]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/platforms/powernv/pci-ioda.c
powerpc/powernv: Use it_page_shift for TCE invalidation
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2 * Support PCI/PCIe on PowerNV platforms
3 *
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26
27 #include <asm/sections.h>
28 #include <asm/io.h>
29 #include <asm/prom.h>
30 #include <asm/pci-bridge.h>
31 #include <asm/machdep.h>
32 #include <asm/msi_bitmap.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/opal.h>
35 #include <asm/iommu.h>
36 #include <asm/tce.h>
37 #include <asm/xics.h>
38 #include <asm/debug.h>
39
40 #include "powernv.h"
41 #include "pci.h"
42
43 #define define_pe_printk_level(func, kern_level) \
44 static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...) \
45 { \
46 struct va_format vaf; \
47 va_list args; \
48 char pfix[32]; \
49 int r; \
50 \
51 va_start(args, fmt); \
52 \
53 vaf.fmt = fmt; \
54 vaf.va = &args; \
55 \
56 if (pe->pdev) \
57 strlcpy(pfix, dev_name(&pe->pdev->dev), \
58 sizeof(pfix)); \
59 else \
60 sprintf(pfix, "%04x:%02x ", \
61 pci_domain_nr(pe->pbus), \
62 pe->pbus->number); \
63 r = printk(kern_level "pci %s: [PE# %.3d] %pV", \
64 pfix, pe->pe_number, &vaf); \
65 \
66 va_end(args); \
67 \
68 return r; \
69 } \
70
71 define_pe_printk_level(pe_err, KERN_ERR);
72 define_pe_printk_level(pe_warn, KERN_WARNING);
73 define_pe_printk_level(pe_info, KERN_INFO);
74
75 /*
76 * stdcix is only supposed to be used in hypervisor real mode as per
77 * the architecture spec
78 */
79 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
80 {
81 __asm__ __volatile__("stdcix %0,0,%1"
82 : : "r" (val), "r" (paddr) : "memory");
83 }
84
85 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
86 {
87 unsigned long pe;
88
89 do {
90 pe = find_next_zero_bit(phb->ioda.pe_alloc,
91 phb->ioda.total_pe, 0);
92 if (pe >= phb->ioda.total_pe)
93 return IODA_INVALID_PE;
94 } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
95
96 phb->ioda.pe_array[pe].phb = phb;
97 phb->ioda.pe_array[pe].pe_number = pe;
98 return pe;
99 }
100
101 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
102 {
103 WARN_ON(phb->ioda.pe_array[pe].pdev);
104
105 memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
106 clear_bit(pe, phb->ioda.pe_alloc);
107 }
108
109 /* Currently those 2 are only used when MSIs are enabled, this will change
110 * but in the meantime, we need to protect them to avoid warnings
111 */
112 #ifdef CONFIG_PCI_MSI
113 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
114 {
115 struct pci_controller *hose = pci_bus_to_host(dev->bus);
116 struct pnv_phb *phb = hose->private_data;
117 struct pci_dn *pdn = pci_get_pdn(dev);
118
119 if (!pdn)
120 return NULL;
121 if (pdn->pe_number == IODA_INVALID_PE)
122 return NULL;
123 return &phb->ioda.pe_array[pdn->pe_number];
124 }
125 #endif /* CONFIG_PCI_MSI */
126
127 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
128 {
129 struct pci_dev *parent;
130 uint8_t bcomp, dcomp, fcomp;
131 long rc, rid_end, rid;
132
133 /* Bus validation ? */
134 if (pe->pbus) {
135 int count;
136
137 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
138 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
139 parent = pe->pbus->self;
140 if (pe->flags & PNV_IODA_PE_BUS_ALL)
141 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
142 else
143 count = 1;
144
145 switch(count) {
146 case 1: bcomp = OpalPciBusAll; break;
147 case 2: bcomp = OpalPciBus7Bits; break;
148 case 4: bcomp = OpalPciBus6Bits; break;
149 case 8: bcomp = OpalPciBus5Bits; break;
150 case 16: bcomp = OpalPciBus4Bits; break;
151 case 32: bcomp = OpalPciBus3Bits; break;
152 default:
153 pr_err("%s: Number of subordinate busses %d"
154 " unsupported\n",
155 pci_name(pe->pbus->self), count);
156 /* Do an exact match only */
157 bcomp = OpalPciBusAll;
158 }
159 rid_end = pe->rid + (count << 8);
160 } else {
161 parent = pe->pdev->bus->self;
162 bcomp = OpalPciBusAll;
163 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
164 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
165 rid_end = pe->rid + 1;
166 }
167
168 /*
169 * Associate PE in PELT. We need add the PE into the
170 * corresponding PELT-V as well. Otherwise, the error
171 * originated from the PE might contribute to other
172 * PEs.
