
799 rc = get_user_pages_remote(NULL, mm, ea[i], 1,
800 is_write ? FOLL_WRITE : 0,
801 page, NULL, NULL);
802
803 /*
804 * To support virtualised environments we will have to do an
805 * access to the page to ensure it gets faulted into the
806 * hypervisor. For the moment virtualisation is not supported in
807 * other areas so leave the access out.
808 */
809 if (rc != 1) {
810 status[i] = rc;
811 result = -EFAULT;
812 continue;
813 }
814
815 status[i] = 0;
816 put_page(page[0]);
817 }
818
819 return result;
820 }
821 EXPORT_SYMBOL(pnv_npu2_handle_fault);
822
823 int pnv_npu2_init(struct pnv_phb *phb)
824 {
825 unsigned int i;
826 u64 mmio_atsd;
827 struct device_node *dn;
828 struct pci_dev *gpdev;
829 static int npu_index;
830 uint64_t rc = 0;
831
832 for_each_child_of_node(phb->hose->dn, dn) {
833 gpdev = pnv_pci_get_gpu_dev(get_pci_dev(dn));
834 if (gpdev) {
835 rc = opal_npu_map_lpar(phb->opal_id,
836 PCI_DEVID(gpdev->bus->number, gpdev->devfn),
837 0, 0);
838 if (rc)
839 dev_err(&gpdev->dev,
840 "Error %lld mapping device to LPAR\n",
841 rc);
842 }
843 }
844
845 for (i = 0; !of_property_read_u64_index(phb->hose->dn, "ibm,mmio-atsd",
846 i, &mmio_atsd); i++)
847 phb->npu.mmio_atsd_regs[i] = ioremap(mmio_atsd, 32);
848
849 pr_info("NPU%lld: Found %d MMIO ATSD registers", phb->opal_id, i);
850 phb->npu.mmio_atsd_count = i;
851 phb->npu.mmio_atsd_usage = 0;
852 npu_index++;
853 if (WARN_ON(npu_index >= NV_MAX_NPUS))
854 return -ENOSPC;
855 max_npu2_index = npu_index;
856 phb->npu.index = npu_index;
857
858 return 0;
859 }