]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/platforms/powernv/pci-ioda.c
metag/usercopy: Switch to RAW_COPY_USER
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2 * Support PCI/PCIe on PowerNV platforms
3 *
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45
46 #include <misc/cxl-base.h>
47
48 #include "powernv.h"
49 #include "pci.h"
50
51 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */
52 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */
53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
54
55 #define POWERNV_IOMMU_DEFAULT_LEVELS 1
56 #define POWERNV_IOMMU_MAX_LEVELS 5
57
58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
60
61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62 const char *fmt, ...)
63 {
64 struct va_format vaf;
65 va_list args;
66 char pfix[32];
67
68 va_start(args, fmt);
69
70 vaf.fmt = fmt;
71 vaf.va = &args;
72
73 if (pe->flags & PNV_IODA_PE_DEV)
74 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76 sprintf(pfix, "%04x:%02x ",
77 pci_domain_nr(pe->pbus), pe->pbus->number);
78 #ifdef CONFIG_PCI_IOV
79 else if (pe->flags & PNV_IODA_PE_VF)
80 sprintf(pfix, "%04x:%02x:%2x.%d",
81 pci_domain_nr(pe->parent_dev->bus),
82 (pe->rid & 0xff00) >> 8,
83 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
84 #endif /* CONFIG_PCI_IOV*/
85
86 printk("%spci %s: [PE# %.2x] %pV",
87 level, pfix, pe->pe_number, &vaf);
88
89 va_end(args);
90 }
91
92 static bool pnv_iommu_bypass_disabled __read_mostly;
93
94 static int __init iommu_setup(char *str)
95 {
96 if (!str)
97 return -EINVAL;
98
99 while (*str) {
100 if (!strncmp(str, "nobypass", 8)) {
101 pnv_iommu_bypass_disabled = true;
102 pr_info("PowerNV: IOMMU bypass window disabled.\n");
103 break;
104 }
105 str += strcspn(str, ",");
106 if (*str == ',')
107 str++;
108 }
109
110 return 0;
111 }
112 early_param("iommu", iommu_setup);
113
114 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
115 {
116 /*
117 * WARNING: We cannot rely on the resource flags. The Linux PCI
118 * allocation code sometimes decides to put a 64-bit prefetchable
119 * BAR in the 32-bit window, so we have to compare the addresses.
120 *
121 * For simplicity we only test resource start.
122 */
123 return (r->start >= phb->ioda.m64_base &&
124 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
125 }
126
127 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
128 {
129 unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
130
131 return (resource_flags & flags) == flags;
132 }
133
134 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
135 {
136 s64 rc;
137
138 phb->ioda.pe_array[pe_no].phb = phb;
139 phb->ioda.pe_array[pe_no].pe_number = pe_no;
140
141 /*
142 * Clear the PE frozen state as it might be put into frozen state
143 * in the last PCI remove path. It's not harmful to do so when the
144 * PE is already in unfrozen state.
145 */
146 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
147 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
148 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
149 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
150 __func__, rc, phb->hose->global_number, pe_no);
151
152 return &phb->ioda.pe_array[pe_no];
153 }
154
155 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
156 {
157 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
158 pr_warn("%s: Invalid PE %x on PHB#%x\n",
159 __func__, pe_no, phb->hose->global_number);
160 return;
161 }
162
163 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
164 pr_debug("%s: PE %x was reserved on PHB#%x\n",
165 __func__, pe_no, phb->hose->global_number);
166
167 pnv_ioda_init_pe(phb, pe_no);
168 }
169
170 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
171 {
172 long pe;
173
174 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
175 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
176 return pnv_ioda_init_pe(phb, pe);
177 }
178
179 return NULL;
180 }
181
182 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
183 {
184 struct pnv_phb *phb = pe->phb;
185 unsigned int pe_num = pe->pe_number;
186
187 WARN_ON(pe->pdev);
188
189 memset(pe, 0, sizeof(struct pnv_ioda_pe));
190 clear_bit(pe_num, phb->ioda.pe_alloc);
191 }
192
193 /* The default M64 BAR is shared by all PEs */
194 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
195 {
196 const char *desc;
197 struct resource *r;
198 s64 rc;
199
200 /* Configure the default M64 BAR */
201 rc = opal_pci_set_phb_mem_window(phb->opal_id,
202 OPAL_M64_WINDOW_TYPE,
203 phb->ioda.m64_bar_idx,
204 phb->ioda.m64_base,
205 0, /* unused */
206 phb->ioda.m64_size);
207 if (rc != OPAL_SUCCESS) {
208 desc = "configuring";
209 goto fail;
210 }
211
212 /* Enable the default M64 BAR */
213 rc = opal_pci_phb_mmio_enable(phb->opal_id,
214 OPAL_M64_WINDOW_TYPE,
215 phb->ioda.m64_bar_idx,
216 OPAL_ENABLE_M64_SPLIT);
217 if (rc != OPAL_SUCCESS) {
218 desc = "enabling";
219 goto fail;
220 }
221
222 /*
223 * Exclude the segments for reserved and root bus PE, which
224 * are first or last two PEs.
225 */
226 r = &phb->hose->mem_resources[1];
227 if (phb->ioda.reserved_pe_idx == 0)
228 r->start += (2 * phb->ioda.m64_segsize);
229 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
230 r->end -= (2 * phb->ioda.m64_segsize);
231 else
232 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n",
233 phb->ioda.reserved_pe_idx);
234
235 return 0;
236
237 fail:
238 pr_warn(" Failure %lld %s M64 BAR#%d\n",
239 rc, desc, phb->ioda.m64_bar_idx);
240 opal_pci_phb_mmio_enable(phb->opal_id,
241 OPAL_M64_WINDOW_TYPE,
242 phb->ioda.m64_bar_idx,
243 OPAL_DISABLE_M64);
244 return -EIO;
245 }
246
247 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
248 unsigned long *pe_bitmap)
249 {
250 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
251 struct pnv_phb *phb = hose->private_data;
252 struct resource *r;
253 resource_size_t base, sgsz, start, end;
254 int segno, i;
255
256 base = phb->ioda.m64_base;
257 sgsz = phb->ioda.m64_segsize;
258 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
259 r = &pdev->resource[i];
260 if (!r->parent || !pnv_pci_is_m64(phb, r))
261 continue;
262
263 start = _ALIGN_DOWN(r->start - base, sgsz);
264 end = _ALIGN_UP(r->end - base, sgsz);
265 for (segno = start / sgsz; segno < end / sgsz; segno++) {
266 if (pe_bitmap)
267 set_bit(segno, pe_bitmap);
268 else
269 pnv_ioda_reserve_pe(phb, segno);
270 }
271 }
272 }
273
274 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
275 {
276 struct resource *r;
277 int index;
278
279 /*
280 * There are 16 M64 BARs, each of which has 8 segments. So
281 * there are as many M64 segments as the maximum number of
282 * PEs, which is 128.
283 */
284 for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
285 unsigned long base, segsz = phb->ioda.m64_segsize;
286 int64_t rc;
287
288 base = phb->ioda.m64_base +
289 index * PNV_IODA1_M64_SEGS * segsz;
290 rc = opal_pci_set_phb_mem_window(phb->opal_id,
291 OPAL_M64_WINDOW_TYPE, index, base, 0,
292 PNV_IODA1_M64_SEGS * segsz);
293 if (rc != OPAL_SUCCESS) {
294 pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n",
295 rc, phb->hose->global_number, index);
296 goto fail;
297 }
298
299 rc = opal_pci_phb_mmio_enable(phb->opal_id,
300 OPAL_M64_WINDOW_TYPE, index,
301 OPAL_ENABLE_M64_SPLIT);
302 if (rc != OPAL_SUCCESS) {
303 pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n",
304 rc, phb->hose->global_number, index);
305 goto fail;
306 }
307 }
308
309 /*
310 * Exclude the segments for reserved and root bus PE, which
311 * are first or last two PEs.
312 */
313 r = &phb->hose->mem_resources[1];
314 if (phb->ioda.reserved_pe_idx == 0)
315 r->start += (2 * phb->ioda.m64_segsize);
316 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
317 r->end -= (2 * phb->ioda.m64_segsize);
318 else
319 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
320 phb->ioda.reserved_pe_idx, phb->hose->global_number);
321
322 return 0;
323
324 fail:
325 for ( ; index >= 0; index--)
326 opal_pci_phb_mmio_enable(phb->opal_id,
327 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
328
329 return -EIO;
330 }
331
332 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
333 unsigned long *pe_bitmap,
334 bool all)
335 {
336 struct pci_dev *pdev;
337
338 list_for_each_entry(pdev, &bus->devices, bus_list) {
339 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
340
341 if (all && pdev->subordinate)
342 pnv_ioda_reserve_m64_pe(pdev->subordinate,
343 pe_bitmap, all);
344 }
345 }
346
347 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
348 {
349 struct pci_controller *hose = pci_bus_to_host(bus);
350 struct pnv_phb *phb = hose->private_data;
351 struct pnv_ioda_pe *master_pe, *pe;
352 unsigned long size, *pe_alloc;
353 int i;
354
355 /* Root bus shouldn't use M64 */
356 if (pci_is_root_bus(bus))
357 return NULL;
358
359 /* Allocate bitmap */
360 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
361 pe_alloc = kzalloc(size, GFP_KERNEL);
362 if (!pe_alloc) {
363 pr_warn("%s: Out of memory !\n",
364 __func__);
365 return NULL;
366 }
367
368 /* Figure out reserved PE numbers by the PE */
369 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
370
371 /*
372 * the current bus might not own M64 window and that's all
373 * contributed by its child buses. For the case, we needn't
374 * pick M64 dependent PE#.
375 */
376 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
377 kfree(pe_alloc);
378 return NULL;
379 }
380
381 /*
382 * Figure out the master PE and put all slave PEs to master
383 * PE's list to form compound PE.