173 */
174 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
175 bcomp, dcomp, fcomp, OPAL_MAP_PE);
176 if (rc) {
177 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
178 return -ENXIO;
179 }
180
181 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
182 pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
183 if (rc)
184 pe_warn(pe, "OPAL error %d adding self to PELTV\n", rc);
185 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
186 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
187
188 /* Add to all parents PELT-V */
189 while (parent) {
190 struct pci_dn *pdn = pci_get_pdn(parent);
191 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
192 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
193 pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
194 /* XXX What to do in case of error ? */
195 }
196 parent = parent->bus->self;
197 }
198 /* Setup reverse map */
199 for (rid = pe->rid; rid < rid_end; rid++)
200 phb->ioda.pe_rmap[rid] = pe->pe_number;
201
202 /* Setup one MVTs on IODA1 */
203 if (phb->type == PNV_PHB_IODA1) {
204 pe->mve_number = pe->pe_number;
205 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
206 pe->pe_number);
207 if (rc) {
208 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
209 rc, pe->mve_number);
210 pe->mve_number = -1;
211 } else {
212 rc = opal_pci_set_mve_enable(phb->opal_id,
213 pe->mve_number, OPAL_ENABLE_MVE);
214 if (rc) {
215 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
216 rc, pe->mve_number);
217 pe->mve_number = -1;
218 }
219 }
220 } else if (phb->type == PNV_PHB_IODA2)
221 pe->mve_number = 0;
222
223 return 0;
224 }
225
226 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
227 struct pnv_ioda_pe *pe)
228 {
229 struct pnv_ioda_pe *lpe;
230
231 list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
232 if (lpe->dma_weight < pe->dma_weight) {
233 list_add_tail(&pe->dma_link, &lpe->dma_link);
234 return;
235 }
236 }
237 list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
238 }
239
240 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
241 {
242 /* This is quite simplistic. The "base" weight of a device
243 * is 10. 0 means no DMA is to be accounted for it.
244 */
245
246 /* If it's a bridge, no DMA */
247 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
248 return 0;
249
250 /* Reduce the weight of slow USB controllers */
251 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
252 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
253 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
254 return 3;
255
256 /* Increase the weight of RAID (includes Obsidian) */
257 if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
258 return 15;
259
260 /* Default */
261 return 10;
262 }
263
264 #if 0
265 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
266 {
267 struct pci_controller *hose = pci_bus_to_host(dev->bus);
268 struct pnv_phb *phb = hose->private_data;
269 struct pci_dn *pdn = pci_get_pdn(dev);
270 struct pnv_ioda_pe *pe;
271 int pe_num;
272
273 if (!pdn) {
274 pr_err("%s: Device tree node not associated properly\n",
275 pci_name(dev));
276 return NULL;
277 }
278 if (pdn->pe_number != IODA_INVALID_PE)
279 return NULL;
280
281 /* PE#0 has been pre-set */
282 if (dev->bus->number == 0)
283 pe_num = 0;
284 else
285 pe_num = pnv_ioda_alloc_pe(phb);
286 if (pe_num == IODA_INVALID_PE) {
287 pr_warning("%s: Not enough PE# available, disabling device\n",
288 pci_name(dev));
289 return NULL;
290 }
291
292 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
293 * pointer in the PE data structure, both should be destroyed at the
294 * same time. However, this needs to be looked at more closely again
295 * once we actually start removing things (Hotplug, SR-IOV, ...)
296 *
297 * At some point we want to remove the PDN completely anyways
298 */
299 pe = &phb->ioda.pe_array[pe_num];
300 pci_dev_get(dev);
301 pdn->pcidev = dev;
302 pdn->pe_number = pe_num;
303 pe->pdev = dev;
304 pe->pbus = NULL;
305 pe->tce32_seg = -1;
306 pe->mve_number = -1;
307 pe->rid = dev->bus->number << 8 | pdn->devfn;
308
309 pe_info(pe, "Associated device to PE\n");
310
311 if (pnv_ioda_configure_pe(phb, pe)) {
312 /* XXX What do we do here ? */
313 if (pe_num)
314 pnv_ioda_free_pe(phb, pe_num);
315 pdn->pe_number = IODA_INVALID_PE;
316 pe->pdev = NULL;
317 pci_dev_put(dev);
318 return NULL;
319 }
320
321 /* Assign a DMA weight to the device */
322 pe->dma_weight = pnv_ioda_dma_weight(dev);
323 if (pe->dma_weight != 0) {
324 phb->ioda.dma_weight += pe->dma_weight;
325 phb->ioda.dma_pe_count++;
326 }
327
328 /* Link the PE */
329 pnv_ioda_link_pe_by_weight(phb, pe);
330
331 return pe;
332 }
333 #endif /* Useful for SRIOV case */
334
335 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
336 {
337 struct pci_dev *dev;
338
339 list_for_each_entry(dev, &bus->devices, bus_list) {
340 struct pci_dn *pdn = pci_get_pdn(dev);
341
342 if (pdn == NULL) {
343 pr_warn("%s: No device node associated with device !\n",
344 pci_name(dev));
345 continue;
346 }
347 pdn->pcidev = dev;
348 pdn->pe_number = pe->pe_number;
349 pe->dma_weight += pnv_ioda_dma_weight(dev);
350 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
351 pnv_ioda_setup_same_PE(dev->subordinate, pe);
352 }
353 }
354
355 /*
356 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
357 * single PCI bus. Another one that contains the primary PCI bus and its
358 * subordinate PCI devices and buses. The second type of PE is normally
359 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
360 */
361 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
362 {
363 struct pci_controller *hose = pci_bus_to_host(bus);
364 struct pnv_phb *phb = hose->private_data;
365 struct pnv_ioda_pe *pe;
366 int pe_num;
367
368 pe_num = pnv_ioda_alloc_pe(phb);
369 if (pe_num == IODA_INVALID_PE) {
370 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
371 __func__, pci_domain_nr(bus), bus->number);
372 return;
373 }
374
375 pe = &phb->ioda.pe_array[pe_num];
376 pe->flags = (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
377 pe->pbus = bus;
378 pe->pdev = NULL;
379 pe->tce32_seg = -1;
380 pe->mve_number = -1;
381 pe->rid = bus->busn_res.start << 8;
382 pe->dma_weight = 0;
383
384 if (all)
385 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
386 bus->busn_res.start, bus->busn_res.end, pe_num);
387 else
388 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
389 bus->busn_res.start, pe_num);
390
391 if (pnv_ioda_configure_pe(phb, pe)) {
392 /* XXX What do we do here ? */
393 if (pe_num)
394 pnv_ioda_free_pe(phb, pe_num);
395 pe->pbus = NULL;
396 return;
397 }
398
399 /* Associate it with all child devices */
400 pnv_ioda_setup_same_PE(bus, pe);
401
402 /* Put PE to the list */
403 list_add_tail(&pe->list, &phb->ioda.pe_list);
404
405 /* Account for one DMA PE if at least one DMA capable device exist
406 * below the bridge
407 */
408 if (pe->dma_weight != 0) {
409 phb->ioda.dma_weight += pe->dma_weight;
410 phb->ioda.dma_pe_count++;
411 }
412
413 /* Link the PE */
414 pnv_ioda_link_pe_by_weight(phb, pe);
415 }
416
417 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
418 {
419 struct pci_dev *dev;
420
421 pnv_ioda_setup_bus_PE(bus, 0);
422
423 list_for_each_entry(dev, &bus->devices, bus_list) {
424 if (dev->subordinate) {
425 if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
426 pnv_ioda_setup_bus_PE(dev->subordinate, 1);
427 else
428 pnv_ioda_setup_PEs(dev->subordinate);
429 }
430 }
431 }
432
433 /*
434 * Configure PEs so that the downstream PCI buses and devices
435 * could have their associated PE#. Unfortunately, we didn't
436 * figure out the way to identify the PLX bridge yet. So we
437 * simply put the PCI bus and the subordinate behind the root
438 * port to PE# here. The game rule here is expected to be changed
439 * as soon as we can detected PLX bridge correctly.
440 */
441 static void pnv_pci_ioda_setup_PEs(void)
442 {
443 struct pci_controller *hose, *tmp;
444
445 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
446 pnv_ioda_setup_PEs(hose->bus);
447 }
448 }
449
450 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
451 {
452 struct pci_dn *pdn = pci_get_pdn(pdev);
453 struct pnv_ioda_pe *pe;
454
455 /*
456 * The function can be called while the PE#
457 * hasn't been assigned. Do nothing for the
458 * case.
459 */
460 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
461 return;
462
463 pe = &phb->ioda.pe_array[pdn->pe_number];
464 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
465 set_iommu_table_base(&pdev->dev, &pe->tce32_table);
466 }
467
468 static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb,
469 struct pci_dev *pdev, u64 dma_mask)
470 {
471 struct pci_dn *pdn = pci_get_pdn(pdev);
472 struct pnv_ioda_pe *pe;
473 uint64_t top;
474 bool bypass = false;
475
476 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
477 return -ENODEV;;
478
479 pe = &phb->ioda.pe_array[pdn->pe_number];
480 if (pe->tce_bypass_enabled) {
481 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
482 bypass = (dma_mask >= top);
483 }
484
485 if (bypass) {
486 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
487 set_dma_ops(&pdev->dev, &dma_direct_ops);
488 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
489 } else {
490 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
491 set_dma_ops(&pdev->dev, &dma_iommu_ops);
492 set_iommu_table_base(&pdev->dev, &pe->tce32_table);
493 }
494 return 0;
495 }
496
497 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
498 {
499 struct pci_dev *dev;
500
501 list_for_each_entry(dev, &bus->devices, bus_list) {
502 set_iommu_table_base_and_group(&dev->dev, &pe->tce32_table);
503 if (dev->subordinate)
504 pnv_ioda_setup_bus_dma(pe, dev->subordinate);
505 }
506 }
507
508 static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
509 struct iommu_table *tbl,
510 __be64 *startp, __be64 *endp, bool rm)
511 {
512 __be64 __iomem *invalidate = rm ?
513 (__be64 __iomem *)pe->tce_inval_reg_phys :
514 (__be64 __iomem *)tbl->it_index;
515 unsigned long start, end, inc;
516 const unsigned shift = tbl->it_page_shift;
517
518 start = __pa(startp);
519 end = __pa(endp);
520
521 /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
522 if (tbl->it_busno) {
523 start <<= shift;
524 end <<= shift;
525 inc = 128ull << shift;
526 start |= tbl->it_busno;
527 end |= tbl->it_busno;
528 } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
529 /* p7ioc-style invalidation, 2 TCEs per write */
530 start |= (1ull << 63);
531 end |= (1ull << 63);
532 inc = 16;
533 } else {
534 /* Default (older HW) */
535 inc = 128;
536 }
537
538 end |= inc - 1; /* round up end to be different than start */
539
540 mb(); /* Ensure above stores are visible */
541 while (start <= end) {
542 if (rm)
543 __raw_rm_writeq(cpu_to_be64(start), invalidate);
544 else
545 __raw_writeq(cpu_to_be64(start), invalidate);
546 start += inc;
547 }
548
549 /*
550 * The iommu layer will do another mb() for us on build()
551 * and we don't care on free()
552 */
553 }
554
555 static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
556 struct iommu_table *tbl,
557 __be64 *startp, __be64 *endp, bool rm)
558 {
559 unsigned long start, end, inc;
560 __be64 __iomem *invalidate = rm ?