384 */
385 master_pe = NULL;
386 i = -1;
387 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
388 phb->ioda.total_pe_num) {
389 pe = &phb->ioda.pe_array[i];
390
391 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
392 if (!master_pe) {
393 pe->flags |= PNV_IODA_PE_MASTER;
394 INIT_LIST_HEAD(&pe->slaves);
395 master_pe = pe;
396 } else {
397 pe->flags |= PNV_IODA_PE_SLAVE;
398 pe->master = master_pe;
399 list_add_tail(&pe->list, &master_pe->slaves);
400 }
401
402 /*
403 * P7IOC supports M64DT, which helps mapping M64 segment
404 * to one particular PE#. However, PHB3 has fixed mapping
405 * between M64 segment and PE#. In order to have same logic
406 * for P7IOC and PHB3, we enforce fixed mapping between M64
407 * segment and PE# on P7IOC.
408 */
409 if (phb->type == PNV_PHB_IODA1) {
410 int64_t rc;
411
412 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
413 pe->pe_number, OPAL_M64_WINDOW_TYPE,
414 pe->pe_number / PNV_IODA1_M64_SEGS,
415 pe->pe_number % PNV_IODA1_M64_SEGS);
416 if (rc != OPAL_SUCCESS)
417 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
418 __func__, rc, phb->hose->global_number,
419 pe->pe_number);
420 }
421 }
422
423 kfree(pe_alloc);
424 return master_pe;
425 }
426
427 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
428 {
429 struct pci_controller *hose = phb->hose;
430 struct device_node *dn = hose->dn;
431 struct resource *res;
432 u32 m64_range[2], i;
433 const __be32 *r;
434 u64 pci_addr;
435
436 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
437 pr_info(" Not support M64 window\n");
438 return;
439 }
440
441 if (!firmware_has_feature(FW_FEATURE_OPAL)) {
442 pr_info(" Firmware too old to support M64 window\n");
443 return;
444 }
445
446 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
447 if (!r) {
448 pr_info(" No <ibm,opal-m64-window> on %s\n",
449 dn->full_name);
450 return;
451 }
452
453 /*
454 * Find the available M64 BAR range and pickup the last one for
455 * covering the whole 64-bits space. We support only one range.
456 */
457 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
458 m64_range, 2)) {
459 /* In absence of the property, assume 0..15 */
460 m64_range[0] = 0;
461 m64_range[1] = 16;
462 }
463 /* We only support 64 bits in our allocator */
464 if (m64_range[1] > 63) {
465 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
466 __func__, m64_range[1], phb->hose->global_number);
467 m64_range[1] = 63;
468 }
469 /* Empty range, no m64 */
470 if (m64_range[1] <= m64_range[0]) {
471 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
472 __func__, phb->hose->global_number);
473 return;
474 }
475
476 /* Configure M64 informations */
477 res = &hose->mem_resources[1];
478 res->name = dn->full_name;
479 res->start = of_translate_address(dn, r + 2);
480 res->end = res->start + of_read_number(r + 4, 2) - 1;
481 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
482 pci_addr = of_read_number(r, 2);
483 hose->mem_offset[1] = res->start - pci_addr;
484
485 phb->ioda.m64_size = resource_size(res);
486 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
487 phb->ioda.m64_base = pci_addr;
488
489 /* This lines up nicely with the display from processing OF ranges */
490 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
491 res->start, res->end, pci_addr, m64_range[0],
492 m64_range[0] + m64_range[1] - 1);
493
494 /* Mark all M64 used up by default */
495 phb->ioda.m64_bar_alloc = (unsigned long)-1;
496
497 /* Use last M64 BAR to cover M64 window */
498 m64_range[1]--;
499 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
500
501 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
502
503 /* Mark remaining ones free */
504 for (i = m64_range[0]; i < m64_range[1]; i++)
505 clear_bit(i, &phb->ioda.m64_bar_alloc);
506
507 /*
508 * Setup init functions for M64 based on IODA version, IODA3 uses
509 * the IODA2 code.
510 */
511 if (phb->type == PNV_PHB_IODA1)
512 phb->init_m64 = pnv_ioda1_init_m64;
513 else
514 phb->init_m64 = pnv_ioda2_init_m64;
515 phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
516 phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
517 }
518
519 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
520 {
521 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
522 struct pnv_ioda_pe *slave;
523 s64 rc;
524
525 /* Fetch master PE */
526 if (pe->flags & PNV_IODA_PE_SLAVE) {
527 pe = pe->master;
528 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
529 return;
530
531 pe_no = pe->pe_number;
532 }
533
534 /* Freeze master PE */
535 rc = opal_pci_eeh_freeze_set(phb->opal_id,
536 pe_no,
537 OPAL_EEH_ACTION_SET_FREEZE_ALL);
538 if (rc != OPAL_SUCCESS) {
539 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
540 __func__, rc, phb->hose->global_number, pe_no);
541 return;
542 }
543
544 /* Freeze slave PEs */
545 if (!(pe->flags & PNV_IODA_PE_MASTER))
546 return;
547
548 list_for_each_entry(slave, &pe->slaves, list) {
549 rc = opal_pci_eeh_freeze_set(phb->opal_id,
550 slave->pe_number,
551 OPAL_EEH_ACTION_SET_FREEZE_ALL);
552 if (rc != OPAL_SUCCESS)
553 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
554 __func__, rc, phb->hose->global_number,
555 slave->pe_number);
556 }
557 }
558
559 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
560 {
561 struct pnv_ioda_pe *pe, *slave;
562 s64 rc;
563
564 /* Find master PE */
565 pe = &phb->ioda.pe_array[pe_no];
566 if (pe->flags & PNV_IODA_PE_SLAVE) {
567 pe = pe->master;
568 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
569 pe_no = pe->pe_number;
570 }
571
572 /* Clear frozen state for master PE */
573 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
574 if (rc != OPAL_SUCCESS) {
575 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
576 __func__, rc, opt, phb->hose->global_number, pe_no);
577 return -EIO;
578 }
579
580 if (!(pe->flags & PNV_IODA_PE_MASTER))
581 return 0;
582
583 /* Clear frozen state for slave PEs */
584 list_for_each_entry(slave, &pe->slaves, list) {
585 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
586 slave->pe_number,
587 opt);
588 if (rc != OPAL_SUCCESS) {
589 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
590 __func__, rc, opt, phb->hose->global_number,
591 slave->pe_number);
592 return -EIO;
593 }
594 }
595
596 return 0;
597 }
598
599 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
600 {
601 struct pnv_ioda_pe *slave, *pe;
602 u8 fstate, state;
603 __be16 pcierr;
604 s64 rc;
605
606 /* Sanity check on PE number */
607 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
608 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
609
610 /*
611 * Fetch the master PE and the PE instance might be
612 * not initialized yet.
613 */
614 pe = &phb->ioda.pe_array[pe_no];
615 if (pe->flags & PNV_IODA_PE_SLAVE) {
616 pe = pe->master;
617 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
618 pe_no = pe->pe_number;
619 }
620
621 /* Check the master PE */
622 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
623 &state, &pcierr, NULL);
624 if (rc != OPAL_SUCCESS) {
625 pr_warn("%s: Failure %lld getting "
626 "PHB#%x-PE#%x state\n",
627 __func__, rc,
628 phb->hose->global_number, pe_no);
629 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
630 }
631
632 /* Check the slave PE */
633 if (!(pe->flags & PNV_IODA_PE_MASTER))
634 return state;
635
636 list_for_each_entry(slave, &pe->slaves, list) {
637 rc = opal_pci_eeh_freeze_status(phb->opal_id,
638 slave->pe_number,
639 &fstate,
640 &pcierr,
641 NULL);
642 if (rc != OPAL_SUCCESS) {
643 pr_warn("%s: Failure %lld getting "
644 "PHB#%x-PE#%x state\n",
645 __func__, rc,
646 phb->hose->global_number, slave->pe_number);
647 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
648 }
649
650 /*
651 * Override the result based on the ascending
652 * priority.
653 */
654 if (fstate > state)
655 state = fstate;
656 }
657
658 return state;
659 }
660
661 /* Currently those 2 are only used when MSIs are enabled, this will change
662 * but in the meantime, we need to protect them to avoid warnings
663 */
664 #ifdef CONFIG_PCI_MSI
665 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
666 {
667 struct pci_controller *hose = pci_bus_to_host(dev->bus);
668 struct pnv_phb *phb = hose->private_data;
669 struct pci_dn *pdn = pci_get_pdn(dev);
670
671 if (!pdn)
672 return NULL;
673 if (pdn->pe_number == IODA_INVALID_PE)
674 return NULL;
675 return &phb->ioda.pe_array[pdn->pe_number];
676 }
677 #endif /* CONFIG_PCI_MSI */
678
679 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
680 struct pnv_ioda_pe *parent,
681 struct pnv_ioda_pe *child,
682 bool is_add)
683 {
684 const char *desc = is_add ? "adding" : "removing";
685 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
686 OPAL_REMOVE_PE_FROM_DOMAIN;
687 struct pnv_ioda_pe *slave;
688 long rc;
689
690 /* Parent PE affects child PE */
691 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
692 child->pe_number, op);
693 if (rc != OPAL_SUCCESS) {
694 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
695 rc, desc);
696 return -ENXIO;
697 }
698
699 if (!(child->flags & PNV_IODA_PE_MASTER))
700 return 0;
701
702 /* Compound case: parent PE affects slave PEs */
703 list_for_each_entry(slave, &child->slaves, list) {
704 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
705 slave->pe_number, op);
706 if (rc != OPAL_SUCCESS) {
707 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
708 rc, desc);
709 return -ENXIO;
710 }
711 }
712
713 return 0;
714 }
715
716 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
717 struct pnv_ioda_pe *pe,
718 bool is_add)
719 {
720 struct pnv_ioda_pe *slave;
721 struct pci_dev *pdev = NULL;
722 int ret;
723
724 /*
725 * Clear PE frozen state. If it's master PE, we need
726 * clear slave PE frozen state as well.