561 (__be64 __iomem *)pe->tce_inval_reg_phys :
562 (__be64 __iomem *)tbl->it_index;
563 const unsigned shift = tbl->it_page_shift;
564
565 /* We'll invalidate DMA address in PE scope */
566 start = 0x2ull << 60;
567 start |= (pe->pe_number & 0xFF);
568 end = start;
569
570 /* Figure out the start, end and step */
571 inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
572 start |= (inc << shift);
573 inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
574 end |= (inc << shift);
575 inc = (0x1ull << shift);
576 mb();
577
578 while (start <= end) {
579 if (rm)
580 __raw_rm_writeq(cpu_to_be64(start), invalidate);
581 else
582 __raw_writeq(cpu_to_be64(start), invalidate);
583 start += inc;
584 }
585 }
586
587 void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
588 __be64 *startp, __be64 *endp, bool rm)
589 {
590 struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
591 tce32_table);
592 struct pnv_phb *phb = pe->phb;
593
594 if (phb->type == PNV_PHB_IODA1)
595 pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
596 else
597 pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
598 }
599
600 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
601 struct pnv_ioda_pe *pe, unsigned int base,
602 unsigned int segs)
603 {
604
605 struct page *tce_mem = NULL;
606 const __be64 *swinvp;
607 struct iommu_table *tbl;
608 unsigned int i;
609 int64_t rc;
610 void *addr;
611
612 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
613 #define TCE32_TABLE_SIZE ((0x10000000 / 0x1000) * 8)
614
615 /* XXX FIXME: Handle 64-bit only DMA devices */
616 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
617 /* XXX FIXME: Allocate multi-level tables on PHB3 */
618
619 /* We shouldn't already have a 32-bit DMA associated */
620 if (WARN_ON(pe->tce32_seg >= 0))
621 return;
622
623 /* Grab a 32-bit TCE table */
624 pe->tce32_seg = base;
625 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
626 (base << 28), ((base + segs) << 28) - 1);
627
628 /* XXX Currently, we allocate one big contiguous table for the
629 * TCEs. We only really need one chunk per 256M of TCE space
630 * (ie per segment) but that's an optimization for later, it
631 * requires some added smarts with our get/put_tce implementation
632 */
633 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
634 get_order(TCE32_TABLE_SIZE * segs));
635 if (!tce_mem) {
636 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
637 goto fail;
638 }
639 addr = page_address(tce_mem);
640 memset(addr, 0, TCE32_TABLE_SIZE * segs);
641
642 /* Configure HW */
643 for (i = 0; i < segs; i++) {
644 rc = opal_pci_map_pe_dma_window(phb->opal_id,
645 pe->pe_number,
646 base + i, 1,
647 __pa(addr) + TCE32_TABLE_SIZE * i,
648 TCE32_TABLE_SIZE, 0x1000);
649 if (rc) {
650 pe_err(pe, " Failed to configure 32-bit TCE table,"
651 " err %ld\n", rc);
652 goto fail;
653 }
654 }
655
656 /* Setup linux iommu table */
657 tbl = &pe->tce32_table;
658 pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
659 base << 28);
660
661 /* OPAL variant of P7IOC SW invalidated TCEs */
662 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
663 if (swinvp) {
664 /* We need a couple more fields -- an address and a data
665 * to or. Since the bus is only printed out on table free
666 * errors, and on the first pass the data will be a relative
667 * bus number, print that out instead.
668 */
669 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
670 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
671 8);
672 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
673 TCE_PCI_SWINV_FREE |
674 TCE_PCI_SWINV_PAIR);
675 }
676 iommu_init_table(tbl, phb->hose->node);
677 iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
678
679 if (pe->pdev)
680 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
681 else
682 pnv_ioda_setup_bus_dma(pe, pe->pbus);
683
684 return;
685 fail:
686 /* XXX Failure: Try to fallback to 64-bit only ? */
687 if (pe->tce32_seg >= 0)
688 pe->tce32_seg = -1;
689 if (tce_mem)
690 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
691 }
692
693 static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
694 {
695 struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
696 tce32_table);
697 uint16_t window_id = (pe->pe_number << 1 ) + 1;
698 int64_t rc;
699
700 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
701 if (enable) {
702 phys_addr_t top = memblock_end_of_DRAM();
703
704 top = roundup_pow_of_two(top);
705 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
706 pe->pe_number,
707 window_id,
708 pe->tce_bypass_base,
709 top);
710 } else {
711 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
712 pe->pe_number,
713 window_id,
714 pe->tce_bypass_base,
715 0);
716
717 /*
718 * We might want to reset the DMA ops of all devices on
719 * this PE. However in theory, that shouldn't be necessary
720 * as this is used for VFIO/KVM pass-through and the device
721 * hasn't yet been returned to its kernel driver
722 */
723 }
724 if (rc)
725 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
726 else
727 pe->tce_bypass_enabled = enable;
728 }
729
730 static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
731 struct pnv_ioda_pe *pe)
732 {
733 /* TVE #1 is selected by PCI address bit 59 */
734 pe->tce_bypass_base = 1ull << 59;
735
736 /* Install set_bypass callback for VFIO */
737 pe->tce32_table.set_bypass = pnv_pci_ioda2_set_bypass;
738
739 /* Enable bypass by default */
740 pnv_pci_ioda2_set_bypass(&pe->tce32_table, true);
741 }
742
743 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
744 struct pnv_ioda_pe *pe)
745 {
746 struct page *tce_mem = NULL;
747 void *addr;
748 const __be64 *swinvp;
749 struct iommu_table *tbl;
750 unsigned int tce_table_size, end;
751 int64_t rc;
752
753 /* We shouldn't already have a 32-bit DMA associated */
754 if (WARN_ON(pe->tce32_seg >= 0))
755 return;
756
757 /* The PE will reserve all possible 32-bits space */
758 pe->tce32_seg = 0;
759 end = (1 << ilog2(phb->ioda.m32_pci_base));
760 tce_table_size = (end / 0x1000) * 8;
761 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
762 end);
763
764 /* Allocate TCE table */
765 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
766 get_order(tce_table_size));
767 if (!tce_mem) {
768 pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
769 goto fail;
770 }
771 addr = page_address(tce_mem);
772 memset(addr, 0, tce_table_size);
773
774 /*
775 * Map TCE table through TVT. The TVE index is the PE number
776 * shifted by 1 bit for 32-bits DMA space.
777 */
778 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
779 pe->pe_number << 1, 1, __pa(addr),
780 tce_table_size, 0x1000);
781 if (rc) {
782 pe_err(pe, "Failed to configure 32-bit TCE table,"
783 " err %ld\n", rc);
784 goto fail;
785 }
786
787 /* Setup linux iommu table */
788 tbl = &pe->tce32_table;
789 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0);
790
791 /* OPAL variant of PHB3 invalidated TCEs */
792 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
793 if (swinvp) {
794 /* We need a couple more fields -- an address and a data
795 * to or. Since the bus is only printed out on table free
796 * errors, and on the first pass the data will be a relative
797 * bus number, print that out instead.
798 */
799 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
800 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
801 8);
802 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
803 }
804 iommu_init_table(tbl, phb->hose->node);
805 iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
806
807 if (pe->pdev)
808 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
809 else
810 pnv_ioda_setup_bus_dma(pe, pe->pbus);
811
812 /* Also create a bypass window */
813 pnv_pci_ioda2_setup_bypass_pe(phb, pe);
814 return;
815 fail:
816 if (pe->tce32_seg >= 0)
817 pe->tce32_seg = -1;
818 if (tce_mem)
819 __free_pages(tce_mem, get_order(tce_table_size));
820 }
821
822 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
823 {
824 struct pci_controller *hose = phb->hose;
825 unsigned int residual, remaining, segs, tw, base;
826 struct pnv_ioda_pe *pe;
827
828 /* If we have more PE# than segments available, hand out one
829 * per PE until we run out and let the rest fail. If not,
830 * then we assign at least one segment per PE, plus more based
831 * on the amount of devices under that PE
832 */
833 if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
834 residual = 0;
835 else
836 residual = phb->ioda.tce32_count -
837 phb->ioda.dma_pe_count;
838
839 pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
840 hose->global_number, phb->ioda.tce32_count);
841 pr_info("PCI: %d PE# for a total weight of %d\n",
842 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
843
844 /* Walk our PE list and configure their DMA segments, hand them
845 * out one base segment plus any residual segments based on
846 * weight
847 */
848 remaining = phb->ioda.tce32_count;
849 tw = phb->ioda.dma_weight;
850 base = 0;
851 list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
852 if (!pe->dma_weight)
853 continue;
854 if (!remaining) {
855 pe_warn(pe, "No DMA32 resources available\n");
856 continue;
857 }
858 segs = 1;
859 if (residual) {
860 segs += ((pe->dma_weight * residual) + (tw / 2)) / tw;
861 if (segs > remaining)
862 segs = remaining;
863 }
864
865 /*
866 * For IODA2 compliant PHB3, we needn't care about the weight.
867 * The all available 32-bits DMA space will be assigned to
868 * the specific PE.
869 */
870 if (phb->type == PNV_PHB_IODA1) {
871 pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
872 pe->dma_weight, segs);
873 pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
874 } else {
875 pe_info(pe, "Assign DMA32 space\n");
876 segs = 0;
877 pnv_pci_ioda2_setup_dma_pe(phb, pe);
878 }
879
880 remaining -= segs;
881 base += segs;
882 }
883 }
884
885 #ifdef CONFIG_PCI_MSI
886 static void pnv_ioda2_msi_eoi(struct irq_data *d)
887 {
888 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
889 struct irq_chip *chip = irq_data_get_irq_chip(d);
890 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
891 ioda.irq_chip);
892 int64_t rc;
893
894 rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
895 WARN_ON_ONCE(rc);
896
897 icp_native_eoi(d);
898 }
899
900 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
901 unsigned int hwirq, unsigned int virq,
902 unsigned int is_64, struct msi_msg *msg)
903 {
904 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
905 struct pci_dn *pdn = pci_get_pdn(dev);
906 struct irq_data *idata;
907 struct irq_chip *ichip;
908 unsigned int xive_num = hwirq - phb->msi_base;
909 __be32 data;
910 int rc;
911
912 /* No PE assigned ? bail out ... no MSI for you ! */
913 if (pe == NULL)
914 return -ENXIO;
915
916 /* Check if we have an MVE */
917 if (pe->mve_number < 0)
918 return -ENXIO;
919
920 /* Force 32-bit MSI on some broken devices */
921 if (pdn && pdn->force_32bit_msi)
922 is_64 = 0;
923
924 /* Assign XIVE to PE */
925 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
926 if (rc) {
927 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
928 pci_name(dev), rc, xive_num);
929 return -EIO;
930 }
931
932 if (is_64) {
933 __be64 addr64;
934
935 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
936 &addr64, &data);
937 if (rc) {
938 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
939 pci_name(dev), rc);
940 return -EIO;
941 }
942 msg->address_hi = be64_to_cpu(addr64) >> 32;
943 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
944 } else {
945 __be32 addr32;
946
947 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
948 &addr32, &data);
949 if (rc) {
950 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
951 pci_name(dev), rc);
952 return -EIO;
953 }
954 msg->address_hi = 0;
955 msg->address_lo = be32_to_cpu(addr32);
956 }
957 msg->data = be32_to_cpu(data);
958
959 /*
960 * Change the IRQ chip for the MSI interrupts on PHB3.