727 */
728 if (is_add) {
729 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
730 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
731 if (pe->flags & PNV_IODA_PE_MASTER) {
732 list_for_each_entry(slave, &pe->slaves, list)
733 opal_pci_eeh_freeze_clear(phb->opal_id,
734 slave->pe_number,
735 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
736 }
737 }
738
739 /*
740 * Associate PE in PELT. We need add the PE into the
741 * corresponding PELT-V as well. Otherwise, the error
742 * originated from the PE might contribute to other
743 * PEs.
744 */
745 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
746 if (ret)
747 return ret;
748
749 /* For compound PEs, any one affects all of them */
750 if (pe->flags & PNV_IODA_PE_MASTER) {
751 list_for_each_entry(slave, &pe->slaves, list) {
752 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
753 if (ret)
754 return ret;
755 }
756 }
757
758 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
759 pdev = pe->pbus->self;
760 else if (pe->flags & PNV_IODA_PE_DEV)
761 pdev = pe->pdev->bus->self;
762 #ifdef CONFIG_PCI_IOV
763 else if (pe->flags & PNV_IODA_PE_VF)
764 pdev = pe->parent_dev;
765 #endif /* CONFIG_PCI_IOV */
766 while (pdev) {
767 struct pci_dn *pdn = pci_get_pdn(pdev);
768 struct pnv_ioda_pe *parent;
769
770 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
771 parent = &phb->ioda.pe_array[pdn->pe_number];
772 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
773 if (ret)
774 return ret;
775 }
776
777 pdev = pdev->bus->self;
778 }
779
780 return 0;
781 }
782
783 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
784 {
785 struct pci_dev *parent;
786 uint8_t bcomp, dcomp, fcomp;
787 int64_t rc;
788 long rid_end, rid;
789
790 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
791 if (pe->pbus) {
792 int count;
793
794 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
795 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
796 parent = pe->pbus->self;
797 if (pe->flags & PNV_IODA_PE_BUS_ALL)
798 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
799 else
800 count = 1;
801
802 switch(count) {
803 case 1: bcomp = OpalPciBusAll; break;
804 case 2: bcomp = OpalPciBus7Bits; break;
805 case 4: bcomp = OpalPciBus6Bits; break;
806 case 8: bcomp = OpalPciBus5Bits; break;
807 case 16: bcomp = OpalPciBus4Bits; break;
808 case 32: bcomp = OpalPciBus3Bits; break;
809 default:
810 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
811 count);
812 /* Do an exact match only */
813 bcomp = OpalPciBusAll;
814 }
815 rid_end = pe->rid + (count << 8);
816 } else {
817 #ifdef CONFIG_PCI_IOV
818 if (pe->flags & PNV_IODA_PE_VF)
819 parent = pe->parent_dev;
820 else
821 #endif
822 parent = pe->pdev->bus->self;
823 bcomp = OpalPciBusAll;
824 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
825 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
826 rid_end = pe->rid + 1;
827 }
828
829 /* Clear the reverse map */
830 for (rid = pe->rid; rid < rid_end; rid++)
831 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
832
833 /* Release from all parents PELT-V */
834 while (parent) {
835 struct pci_dn *pdn = pci_get_pdn(parent);
836 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
837 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
838 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
839 /* XXX What to do in case of error ? */
840 }
841 parent = parent->bus->self;
842 }
843
844 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
845 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
846
847 /* Disassociate PE in PELT */
848 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
849 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
850 if (rc)
851 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
852 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
853 bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
854 if (rc)
855 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
856
857 pe->pbus = NULL;
858 pe->pdev = NULL;
859 #ifdef CONFIG_PCI_IOV
860 pe->parent_dev = NULL;
861 #endif
862
863 return 0;
864 }
865
866 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
867 {
868 struct pci_dev *parent;
869 uint8_t bcomp, dcomp, fcomp;
870 long rc, rid_end, rid;
871
872 /* Bus validation ? */
873 if (pe->pbus) {
874 int count;
875
876 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
877 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
878 parent = pe->pbus->self;
879 if (pe->flags & PNV_IODA_PE_BUS_ALL)
880 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
881 else
882 count = 1;
883
884 switch(count) {
885 case 1: bcomp = OpalPciBusAll; break;
886 case 2: bcomp = OpalPciBus7Bits; break;
887 case 4: bcomp = OpalPciBus6Bits; break;
888 case 8: bcomp = OpalPciBus5Bits; break;
889 case 16: bcomp = OpalPciBus4Bits; break;
890 case 32: bcomp = OpalPciBus3Bits; break;
891 default:
892 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
893 count);
894 /* Do an exact match only */
895 bcomp = OpalPciBusAll;
896 }
897 rid_end = pe->rid + (count << 8);
898 } else {
899 #ifdef CONFIG_PCI_IOV
900 if (pe->flags & PNV_IODA_PE_VF)
901 parent = pe->parent_dev;
902 else
903 #endif /* CONFIG_PCI_IOV */
904 parent = pe->pdev->bus->self;
905 bcomp = OpalPciBusAll;
906 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
907 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
908 rid_end = pe->rid + 1;
909 }
910
911 /*
912 * Associate PE in PELT. We need add the PE into the
913 * corresponding PELT-V as well. Otherwise, the error
914 * originated from the PE might contribute to other
915 * PEs.
916 */
917 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
918 bcomp, dcomp, fcomp, OPAL_MAP_PE);
919 if (rc) {
920 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
921 return -ENXIO;
922 }
923
924 /*
925 * Configure PELTV. NPUs don't have a PELTV table so skip
926 * configuration on them.
927 */
928 if (phb->type != PNV_PHB_NPU)
929 pnv_ioda_set_peltv(phb, pe, true);
930
931 /* Setup reverse map */
932 for (rid = pe->rid; rid < rid_end; rid++)
933 phb->ioda.pe_rmap[rid] = pe->pe_number;
934
935 /* Setup one MVTs on IODA1 */
936 if (phb->type != PNV_PHB_IODA1) {
937 pe->mve_number = 0;
938 goto out;
939 }
940
941 pe->mve_number = pe->pe_number;
942 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
943 if (rc != OPAL_SUCCESS) {
944 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
945 rc, pe->mve_number);
946 pe->mve_number = -1;
947 } else {
948 rc = opal_pci_set_mve_enable(phb->opal_id,
949 pe->mve_number, OPAL_ENABLE_MVE);
950 if (rc) {
951 pe_err(pe, "OPAL error %ld enabling MVE %x\n",
952 rc, pe->mve_number);
953 pe->mve_number = -1;
954 }
955 }
956
957 out:
958 return 0;
959 }
960
961 #ifdef CONFIG_PCI_IOV
962 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
963 {
964 struct pci_dn *pdn = pci_get_pdn(dev);
965 int i;
966 struct resource *res, res2;
967 resource_size_t size;
968 u16 num_vfs;
969
970 if (!dev->is_physfn)
971 return -EINVAL;
972
973 /*
974 * "offset" is in VFs. The M64 windows are sized so that when they
975 * are segmented, each segment is the same size as the IOV BAR.
976 * Each segment is in a separate PE, and the high order bits of the
977 * address are the PE number. Therefore, each VF's BAR is in a
978 * separate PE, and changing the IOV BAR start address changes the
979 * range of PEs the VFs are in.
980 */
981 num_vfs = pdn->num_vfs;
982 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
983 res = &dev->resource[i + PCI_IOV_RESOURCES];
984 if (!res->flags || !res->parent)
985 continue;
986
987 /*
988 * The actual IOV BAR range is determined by the start address
989 * and the actual size for num_vfs VFs BAR. This check is to
990 * make sure that after shifting, the range will not overlap
991 * with another device.
992 */
993 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
994 res2.flags = res->flags;
995 res2.start = res->start + (size * offset);
996 res2.end = res2.start + (size * num_vfs) - 1;
997
998 if (res2.end > res->end) {
999 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
1000 i, &res2, res, num_vfs, offset);
1001 return -EBUSY;
1002 }
1003 }
1004
1005 /*
1006 * After doing so, there would be a "hole" in the /proc/iomem when
1007 * offset is a positive value. It looks like the device return some
1008 * mmio back to the system, which actually no one could use it.
1009 */
1010 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1011 res = &dev->resource[i + PCI_IOV_RESOURCES];
1012 if (!res->flags || !res->parent)
1013 continue;
1014
1015 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1016 res2 = *res;
1017 res->start += size * offset;
1018
1019 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1020 i, &res2, res, (offset > 0) ? "En" : "Dis",
1021 num_vfs, offset);
1022 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1023 }
1024 return 0;
1025 }
1026 #endif /* CONFIG_PCI_IOV */
1027
1028 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1029 {
1030 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1031 struct pnv_phb *phb = hose->private_data;
1032 struct pci_dn *pdn = pci_get_pdn(dev);
1033 struct pnv_ioda_pe *pe;
1034
1035 if (!pdn) {
1036 pr_err("%s: Device tree node not associated properly\n",
1037 pci_name(dev));
1038 return NULL;
1039 }
1040 if (pdn->pe_number != IODA_INVALID_PE)
1041 return NULL;
1042
1043 pe = pnv_ioda_alloc_pe(phb);
1044 if (!pe) {
1045 pr_warning("%s: Not enough PE# available, disabling device\n",
1046 pci_name(dev));
1047 return NULL;
1048 }
1049
1050 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1051 * pointer in the PE data structure, both should be destroyed at the
1052 * same time. However, this needs to be looked at more closely again
1053 * once we actually start removing things (Hotplug, SR-IOV, ...)
1054 *
1055 * At some point we want to remove the PDN completely anyways
1056 */
1057 pci_dev_get(dev);
1058 pdn->pcidev = dev;
1059 pdn->pe_number = pe->pe_number;
1060 pe->flags = PNV_IODA_PE_DEV;
1061 pe->pdev = dev;
1062 pe->pbus = NULL;
1063 pe->mve_number = -1;
1064 pe->rid = dev->bus->number << 8 | pdn->devfn;
1065
1066 pe_info(pe, "Associated device to PE\n");
1067
1068 if (pnv_ioda_configure_pe(phb, pe)) {
1069 /* XXX What do we do here ? */
1070 pnv_ioda_free_pe(pe);
1071 pdn->pe_number = IODA_INVALID_PE;
1072 pe->pdev = NULL;
1073 pci_dev_put(dev);
1074 return NULL;
1075 }
1076
1077 /* Put PE to the list */
1078 list_add_tail(&pe->list, &phb->ioda.pe_list);
1079
1080 return pe;
1081 }
1082
1083 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1084 {
1085 struct pci_dev *dev;
1086
1087 list_for_each_entry(dev, &bus->devices, bus_list) {
1088 struct pci_dn *pdn = pci_get_pdn(dev);
1089
1090 if (pdn == NULL) {
1091 pr_warn("%s: No device node associated with device !\n",
1092 pci_name(dev));
1093 continue;
1094 }
1095
1096 /*
1097 * In partial hotplug case, the PCI device might be still
1098 * associated with the PE and needn't attach it to the PE
1099 * again.
1100 */
1101 if (pdn->pe_number != IODA_INVALID_PE)
1102 continue;
1103
1104 pe->device_count++;
1105 pdn->pcidev = dev;
1106 pdn->pe_number = pe->pe_number;
1107 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1108 pnv_ioda_setup_same_PE(dev->subordinate, pe);
1109 }
1110 }
1111
1112 /*
1113 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1114 * single PCI bus. Another one that contains the primary PCI bus and its
1115 * subordinate PCI devices and buses. The second type of PE is normally
1116 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1117 */
1118 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1119 {
1120 struct pci_controller *hose = pci_bus_to_host(bus);
1121 struct pnv_phb *phb = hose->private_data;
1122 struct pnv_ioda_pe *pe = NULL;
1123 unsigned int pe_num;
1124
1125 /*
1126 * In partial hotplug case, the PE instance might be still alive.
1127 * We should reuse it instead of allocating a new one.
1128 */
1129 pe_num = phb->ioda.pe_rmap[bus->number << 8];
1130 if (pe_num != IODA_INVALID_PE) {
1131 pe = &phb->ioda.pe_array[pe_num];
1132 pnv_ioda_setup_same_PE(bus, pe);
1133 return NULL;
1134 }
1135
1136 /* PE number for root bus should have been reserved */
1137 if (pci_is_root_bus(bus) &&
1138 phb->ioda.root_pe_idx != IODA_INVALID_PE)
1139 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1140
1141 /* Check if PE is determined by M64 */
1142 if (!pe && phb->pick_m64_pe)
1143 pe = phb->pick_m64_pe(bus, all);
1144
1145 /* The PE number isn't pinned by M64 */
1146 if (!pe)
1147 pe = pnv_ioda_alloc_pe(phb);
1148
1149 if (!pe) {
1150 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1151 __func__, pci_domain_nr(bus), bus->number);
1152 return NULL;
1153 }
1154
1155 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1156 pe->pbus = bus;
1157 pe->pdev = NULL;
1158 pe->mve_number = -1;
1159 pe->rid = bus->busn_res.start << 8;
1160
1161 if (all)
1162 pe_info(pe, "Secondary bus %d..%d associated with PE#%x\n",
1163 bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1164 else
1165 pe_info(pe, "Secondary bus %d associated with PE#%x\n",
1166 bus->busn_res.start, pe->pe_number);
1167
1168 if (pnv_ioda_configure_pe(phb, pe)) {
1169 /* XXX What do we do here ? */
1170 pnv_ioda_free_pe(pe);
1171 pe->pbus = NULL;
1172 return NULL;
1173 }
1174
1175 /* Associate it with all child devices */
1176 pnv_ioda_setup_same_PE(bus, pe);
1177
1178 /* Put PE to the list */
1179 list_add_tail(&pe->list, &phb->ioda.pe_list);
1180
1181 return pe;
1182 }
1183
1184 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1185 {
1186 int pe_num, found_pe = false, rc;
1187 long rid;
1188 struct pnv_ioda_pe *pe;
1189 struct pci_dev *gpu_pdev;
1190 struct pci_dn *npu_pdn;
1191 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1192 struct pnv_phb *phb = hose->private_data;
1193
1194 /*
1195 * Due to a hardware errata PE#0 on the NPU is reserved for
1196 * error handling. This means we only have three PEs remaining
1197 * which need to be assigned to four links, implying some
1198 * links must share PEs.
1199 *
1200 * To achieve this we assign PEs such that NPUs linking the
1201 * same GPU get assigned the same PE.
1202 */
1203 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1204 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1205 pe = &phb->ioda.pe_array[pe_num];
1206 if (!pe->pdev)
1207 continue;
1208
1209 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1210 /*
1211 * This device has the same peer GPU so should
1212 * be assigned the same PE as the existing
1213 * peer NPU.
1214 */
1215 dev_info(&npu_pdev->dev,
1216 "Associating to existing PE %x\n", pe_num);
1217 pci_dev_get(npu_pdev);
1218 npu_pdn = pci_get_pdn(npu_pdev);
1219 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1220 npu_pdn->pcidev = npu_pdev;
1221 npu_pdn->pe_number = pe_num;
1222 phb->ioda.pe_rmap[rid] = pe->pe_number;
1223
1224 /* Map the PE to this link */
1225 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1226 OpalPciBusAll,
1227 OPAL_COMPARE_RID_DEVICE_NUMBER,
1228 OPAL_COMPARE_RID_FUNCTION_NUMBER,
1229 OPAL_MAP_PE);
1230 WARN_ON(rc != OPAL_SUCCESS);
1231 found_pe = true;
1232 break;
1233 }
1234 }
1235
1236 if (!found_pe)
1237 /*
1238 * Could not find an existing PE so allocate a new
1239 * one.
1240 */
1241 return pnv_ioda_setup_dev_PE(npu_pdev);
1242 else
1243 return pe;
1244 }
1245
1246 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1247 {
1248 struct pci_dev *pdev;
1249
1250 list_for_each_entry(pdev, &bus->devices, bus_list)
1251 pnv_ioda_setup_npu_PE(pdev);
1252 }
1253
1254 static void pnv_pci_ioda_setup_PEs(void)
1255 {
1256 struct pci_controller *hose, *tmp;
1257 struct pnv_phb *phb;
1258
1259 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1260 phb = hose->private_data;
1261 if (phb->type == PNV_PHB_NPU) {
1262 /* PE#0 is needed for error reporting */
1263 pnv_ioda_reserve_pe(phb, 0);
1264 pnv_ioda_setup_npu_PEs(hose->bus);
1265 }
1266 }
1267 }
1268
1269 #ifdef CONFIG_PCI_IOV
1270 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1271 {
1272 struct pci_bus *bus;
1273 struct pci_controller *hose;
1274 struct pnv_phb *phb;
1275 struct pci_dn *pdn;
1276 int i, j;
1277 int m64_bars;
1278
1279 bus = pdev->bus;
1280 hose = pci_bus_to_host(bus);
1281 phb = hose->private_data;
1282 pdn = pci_get_pdn(pdev);
1283
1284 if (pdn->m64_single_mode)
1285 m64_bars = num_vfs;
1286 else
1287 m64_bars = 1;
1288
1289 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1290 for (j = 0; j < m64_bars; j++) {
1291 if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1292 continue;
1293 opal_pci_phb_mmio_enable(phb->opal_id,
1294 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1295 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1296 pdn->m64_map[j][i] = IODA_INVALID_M64;
1297 }
1298
1299 kfree(pdn->m64_map);
1300 return 0;
1301 }
1302
1303 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1304 {
1305 struct pci_bus *bus;
1306 struct pci_controller *hose;
1307 struct pnv_phb *phb;
1308 struct pci_dn *pdn;
1309 unsigned int win;
1310 struct resource *res;
1311 int i, j;
1312 int64_t rc;
1313 int total_vfs;
1314 resource_size_t size, start;
1315 int pe_num;
1316 int m64_bars;
1317
1318 bus = pdev->bus;
1319 hose = pci_bus_to_host(bus);
1320 phb = hose->private_data;
1321 pdn = pci_get_pdn(pdev);
1322 total_vfs = pci_sriov_get_totalvfs(pdev);
1323
1324 if (pdn->m64_single_mode)
1325 m64_bars = num_vfs;
1326 else
1327 m64_bars = 1;
1328
1329 pdn->m64_map = kmalloc_array(m64_bars,
1330 sizeof(*pdn->m64_map),
1331 GFP_KERNEL);
1332 if (!pdn->m64_map)
1333 return -ENOMEM;
1334 /* Initialize the m64_map to IODA_INVALID_M64 */
1335 for (i = 0; i < m64_bars ; i++)
1336 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1337 pdn->m64_map[i][j] = IODA_INVALID_M64;
1338
1339
1340 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1341 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1342 if (!res->flags || !res->parent)
1343 continue;
1344
1345 for (j = 0; j < m64_bars; j++) {
1346 do {
1347 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1348 phb->ioda.m64_bar_idx + 1, 0);
1349
1350 if (win >= phb->ioda.m64_bar_idx + 1)
1351 goto m64_failed;
1352 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1353
1354 pdn->m64_map[j][i] = win;
1355
1356 if (pdn->m64_single_mode) {
1357 size = pci_iov_resource_size(pdev,
1358 PCI_IOV_RESOURCES + i);
1359 start = res->start + size * j;
1360 } else {
1361 size = resource_size(res);
1362 start = res->start;
1363 }
1364
1365 /* Map the M64 here */
1366 if (pdn->m64_single_mode) {
1367 pe_num = pdn->pe_num_map[j];
1368 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1369 pe_num, OPAL_M64_WINDOW_TYPE,
1370 pdn->m64_map[j][i], 0);
1371 }
1372
1373 rc = opal_pci_set_phb_mem_window(phb->opal_id,
1374 OPAL_M64_WINDOW_TYPE,
1375 pdn->m64_map[j][i],
1376 start,
1377 0, /* unused */
1378 size);
1379
1380
1381 if (rc != OPAL_SUCCESS) {
1382 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1383 win, rc);
1384 goto m64_failed;