961 * The corresponding IRQ chip should be populated for
962 * the first time.
963 */
964 if (phb->type == PNV_PHB_IODA2) {
965 if (!phb->ioda.irq_chip_init) {
966 idata = irq_get_irq_data(virq);
967 ichip = irq_data_get_irq_chip(idata);
968 phb->ioda.irq_chip_init = 1;
969 phb->ioda.irq_chip = *ichip;
970 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
971 }
972
973 irq_set_chip(virq, &phb->ioda.irq_chip);
974 }
975
976 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
977 " address=%x_%08x data=%x PE# %d\n",
978 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
979 msg->address_hi, msg->address_lo, data, pe->pe_number);
980
981 return 0;
982 }
983
984 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
985 {
986 unsigned int count;
987 const __be32 *prop = of_get_property(phb->hose->dn,
988 "ibm,opal-msi-ranges", NULL);
989 if (!prop) {
990 /* BML Fallback */
991 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
992 }
993 if (!prop)
994 return;
995
996 phb->msi_base = be32_to_cpup(prop);
997 count = be32_to_cpup(prop + 1);
998 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
999 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
1000 phb->hose->global_number);
1001 return;
1002 }
1003
1004 phb->msi_setup = pnv_pci_ioda_msi_setup;
1005 phb->msi32_support = 1;
1006 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1007 count, phb->msi_base);
1008 }
1009 #else
1010 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
1011 #endif /* CONFIG_PCI_MSI */
1012
1013 /*
1014 * This function is supposed to be called on basis of PE from top
1015 * to bottom style. So the the I/O or MMIO segment assigned to
1016 * parent PE could be overrided by its child PEs if necessary.
1017 */
1018 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
1019 struct pnv_ioda_pe *pe)
1020 {
1021 struct pnv_phb *phb = hose->private_data;
1022 struct pci_bus_region region;
1023 struct resource *res;
1024 int i, index;
1025 int rc;
1026
1027 /*
1028 * NOTE: We only care PCI bus based PE for now. For PCI
1029 * device based PE, for example SRIOV sensitive VF should
1030 * be figured out later.
1031 */
1032 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
1033
1034 pci_bus_for_each_resource(pe->pbus, res, i) {
1035 if (!res || !res->flags ||
1036 res->start > res->end)
1037 continue;
1038
1039 if (res->flags & IORESOURCE_IO) {
1040 region.start = res->start - phb->ioda.io_pci_base;
1041 region.end = res->end - phb->ioda.io_pci_base;
1042 index = region.start / phb->ioda.io_segsize;
1043
1044 while (index < phb->ioda.total_pe &&
1045 region.start <= region.end) {
1046 phb->ioda.io_segmap[index] = pe->pe_number;
1047 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1048 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
1049 if (rc != OPAL_SUCCESS) {
1050 pr_err("%s: OPAL error %d when mapping IO "
1051 "segment #%d to PE#%d\n",
1052 __func__, rc, index, pe->pe_number);
1053 break;
1054 }
1055
1056 region.start += phb->ioda.io_segsize;
1057 index++;
1058 }
1059 } else if (res->flags & IORESOURCE_MEM) {
1060 /* WARNING: Assumes M32 is mem region 0 in PHB. We need to
1061 * harden that algorithm when we start supporting M64
1062 */
1063 region.start = res->start -
1064 hose->mem_offset[0] -
1065 phb->ioda.m32_pci_base;
1066 region.end = res->end -
1067 hose->mem_offset[0] -
1068 phb->ioda.m32_pci_base;
1069 index = region.start / phb->ioda.m32_segsize;
1070
1071 while (index < phb->ioda.total_pe &&
1072 region.start <= region.end) {
1073 phb->ioda.m32_segmap[index] = pe->pe_number;
1074 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1075 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
1076 if (rc != OPAL_SUCCESS) {
1077 pr_err("%s: OPAL error %d when mapping M32 "
1078 "segment#%d to PE#%d",
1079 __func__, rc, index, pe->pe_number);
1080 break;
1081 }
1082
1083 region.start += phb->ioda.m32_segsize;
1084 index++;
1085 }
1086 }
1087 }
1088 }
1089
1090 static void pnv_pci_ioda_setup_seg(void)
1091 {
1092 struct pci_controller *tmp, *hose;
1093 struct pnv_phb *phb;
1094 struct pnv_ioda_pe *pe;
1095
1096 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1097 phb = hose->private_data;
1098 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
1099 pnv_ioda_setup_pe_seg(hose, pe);
1100 }
1101 }
1102 }
1103
1104 static void pnv_pci_ioda_setup_DMA(void)
1105 {
1106 struct pci_controller *hose, *tmp;
1107 struct pnv_phb *phb;
1108
1109 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1110 pnv_ioda_setup_dma(hose->private_data);
1111
1112 /* Mark the PHB initialization done */
1113 phb = hose->private_data;
1114 phb->initialized = 1;
1115 }
1116 }
1117
1118 static void pnv_pci_ioda_create_dbgfs(void)
1119 {
1120 #ifdef CONFIG_DEBUG_FS
1121 struct pci_controller *hose, *tmp;
1122 struct pnv_phb *phb;
1123 char name[16];
1124
1125 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1126 phb = hose->private_data;
1127
1128 sprintf(name, "PCI%04x", hose->global_number);
1129 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
1130 if (!phb->dbgfs)
1131 pr_warning("%s: Error on creating debugfs on PHB#%x\n",
1132 __func__, hose->global_number);
1133 }
1134 #endif /* CONFIG_DEBUG_FS */
1135 }
1136
1137 static void pnv_pci_ioda_fixup(void)
1138 {
1139 pnv_pci_ioda_setup_PEs();
1140 pnv_pci_ioda_setup_seg();
1141 pnv_pci_ioda_setup_DMA();
1142
1143 pnv_pci_ioda_create_dbgfs();
1144
1145 #ifdef CONFIG_EEH
1146 eeh_probe_mode_set(EEH_PROBE_MODE_DEV);
1147 eeh_addr_cache_build();
1148 eeh_init();
1149 #endif
1150 }
1151
1152 /*
1153 * Returns the alignment for I/O or memory windows for P2P
1154 * bridges. That actually depends on how PEs are segmented.
1155 * For now, we return I/O or M32 segment size for PE sensitive
1156 * P2P bridges. Otherwise, the default values (4KiB for I/O,
1157 * 1MiB for memory) will be returned.
1158 *
1159 * The current PCI bus might be put into one PE, which was
1160 * create against the parent PCI bridge. For that case, we
1161 * needn't enlarge the alignment so that we can save some
1162 * resources.
1163 */
1164 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
1165 unsigned long type)
1166 {
1167 struct pci_dev *bridge;
1168 struct pci_controller *hose = pci_bus_to_host(bus);
1169 struct pnv_phb *phb = hose->private_data;
1170 int num_pci_bridges = 0;
1171
1172 bridge = bus->self;
1173 while (bridge) {
1174 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
1175 num_pci_bridges++;
1176 if (num_pci_bridges >= 2)
1177 return 1;
1178 }
1179
1180 bridge = bridge->bus->self;
1181 }
1182
1183 /* We need support prefetchable memory window later */
1184 if (type & IORESOURCE_MEM)
1185 return phb->ioda.m32_segsize;
1186
1187 return phb->ioda.io_segsize;
1188 }
1189
1190 /* Prevent enabling devices for which we couldn't properly
1191 * assign a PE
1192 */
1193 static int pnv_pci_enable_device_hook(struct pci_dev *dev)
1194 {
1195 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1196 struct pnv_phb *phb = hose->private_data;
1197 struct pci_dn *pdn;
1198
1199 /* The function is probably called while the PEs have
1200 * not be created yet. For example, resource reassignment
1201 * during PCI probe period. We just skip the check if
1202 * PEs isn't ready.
1203 */
1204 if (!phb->initialized)
1205 return 0;
1206
1207 pdn = pci_get_pdn(dev);
1208 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1209 return -EINVAL;
1210
1211 return 0;
1212 }
1213
1214 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
1215 u32 devfn)
1216 {
1217 return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
1218 }
1219
1220 static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
1221 {
1222 opal_pci_reset(phb->opal_id, OPAL_PCI_IODA_TABLE_RESET,
1223 OPAL_ASSERT_RESET);
1224 }
1225
1226 void __init pnv_pci_init_ioda_phb(struct device_node *np,
1227 u64 hub_id, int ioda_type)
1228 {
1229 struct pci_controller *hose;
1230 struct pnv_phb *phb;
1231 unsigned long size, m32map_off, pemap_off, iomap_off = 0;
1232 const __be64 *prop64;
1233 const __be32 *prop32;
1234 int len;
1235 u64 phb_id;
1236 void *aux;
1237 long rc;
1238
1239 pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
1240
1241 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
1242 if (!prop64) {
1243 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
1244 return;
1245 }
1246 phb_id = be64_to_cpup(prop64);
1247 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
1248
1249 phb = alloc_bootmem(sizeof(struct pnv_phb));
1250 if (!phb) {
1251 pr_err(" Out of memory !\n");
1252 return;
1253 }
1254
1255 /* Allocate PCI controller */
1256 memset(phb, 0, sizeof(struct pnv_phb));
1257 phb->hose = hose = pcibios_alloc_controller(np);
1258 if (!phb->hose) {
1259 pr_err(" Can't allocate PCI controller for %s\n",
1260 np->full_name);
1261 free_bootmem((unsigned long)phb, sizeof(struct pnv_phb));
1262 return;
1263 }
1264
1265 spin_lock_init(&phb->lock);
1266 prop32 = of_get_property(np, "bus-range", &len);
1267 if (prop32 && len == 8) {
1268 hose->first_busno = be32_to_cpu(prop32[0]);
1269 hose->last_busno = be32_to_cpu(prop32[1]);
1270 } else {
1271 pr_warn(" Broken <bus-range> on %s\n", np->full_name);
1272 hose->first_busno = 0;
1273 hose->last_busno = 0xff;
1274 }
1275 hose->private_data = phb;
1276 phb->hub_id = hub_id;
1277 phb->opal_id = phb_id;
1278 phb->type = ioda_type;
1279
1280 /* Detect specific models for error handling */
1281 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
1282 phb->model = PNV_PHB_MODEL_P7IOC;
1283 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
1284 phb->model = PNV_PHB_MODEL_PHB3;
1285 else
1286 phb->model = PNV_PHB_MODEL_UNKNOWN;
1287
1288 /* Parse 32-bit and IO ranges (if any) */
1289 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
1290
1291 /* Get registers */
1292 phb->regs = of_iomap(np, 0);
1293 if (phb->regs == NULL)
1294 pr_err(" Failed to map registers !\n");
1295
1296 /* Initialize more IODA stuff */
1297 phb->ioda.total_pe = 1;
1298 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
1299 if (prop32)
1300 phb->ioda.total_pe = be32_to_cpup(prop32);
1301 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
1302 if (prop32)
1303 phb->ioda.reserved_pe = be32_to_cpup(prop32);
1304 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
1305 /* FW Has already off top 64k of M32 space (MSI space) */