1385 }
1386
1387 if (pdn->m64_single_mode)
1388 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1389 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1390 else
1391 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1392 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1393
1394 if (rc != OPAL_SUCCESS) {
1395 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1396 win, rc);
1397 goto m64_failed;
1398 }
1399 }
1400 }
1401 return 0;
1402
1403 m64_failed:
1404 pnv_pci_vf_release_m64(pdev, num_vfs);
1405 return -EBUSY;
1406 }
1407
1408 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1409 int num);
1410 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1411
1412 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1413 {
1414 struct iommu_table *tbl;
1415 int64_t rc;
1416
1417 tbl = pe->table_group.tables[0];
1418 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1419 if (rc)
1420 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1421
1422 pnv_pci_ioda2_set_bypass(pe, false);
1423 if (pe->table_group.group) {
1424 iommu_group_put(pe->table_group.group);
1425 BUG_ON(pe->table_group.group);
1426 }
1427 pnv_pci_ioda2_table_free_pages(tbl);
1428 iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1429 }
1430
1431 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1432 {
1433 struct pci_bus *bus;
1434 struct pci_controller *hose;
1435 struct pnv_phb *phb;
1436 struct pnv_ioda_pe *pe, *pe_n;
1437 struct pci_dn *pdn;
1438
1439 bus = pdev->bus;
1440 hose = pci_bus_to_host(bus);
1441 phb = hose->private_data;
1442 pdn = pci_get_pdn(pdev);
1443
1444 if (!pdev->is_physfn)
1445 return;
1446
1447 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1448 if (pe->parent_dev != pdev)
1449 continue;
1450
1451 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1452
1453 /* Remove from list */
1454 mutex_lock(&phb->ioda.pe_list_mutex);
1455 list_del(&pe->list);
1456 mutex_unlock(&phb->ioda.pe_list_mutex);
1457
1458 pnv_ioda_deconfigure_pe(phb, pe);
1459
1460 pnv_ioda_free_pe(pe);
1461 }
1462 }
1463
1464 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1465 {
1466 struct pci_bus *bus;
1467 struct pci_controller *hose;
1468 struct pnv_phb *phb;
1469 struct pnv_ioda_pe *pe;
1470 struct pci_dn *pdn;
1471 u16 num_vfs, i;
1472
1473 bus = pdev->bus;
1474 hose = pci_bus_to_host(bus);
1475 phb = hose->private_data;
1476 pdn = pci_get_pdn(pdev);
1477 num_vfs = pdn->num_vfs;
1478
1479 /* Release VF PEs */
1480 pnv_ioda_release_vf_PE(pdev);
1481
1482 if (phb->type == PNV_PHB_IODA2) {
1483 if (!pdn->m64_single_mode)
1484 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1485
1486 /* Release M64 windows */
1487 pnv_pci_vf_release_m64(pdev, num_vfs);
1488
1489 /* Release PE numbers */
1490 if (pdn->m64_single_mode) {
1491 for (i = 0; i < num_vfs; i++) {
1492 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1493 continue;
1494
1495 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1496 pnv_ioda_free_pe(pe);
1497 }
1498 } else
1499 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1500 /* Releasing pe_num_map */
1501 kfree(pdn->pe_num_map);
1502 }
1503 }
1504
1505 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1506 struct pnv_ioda_pe *pe);
1507 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1508 {
1509 struct pci_bus *bus;
1510 struct pci_controller *hose;
1511 struct pnv_phb *phb;
1512 struct pnv_ioda_pe *pe;
1513 int pe_num;
1514 u16 vf_index;
1515 struct pci_dn *pdn;
1516
1517 bus = pdev->bus;
1518 hose = pci_bus_to_host(bus);
1519 phb = hose->private_data;
1520 pdn = pci_get_pdn(pdev);
1521
1522 if (!pdev->is_physfn)
1523 return;
1524
1525 /* Reserve PE for each VF */
1526 for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1527 if (pdn->m64_single_mode)
1528 pe_num = pdn->pe_num_map[vf_index];
1529 else
1530 pe_num = *pdn->pe_num_map + vf_index;
1531
1532 pe = &phb->ioda.pe_array[pe_num];
1533 pe->pe_number = pe_num;
1534 pe->phb = phb;
1535 pe->flags = PNV_IODA_PE_VF;
1536 pe->pbus = NULL;
1537 pe->parent_dev = pdev;
1538 pe->mve_number = -1;
1539 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1540 pci_iov_virtfn_devfn(pdev, vf_index);
1541
1542 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1543 hose->global_number, pdev->bus->number,
1544 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1545 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1546
1547 if (pnv_ioda_configure_pe(phb, pe)) {
1548 /* XXX What do we do here ? */
1549 pnv_ioda_free_pe(pe);
1550 pe->pdev = NULL;
1551 continue;
1552 }
1553
1554 /* Put PE to the list */
1555 mutex_lock(&phb->ioda.pe_list_mutex);
1556 list_add_tail(&pe->list, &phb->ioda.pe_list);
1557 mutex_unlock(&phb->ioda.pe_list_mutex);
1558
1559 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1560 }
1561 }
1562
1563 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1564 {
1565 struct pci_bus *bus;
1566 struct pci_controller *hose;
1567 struct pnv_phb *phb;
1568 struct pnv_ioda_pe *pe;
1569 struct pci_dn *pdn;
1570 int ret;
1571 u16 i;
1572
1573 bus = pdev->bus;
1574 hose = pci_bus_to_host(bus);
1575 phb = hose->private_data;
1576 pdn = pci_get_pdn(pdev);
1577
1578 if (phb->type == PNV_PHB_IODA2) {
1579 if (!pdn->vfs_expanded) {
1580 dev_info(&pdev->dev, "don't support this SRIOV device"
1581 " with non 64bit-prefetchable IOV BAR\n");
1582 return -ENOSPC;
1583 }
1584
1585 /*
1586 * When M64 BARs functions in Single PE mode, the number of VFs
1587 * could be enabled must be less than the number of M64 BARs.
1588 */
1589 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1590 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1591 return -EBUSY;
1592 }
1593
1594 /* Allocating pe_num_map */
1595 if (pdn->m64_single_mode)
1596 pdn->pe_num_map = kmalloc_array(num_vfs,
1597 sizeof(*pdn->pe_num_map),
1598 GFP_KERNEL);
1599 else
1600 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1601
1602 if (!pdn->pe_num_map)
1603 return -ENOMEM;
1604
1605 if (pdn->m64_single_mode)
1606 for (i = 0; i < num_vfs; i++)
1607 pdn->pe_num_map[i] = IODA_INVALID_PE;
1608
1609 /* Calculate available PE for required VFs */
1610 if (pdn->m64_single_mode) {
1611 for (i = 0; i < num_vfs; i++) {
1612 pe = pnv_ioda_alloc_pe(phb);
1613 if (!pe) {
1614 ret = -EBUSY;
1615 goto m64_failed;
1616 }
1617
1618 pdn->pe_num_map[i] = pe->pe_number;
1619 }
1620 } else {
1621 mutex_lock(&phb->ioda.pe_alloc_mutex);
1622 *pdn->pe_num_map = bitmap_find_next_zero_area(
1623 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1624 0, num_vfs, 0);
1625 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1626 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1627 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1628 kfree(pdn->pe_num_map);
1629 return -EBUSY;
1630 }
1631 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1632 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1633 }
1634 pdn->num_vfs = num_vfs;
1635
1636 /* Assign M64 window accordingly */
1637 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1638 if (ret) {
1639 dev_info(&pdev->dev, "Not enough M64 window resources\n");
1640 goto m64_failed;
1641 }
1642
1643 /*
1644 * When using one M64 BAR to map one IOV BAR, we need to shift
1645 * the IOV BAR according to the PE# allocated to the VFs.
1646 * Otherwise, the PE# for the VF will conflict with others.
1647 */
1648 if (!pdn->m64_single_mode) {
1649 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1650 if (ret)
1651 goto m64_failed;
1652 }
1653 }
1654
1655 /* Setup VF PEs */
1656 pnv_ioda_setup_vf_PE(pdev, num_vfs);
1657
1658 return 0;
1659
1660 m64_failed:
1661 if (pdn->m64_single_mode) {
1662 for (i = 0; i < num_vfs; i++) {
1663 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1664 continue;
1665
1666 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1667 pnv_ioda_free_pe(pe);
1668 }
1669 } else
1670 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1671
1672 /* Releasing pe_num_map */
1673 kfree(pdn->pe_num_map);
1674
1675 return ret;
1676 }
1677
1678 int pcibios_sriov_disable(struct pci_dev *pdev)
1679 {
1680 pnv_pci_sriov_disable(pdev);
1681
1682 /* Release PCI data */
1683 remove_dev_pci_data(pdev);
1684 return 0;
1685 }
1686
1687 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1688 {
1689 /* Allocate PCI data */
1690 add_dev_pci_data(pdev);
1691
1692 return pnv_pci_sriov_enable(pdev, num_vfs);
1693 }
1694 #endif /* CONFIG_PCI_IOV */
1695
1696 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1697 {
1698 struct pci_dn *pdn = pci_get_pdn(pdev);
1699 struct pnv_ioda_pe *pe;
1700
1701 /*
1702 * The function can be called while the PE#
1703 * hasn't been assigned. Do nothing for the
1704 * case.
1705 */
1706 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1707 return;
1708
1709 pe = &phb->ioda.pe_array[pdn->pe_number];
1710 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1711 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1712 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1713 /*
1714 * Note: iommu_add_device() will fail here as
1715 * for physical PE: the device is already added by now;
1716 * for virtual PE: sysfs entries are not ready yet and
1717 * tce_iommu_bus_notifier will add the device to a group later.