1306 phb->ioda.m32_size += 0x10000;
1307
1308 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
1309 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
1310 phb->ioda.io_size = hose->pci_io_size;
1311 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
1312 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
1313
1314 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
1315 size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
1316 m32map_off = size;
1317 size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
1318 if (phb->type == PNV_PHB_IODA1) {
1319 iomap_off = size;
1320 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
1321 }
1322 pemap_off = size;
1323 size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
1324 aux = alloc_bootmem(size);
1325 memset(aux, 0, size);
1326 phb->ioda.pe_alloc = aux;
1327 phb->ioda.m32_segmap = aux + m32map_off;
1328 if (phb->type == PNV_PHB_IODA1)
1329 phb->ioda.io_segmap = aux + iomap_off;
1330 phb->ioda.pe_array = aux + pemap_off;
1331 set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
1332
1333 INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
1334 INIT_LIST_HEAD(&phb->ioda.pe_list);
1335
1336 /* Calculate how many 32-bit TCE segments we have */
1337 phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
1338
1339 /* Clear unusable m64 */
1340 hose->mem_resources[1].flags = 0;
1341 hose->mem_resources[1].start = 0;
1342 hose->mem_resources[1].end = 0;
1343 hose->mem_resources[2].flags = 0;
1344 hose->mem_resources[2].start = 0;
1345 hose->mem_resources[2].end = 0;
1346
1347 #if 0 /* We should really do that ... */
1348 rc = opal_pci_set_phb_mem_window(opal->phb_id,
1349 window_type,
1350 window_num,
1351 starting_real_address,
1352 starting_pci_address,
1353 segment_size);
1354 #endif
1355
1356 pr_info(" %d (%d) PE's M32: 0x%x [segment=0x%x]"
1357 " IO: 0x%x [segment=0x%x]\n",
1358 phb->ioda.total_pe,
1359 phb->ioda.reserved_pe,
1360 phb->ioda.m32_size, phb->ioda.m32_segsize,
1361 phb->ioda.io_size, phb->ioda.io_segsize);
1362
1363 phb->hose->ops = &pnv_pci_ops;
1364 #ifdef CONFIG_EEH
1365 phb->eeh_ops = &ioda_eeh_ops;
1366 #endif
1367
1368 /* Setup RID -> PE mapping function */
1369 phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
1370
1371 /* Setup TCEs */
1372 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
1373 phb->dma_set_mask = pnv_pci_ioda_dma_set_mask;
1374
1375 /* Setup shutdown function for kexec */
1376 phb->shutdown = pnv_pci_ioda_shutdown;
1377
1378 /* Setup MSI support */
1379 pnv_pci_init_ioda_msis(phb);
1380
1381 /*
1382 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
1383 * to let the PCI core do resource assignment. It's supposed
1384 * that the PCI core will do correct I/O and MMIO alignment
1385 * for the P2P bridge bars so that each PCI bus (excluding
1386 * the child P2P bridges) can form individual PE.
1387 */
1388 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
1389 ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
1390 ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
1391 ppc_md.pcibios_reset_secondary_bus = pnv_pci_reset_secondary_bus;
1392 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
1393
1394 /* Reset IODA tables to a clean state */
1395 rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
1396 if (rc)
1397 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
1398
1399 /* If we're running in kdump kerenl, the previous kerenl never
1400 * shutdown PCI devices correctly. We already got IODA table
1401 * cleaned out. So we have to issue PHB reset to stop all PCI
1402 * transactions from previous kerenl.
1403 */
1404 if (is_kdump_kernel()) {
1405 pr_info(" Issue PHB reset ...\n");
1406 ioda_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
1407 ioda_eeh_phb_reset(hose, OPAL_DEASSERT_RESET);
1408 }
1409 }
1410
1411 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
1412 {
1413 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
1414 }
1415
1416 void __init pnv_pci_init_ioda_hub(struct device_node *np)
1417 {
1418 struct device_node *phbn;
1419 const __be64 *prop64;
1420 u64 hub_id;
1421
1422 pr_info("Probing IODA IO-Hub %s\n", np->full_name);
1423
1424 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
1425 if (!prop64) {
1426 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
1427 return;
1428 }
1429 hub_id = be64_to_cpup(prop64);
1430 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
1431
1432 /* Count child PHBs */
1433 for_each_child_of_node(np, phbn) {
1434 /* Look for IODA1 PHBs */
1435 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
1436 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
1437 }
1438 }