1718 */
1719 }
1720
1721 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1722 {
1723 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1724 struct pnv_phb *phb = hose->private_data;
1725 struct pci_dn *pdn = pci_get_pdn(pdev);
1726 struct pnv_ioda_pe *pe;
1727 uint64_t top;
1728 bool bypass = false;
1729
1730 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1731 return -ENODEV;;
1732
1733 pe = &phb->ioda.pe_array[pdn->pe_number];
1734 if (pe->tce_bypass_enabled) {
1735 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1736 bypass = (dma_mask >= top);
1737 }
1738
1739 if (bypass) {
1740 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1741 set_dma_ops(&pdev->dev, &dma_direct_ops);
1742 } else {
1743 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1744 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1745 }
1746 *pdev->dev.dma_mask = dma_mask;
1747
1748 /* Update peer npu devices */
1749 pnv_npu_try_dma_set_bypass(pdev, bypass);
1750
1751 return 0;
1752 }
1753
1754 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1755 {
1756 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1757 struct pnv_phb *phb = hose->private_data;
1758 struct pci_dn *pdn = pci_get_pdn(pdev);
1759 struct pnv_ioda_pe *pe;
1760 u64 end, mask;
1761
1762 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1763 return 0;
1764
1765 pe = &phb->ioda.pe_array[pdn->pe_number];
1766 if (!pe->tce_bypass_enabled)
1767 return __dma_get_required_mask(&pdev->dev);
1768
1769
1770 end = pe->tce_bypass_base + memblock_end_of_DRAM();
1771 mask = 1ULL << (fls64(end) - 1);
1772 mask += mask - 1;
1773
1774 return mask;
1775 }
1776
1777 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1778 struct pci_bus *bus)
1779 {
1780 struct pci_dev *dev;
1781
1782 list_for_each_entry(dev, &bus->devices, bus_list) {
1783 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1784 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1785 iommu_add_device(&dev->dev);
1786
1787 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1788 pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1789 }
1790 }
1791
1792 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1793 bool real_mode)
1794 {
1795 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1796 (phb->regs + 0x210);
1797 }
1798
1799 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1800 unsigned long index, unsigned long npages, bool rm)
1801 {
1802 struct iommu_table_group_link *tgl = list_first_entry_or_null(
1803 &tbl->it_group_list, struct iommu_table_group_link,
1804 next);
1805 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1806 struct pnv_ioda_pe, table_group);
1807 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1808 unsigned long start, end, inc;
1809
1810 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1811 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1812 npages - 1);
1813
1814 /* p7ioc-style invalidation, 2 TCEs per write */
1815 start |= (1ull << 63);
1816 end |= (1ull << 63);
1817 inc = 16;
1818 end |= inc - 1; /* round up end to be different than start */
1819
1820 mb(); /* Ensure above stores are visible */
1821 while (start <= end) {
1822 if (rm)
1823 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1824 else
1825 __raw_writeq(cpu_to_be64(start), invalidate);
1826 start += inc;
1827 }
1828
1829 /*
1830 * The iommu layer will do another mb() for us on build()
1831 * and we don't care on free()
1832 */
1833 }
1834
1835 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1836 long npages, unsigned long uaddr,
1837 enum dma_data_direction direction,
1838 unsigned long attrs)
1839 {
1840 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1841 attrs);
1842
1843 if (!ret)
1844 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1845
1846 return ret;
1847 }
1848
1849 #ifdef CONFIG_IOMMU_API
1850 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1851 unsigned long *hpa, enum dma_data_direction *direction)
1852 {
1853 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1854
1855 if (!ret)
1856 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1857
1858 return ret;
1859 }
1860 #endif
1861
1862 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1863 long npages)
1864 {
1865 pnv_tce_free(tbl, index, npages);
1866
1867 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1868 }
1869
1870 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1871 .set = pnv_ioda1_tce_build,
1872 #ifdef CONFIG_IOMMU_API
1873 .exchange = pnv_ioda1_tce_xchg,
1874 #endif
1875 .clear = pnv_ioda1_tce_free,
1876 .get = pnv_tce_get,
1877 };
1878
1879 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0)
1880 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1)
1881 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2)
1882
1883 void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1884 {
1885 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1886 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1887
1888 mb(); /* Ensure previous TCE table stores are visible */
1889 if (rm)
1890 __raw_rm_writeq(cpu_to_be64(val), invalidate);
1891 else
1892 __raw_writeq(cpu_to_be64(val), invalidate);
1893 }
1894
1895 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1896 {
1897 /* 01xb - invalidate TCEs that match the specified PE# */
1898 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
1899 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1900
1901 mb(); /* Ensure above stores are visible */
1902 __raw_writeq(cpu_to_be64(val), invalidate);
1903 }
1904
1905 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
1906 unsigned shift, unsigned long index,
1907 unsigned long npages)
1908 {
1909 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1910 unsigned long start, end, inc;
1911
1912 /* We'll invalidate DMA address in PE scope */
1913 start = PHB3_TCE_KILL_INVAL_ONE;
1914 start |= (pe->pe_number & 0xFF);
1915 end = start;
1916
1917 /* Figure out the start, end and step */
1918 start |= (index << shift);
1919 end |= ((index + npages - 1) << shift);
1920 inc = (0x1ull << shift);
1921 mb();
1922
1923 while (start <= end) {
1924 if (rm)
1925 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1926 else
1927 __raw_writeq(cpu_to_be64(start), invalidate);
1928 start += inc;
1929 }
1930 }
1931
1932 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1933 {
1934 struct pnv_phb *phb = pe->phb;
1935
1936 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1937 pnv_pci_phb3_tce_invalidate_pe(pe);
1938 else
1939 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
1940 pe->pe_number, 0, 0, 0);
1941 }
1942
1943 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1944 unsigned long index, unsigned long npages, bool rm)
1945 {
1946 struct iommu_table_group_link *tgl;
1947
1948 list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1949 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1950 struct pnv_ioda_pe, table_group);
1951 struct pnv_phb *phb = pe->phb;
1952 unsigned int shift = tbl->it_page_shift;
1953
1954 /*
1955 * NVLink1 can use the TCE kill register directly as
1956 * it's the same as PHB3. NVLink2 is different and
1957 * should go via the OPAL call.
1958 */
1959 if (phb->model == PNV_PHB_MODEL_NPU) {
1960 /*
1961 * The NVLink hardware does not support TCE kill
1962 * per TCE entry so we have to invalidate
1963 * the entire cache for it.
1964 */
1965 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
1966 continue;
1967 }
1968 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
1969 pnv_pci_phb3_tce_invalidate(pe, rm, shift,
1970 index, npages);
1971 else
1972 opal_pci_tce_kill(phb->opal_id,
1973 OPAL_PCI_TCE_KILL_PAGES,
1974 pe->pe_number, 1u << shift,
1975 index << shift, npages);
1976 }
1977 }
1978
1979 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1980 long npages, unsigned long uaddr,
1981 enum dma_data_direction direction,
1982 unsigned long attrs)
1983 {
1984 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1985 attrs);
1986
1987 if (!ret)
1988 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1989
1990 return ret;
1991 }
1992
1993 #ifdef CONFIG_IOMMU_API
1994 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1995 unsigned long *hpa, enum dma_data_direction *direction)
1996 {
1997 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1998
1999 if (!ret)
2000 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2001
2002 return ret;
2003 }
2004 #endif
2005
2006 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2007 long npages)
2008 {
2009 pnv_tce_free(tbl, index, npages);
2010
2011 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2012 }
2013
2014 static void pnv_ioda2_table_free(struct iommu_table *tbl)
2015 {
2016 pnv_pci_ioda2_table_free_pages(tbl);
2017 iommu_free_table(tbl, "pnv");
2018 }
2019
2020 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2021 .set = pnv_ioda2_tce_build,
2022 #ifdef CONFIG_IOMMU_API
2023 .exchange = pnv_ioda2_tce_xchg,
2024 #endif
2025 .clear = pnv_ioda2_tce_free,
2026 .get = pnv_tce_get,
2027 .free = pnv_ioda2_table_free,
2028 };
2029
2030 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2031 {
2032 unsigned int *weight = (unsigned int *)data;
2033
2034 /* This is quite simplistic. The "base" weight of a device
2035 * is 10. 0 means no DMA is to be accounted for it.
2036 */
2037 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2038 return 0;
2039
2040 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2041 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2042 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2043 *weight += 3;
2044 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2045 *weight += 15;
2046 else
2047 *weight += 10;
2048
2049 return 0;
2050 }
2051
2052 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2053 {
2054 unsigned int weight = 0;
2055
2056 /* SRIOV VF has same DMA32 weight as its PF */
2057 #ifdef CONFIG_PCI_IOV
2058 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2059 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2060 return weight;
2061 }
2062 #endif
2063
2064 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2065 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2066 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2067 struct pci_dev *pdev;
2068
2069 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2070 pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2071 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2072 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2073 }
2074
2075 return weight;
2076 }
2077
2078 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2079 struct pnv_ioda_pe *pe)
2080 {
2081
2082 struct page *tce_mem = NULL;
2083 struct iommu_table *tbl;
2084 unsigned int weight, total_weight = 0;
2085 unsigned int tce32_segsz, base, segs, avail, i;
2086 int64_t rc;
2087 void *addr;
2088
2089 /* XXX FIXME: Handle 64-bit only DMA devices */
2090 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2091 /* XXX FIXME: Allocate multi-level tables on PHB3 */
2092 weight = pnv_pci_ioda_pe_dma_weight(pe);
2093 if (!weight)
2094 return;
2095
2096 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2097 &total_weight);
2098 segs = (weight * phb->ioda.dma32_count) / total_weight;
2099 if (!segs)
2100 segs = 1;
2101
2102 /*
2103 * Allocate contiguous DMA32 segments. We begin with the expected
2104 * number of segments. With one more attempt, the number of DMA32
2105 * segments to be allocated is decreased by one until one segment
2106 * is allocated successfully.
2107 */
2108 do {
2109 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2110 for (avail = 0, i = base; i < base + segs; i++) {
2111 if (phb->ioda.dma32_segmap[i] ==
2112 IODA_INVALID_PE)
2113 avail++;
2114 }
2115
2116 if (avail == segs)
2117 goto found;
2118 }
2119 } while (--segs);
2120
2121 if (!segs) {
2122 pe_warn(pe, "No available DMA32 segments\n");
2123 return;
2124 }
2125
2126 found:
2127 tbl = pnv_pci_table_alloc(phb->hose->node);
2128 iommu_register_group(&pe->table_group, phb->hose->global_number,
2129 pe->pe_number);
2130 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2131
2132 /* Grab a 32-bit TCE table */
2133 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2134 weight, total_weight, base, segs);
2135 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2136 base * PNV_IODA1_DMA32_SEGSIZE,
2137 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2138
2139 /* XXX Currently, we allocate one big contiguous table for the
2140 * TCEs. We only really need one chunk per 256M of TCE space
2141 * (ie per segment) but that's an optimization for later, it
2142 * requires some added smarts with our get/put_tce implementation
2143 *
2144 * Each TCE page is 4KB in size and each TCE entry occupies 8
2145 * bytes
2146 */
2147 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2148 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2149 get_order(tce32_segsz * segs));
2150 if (!tce_mem) {
2151 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2152 goto fail;
2153 }
2154 addr = page_address(tce_mem);
2155 memset(addr, 0, tce32_segsz * segs);
2156
2157 /* Configure HW */
2158 for (i = 0; i < segs; i++) {
2159 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2160 pe->pe_number,
2161 base + i, 1,
2162 __pa(addr) + tce32_segsz * i,
2163 tce32_segsz, IOMMU_PAGE_SIZE_4K);
2164 if (rc) {
2165 pe_err(pe, " Failed to configure 32-bit TCE table,"
2166 " err %ld\n", rc);
2167 goto fail;
2168 }
2169 }
2170
2171 /* Setup DMA32 segment mapping */
2172 for (i = base; i < base + segs; i++)
2173 phb->ioda.dma32_segmap[i] = pe->pe_number;
2174
2175 /* Setup linux iommu table */
2176 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2177 base * PNV_IODA1_DMA32_SEGSIZE,
2178 IOMMU_PAGE_SHIFT_4K);
2179
2180 tbl->it_ops = &pnv_ioda1_iommu_ops;
2181 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2182 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2183 iommu_init_table(tbl, phb->hose->node);
2184
2185 if (pe->flags & PNV_IODA_PE_DEV) {
2186 /*
2187 * Setting table base here only for carrying iommu_group
2188 * further down to let iommu_add_device() do the job.
2189 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2190 */
2191 set_iommu_table_base(&pe->pdev->dev, tbl);
2192 iommu_add_device(&pe->pdev->dev);
2193 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2194 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2195
2196 return;
2197 fail:
2198 /* XXX Failure: Try to fallback to 64-bit only ? */
2199 if (tce_mem)
2200 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2201 if (tbl) {
2202 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2203 iommu_free_table(tbl, "pnv");
2204 }
2205 }
2206
2207 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2208 int num, struct iommu_table *tbl)
2209 {
2210 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2211 table_group);
2212 struct pnv_phb *phb = pe->phb;
2213 int64_t rc;
2214 const unsigned long size = tbl->it_indirect_levels ?
2215 tbl->it_level_size : tbl->it_size;
2216 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2217 const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2218
2219 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2220 start_addr, start_addr + win_size - 1,
2221 IOMMU_PAGE_SIZE(tbl));
2222
2223 /*
2224 * Map TCE table through TVT. The TVE index is the PE number
2225 * shifted by 1 bit for 32-bits DMA space.
2226 */
2227 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2228 pe->pe_number,
2229 (pe->pe_number << 1) + num,
2230 tbl->it_indirect_levels + 1,
2231 __pa(tbl->it_base),
2232 size << 3,
2233 IOMMU_PAGE_SIZE(tbl));
2234 if (rc) {
2235 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2236 return rc;
2237 }
2238
2239 pnv_pci_link_table_and_group(phb->hose->node, num,
2240 tbl, &pe->table_group);
2241 pnv_pci_ioda2_tce_invalidate_pe(pe);
2242
2243 return 0;
2244 }
2245
2246 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2247 {
2248 uint16_t window_id = (pe->pe_number << 1 ) + 1;
2249 int64_t rc;
2250
2251 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2252 if (enable) {
2253 phys_addr_t top = memblock_end_of_DRAM();
2254
2255 top = roundup_pow_of_two(top);
2256 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2257 pe->pe_number,
2258 window_id,
2259 pe->tce_bypass_base,
2260 top);
2261 } else {
2262 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2263 pe->pe_number,
2264 window_id,
2265 pe->tce_bypass_base,
2266 0);
2267 }
2268 if (rc)
2269 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2270 else
2271 pe->tce_bypass_enabled = enable;
2272 }
2273
2274 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2275 __u32 page_shift, __u64 window_size, __u32 levels,
2276 struct iommu_table *tbl);
2277
2278 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2279 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2280 struct iommu_table **ptbl)
2281 {
2282 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2283 table_group);
2284 int nid = pe->phb->hose->node;
2285 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2286 long ret;
2287 struct iommu_table *tbl;
2288
2289 tbl = pnv_pci_table_alloc(nid);
2290 if (!tbl)
2291 return -ENOMEM;
2292
2293 ret = pnv_pci_ioda2_table_alloc_pages(nid,
2294 bus_offset, page_shift, window_size,
2295 levels, tbl);
2296 if (ret) {
2297 iommu_free_table(tbl, "pnv");
2298 return ret;
2299 }
2300
2301 tbl->it_ops = &pnv_ioda2_iommu_ops;
2302
2303 *ptbl = tbl;
2304
2305 return 0;
2306 }
2307
2308 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2309 {
2310 struct iommu_table *tbl = NULL;
2311 long rc;
2312
2313 /*
2314 * crashkernel= specifies the kdump kernel's maximum memory at
2315 * some offset and there is no guaranteed the result is a power
2316 * of 2, which will cause errors later.
2317 */
2318 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2319
2320 /*
2321 * In memory constrained environments, e.g. kdump kernel, the
2322 * DMA window can be larger than available memory, which will
2323 * cause errors later.
2324 */
2325 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2326
2327 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2328 IOMMU_PAGE_SHIFT_4K,
2329 window_size,
2330 POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2331 if (rc) {
2332 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2333 rc);
2334 return rc;
2335 }
2336
2337 iommu_init_table(tbl, pe->phb->hose->node);
2338
2339 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2340 if (rc) {
2341 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2342 rc);
2343 pnv_ioda2_table_free(tbl);
2344 return rc;
2345 }
2346
2347 if (!pnv_iommu_bypass_disabled)
2348 pnv_pci_ioda2_set_bypass(pe, true);
2349
2350 /*
2351 * Setting table base here only for carrying iommu_group
2352 * further down to let iommu_add_device() do the job.
2353 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2354 */
2355 if (pe->flags & PNV_IODA_PE_DEV)
2356 set_iommu_table_base(&pe->pdev->dev, tbl);
2357
2358 return 0;
2359 }
2360
2361 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2362 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2363 int num)
2364 {
2365 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2366 table_group);
2367 struct pnv_phb *phb = pe->phb;
2368 long ret;
2369
2370 pe_info(pe, "Removing DMA window #%d\n", num);
2371
2372 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2373 (pe->pe_number << 1) + num,
2374 0/* levels */, 0/* table address */,
2375 0/* table size */, 0/* page size */);
2376 if (ret)
2377 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2378 else
2379 pnv_pci_ioda2_tce_invalidate_pe(pe);
2380
2381 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2382
2383 return ret;
2384 }
2385 #endif
2386
2387 #ifdef CONFIG_IOMMU_API
2388 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2389 __u64 window_size, __u32 levels)
2390 {
2391 unsigned long bytes = 0;
2392 const unsigned window_shift = ilog2(window_size);
2393 unsigned entries_shift = window_shift - page_shift;
2394 unsigned table_shift = entries_shift + 3;
2395 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2396 unsigned long direct_table_size;
2397
2398 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2399 (window_size > memory_hotplug_max()) ||
2400 !is_power_of_2(window_size))
2401 return 0;
2402
2403 /* Calculate a direct table size from window_size and levels */
2404 entries_shift = (entries_shift + levels - 1) / levels;
2405 table_shift = entries_shift + 3;
2406 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2407 direct_table_size = 1UL << table_shift;
2408
2409 for ( ; levels; --levels) {
2410 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2411
2412 tce_table_size /= direct_table_size;
2413 tce_table_size <<= 3;
2414 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2415 }
2416
2417 return bytes;
2418 }
2419
2420 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2421 {
2422 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2423 table_group);
2424 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2425 struct iommu_table *tbl = pe->table_group.tables[0];
2426
2427 pnv_pci_ioda2_set_bypass(pe, false);
2428 pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2429 pnv_ioda2_table_free(tbl);
2430 }
2431
2432 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2433 {
2434 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2435 table_group);
2436
2437 pnv_pci_ioda2_setup_default_config(pe);
2438 }
2439
2440 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2441 .get_table_size = pnv_pci_ioda2_get_table_size,
2442 .create_table = pnv_pci_ioda2_create_table,
2443 .set_window = pnv_pci_ioda2_set_window,
2444 .unset_window = pnv_pci_ioda2_unset_window,
2445 .take_ownership = pnv_ioda2_take_ownership,
2446 .release_ownership = pnv_ioda2_release_ownership,
2447 };
2448
2449 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2450 {
2451 struct pci_controller *hose;
2452 struct pnv_phb *phb;
2453 struct pnv_ioda_pe **ptmppe = opaque;
2454 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2455 struct pci_dn *pdn = pci_get_pdn(pdev);
2456
2457 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2458 return 0;
2459
2460 hose = pci_bus_to_host(pdev->bus);
2461 phb = hose->private_data;
2462 if (phb->type != PNV_PHB_NPU)
2463 return 0;
2464
2465 *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2466
2467 return 1;
2468 }
2469
2470 /*
2471 * This returns PE of associated NPU.
2472 * This assumes that NPU is in the same IOMMU group with GPU and there is
2473 * no other PEs.
2474 */
2475 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2476 struct iommu_table_group *table_group)
2477 {
2478 struct pnv_ioda_pe *npe = NULL;
2479 int ret = iommu_group_for_each_dev(table_group->group, &npe,
2480 gpe_table_group_to_npe_cb);
2481
2482 BUG_ON(!ret || !npe);
2483
2484 return npe;
2485 }
2486
2487 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2488 int num, struct iommu_table *tbl)
2489 {
2490 long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2491
2492 if (ret)
2493 return ret;
2494
2495 ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2496 if (ret)
2497 pnv_pci_ioda2_unset_window(table_group, num);
2498
2499 return ret;
2500 }
2501
2502 static long pnv_pci_ioda2_npu_unset_window(
2503 struct iommu_table_group *table_group,
2504 int num)
2505 {
2506 long ret = pnv_pci_ioda2_unset_window(table_group, num);
2507
2508 if (ret)
2509 return ret;
2510
2511 return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2512 }
2513
2514 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2515 {
2516 /*
2517 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2518 * the iommu_table if 32bit DMA is enabled.
2519 */
2520 pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2521 pnv_ioda2_take_ownership(table_group);
2522 }
2523
2524 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2525 .get_table_size = pnv_pci_ioda2_get_table_size,
2526 .create_table = pnv_pci_ioda2_create_table,
2527 .set_window = pnv_pci_ioda2_npu_set_window,
2528 .unset_window = pnv_pci_ioda2_npu_unset_window,
2529 .take_ownership = pnv_ioda2_npu_take_ownership,
2530 .release_ownership = pnv_ioda2_release_ownership,
2531 };
2532
2533 static void pnv_pci_ioda_setup_iommu_api(void)
2534 {
2535 struct pci_controller *hose, *tmp;
2536 struct pnv_phb *phb;
2537 struct pnv_ioda_pe *pe, *gpe;
2538
2539 /*
2540 * Now we have all PHBs discovered, time to add NPU devices to
2541 * the corresponding IOMMU groups.
2542 */
2543 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2544 phb = hose->private_data;
2545
2546 if (phb->type != PNV_PHB_NPU)
2547 continue;
2548
2549 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2550 gpe = pnv_pci_npu_setup_iommu(pe);
2551 if (gpe)
2552 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2553 }
2554 }
2555 }
2556 #else /* !CONFIG_IOMMU_API */
2557 static void pnv_pci_ioda_setup_iommu_api(void) { };
2558 #endif
2559
2560 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2561 unsigned levels, unsigned long limit,
2562 unsigned long *current_offset, unsigned long *total_allocated)
2563 {
2564 struct page *tce_mem = NULL;
2565 __be64 *addr, *tmp;
2566 unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2567 unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2568 unsigned entries = 1UL << (shift - 3);
2569 long i;
2570
2571 tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2572 if (!tce_mem) {
2573 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2574 return NULL;
2575 }
2576 addr = page_address(tce_mem);
2577 memset(addr, 0, allocated);
2578 *total_allocated += allocated;
2579
2580 --levels;
2581 if (!levels) {
2582 *current_offset += allocated;
2583 return addr;
2584 }
2585
2586 for (i = 0; i < entries; ++i) {
2587 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2588 levels, limit, current_offset, total_allocated);
2589 if (!tmp)
2590 break;
2591
2592 addr[i] = cpu_to_be64(__pa(tmp) |
2593 TCE_PCI_READ | TCE_PCI_WRITE);
2594
2595 if (*current_offset >= limit)
2596 break;
2597 }
2598
2599 return addr;
2600 }
2601
2602 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2603 unsigned long size, unsigned level);
2604
2605 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2606 __u32 page_shift, __u64 window_size, __u32 levels,
2607 struct iommu_table *tbl)
2608 {
2609 void *addr;
2610 unsigned long offset = 0, level_shift, total_allocated = 0;
2611 const unsigned window_shift = ilog2(window_size);
2612 unsigned entries_shift = window_shift - page_shift;
2613 unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2614 const unsigned long tce_table_size = 1UL << table_shift;
2615
2616 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2617 return -EINVAL;
2618
2619 if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2620 return -EINVAL;
2621
2622 /* Adjust direct table size from window_size and levels */
2623 entries_shift = (entries_shift + levels - 1) / levels;
2624 level_shift = entries_shift + 3;
2625 level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2626
2627 /* Allocate TCE table */
2628 addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2629 levels, tce_table_size, &offset, &total_allocated);
2630
2631 /* addr==NULL means that the first level allocation failed */
2632 if (!addr)
2633 return -ENOMEM;
2634
2635 /*
2636 * First level was allocated but some lower level failed as
2637 * we did not allocate as much as we wanted,
2638 * release partially allocated table.
2639 */
2640 if (offset < tce_table_size) {
2641 pnv_pci_ioda2_table_do_free_pages(addr,
2642 1ULL << (level_shift - 3), levels - 1);
2643 return -ENOMEM;
2644 }
2645
2646 /* Setup linux iommu table */
2647 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2648 page_shift);
2649 tbl->it_level_size = 1ULL << (level_shift - 3);
2650 tbl->it_indirect_levels = levels - 1;
2651 tbl->it_allocated_size = total_allocated;
2652
2653 pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2654 window_size, tce_table_size, bus_offset);
2655
2656 return 0;
2657 }
2658
2659 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2660 unsigned long size, unsigned level)
2661 {
2662 const unsigned long addr_ul = (unsigned long) addr &
2663 ~(TCE_PCI_READ | TCE_PCI_WRITE);
2664
2665 if (level) {
2666 long i;
2667 u64 *tmp = (u64 *) addr_ul;
2668
2669 for (i = 0; i < size; ++i) {
2670 unsigned long hpa = be64_to_cpu(tmp[i]);
2671
2672 if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2673 continue;
2674
2675 pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2676 level - 1);
2677 }
2678 }
2679
2680 free_pages(addr_ul, get_order(size << 3));
2681 }
2682
2683 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2684 {
2685 const unsigned long size = tbl->it_indirect_levels ?
2686 tbl->it_level_size : tbl->it_size;
2687
2688 if (!tbl->it_size)
2689 return;
2690
2691 pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2692 tbl->it_indirect_levels);
2693 }
2694
2695 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2696 struct pnv_ioda_pe *pe)
2697 {
2698 int64_t rc;
2699
2700 if (!pnv_pci_ioda_pe_dma_weight(pe))
2701 return;
2702
2703 /* TVE #1 is selected by PCI address bit 59 */
2704 pe->tce_bypass_base = 1ull << 59;
2705
2706 iommu_register_group(&pe->table_group, phb->hose->global_number,
2707 pe->pe_number);
2708
2709 /* The PE will reserve all possible 32-bits space */
2710 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2711 phb->ioda.m32_pci_base);
2712
2713 /* Setup linux iommu table */
2714 pe->table_group.tce32_start = 0;
2715 pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2716 pe->table_group.max_dynamic_windows_supported =
2717 IOMMU_TABLE_GROUP_MAX_TABLES;
2718 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2719 pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2720 #ifdef CONFIG_IOMMU_API
2721 pe->table_group.ops = &pnv_pci_ioda2_ops;
2722 #endif
2723
2724 rc = pnv_pci_ioda2_setup_default_config(pe);
2725 if (rc)
2726 return;
2727
2728 if (pe->flags & PNV_IODA_PE_DEV)
2729 iommu_add_device(&pe->pdev->dev);
2730 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2731 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2732 }
2733
2734 #ifdef CONFIG_PCI_MSI
2735 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2736 {
2737 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2738 ioda.irq_chip);
2739
2740 return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2741 }
2742
2743 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2744 {
2745 int64_t rc;
2746 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2747 struct irq_chip *chip = irq_data_get_irq_chip(d);
2748
2749 rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2750 WARN_ON_ONCE(rc);
2751
2752 icp_native_eoi(d);
2753 }
2754
2755
2756 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2757 {
2758 struct irq_data *idata;
2759 struct irq_chip *ichip;
2760
2761 /* The MSI EOI OPAL call is only needed on PHB3 */
2762 if (phb->model != PNV_PHB_MODEL_PHB3)
2763 return;
2764
2765 if (!phb->ioda.irq_chip_init) {
2766 /*
2767 * First time we setup an MSI IRQ, we need to setup the
2768 * corresponding IRQ chip to route correctly.
2769 */
2770 idata = irq_get_irq_data(virq);
2771 ichip = irq_data_get_irq_chip(idata);
2772 phb->ioda.irq_chip_init = 1;
2773 phb->ioda.irq_chip = *ichip;
2774 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2775 }
2776 irq_set_chip(virq, &phb->ioda.irq_chip);
2777 }
2778
2779 /*
2780 * Returns true iff chip is something that we could call
2781 * pnv_opal_pci_msi_eoi for.
2782 */
2783 bool is_pnv_opal_msi(struct irq_chip *chip)
2784 {
2785 return chip->irq_eoi == pnv_ioda2_msi_eoi;
2786 }
2787 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2788
2789 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2790 unsigned int hwirq, unsigned int virq,
2791 unsigned int is_64, struct msi_msg *msg)
2792 {
2793 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2794 unsigned int xive_num = hwirq - phb->msi_base;
2795 __be32 data;
2796 int rc;
2797
2798 /* No PE assigned ? bail out ... no MSI for you ! */
2799 if (pe == NULL)
2800 return -ENXIO;
2801
2802 /* Check if we have an MVE */
2803 if (pe->mve_number < 0)
2804 return -ENXIO;
2805
2806 /* Force 32-bit MSI on some broken devices */
2807 if (dev->no_64bit_msi)
2808 is_64 = 0;
2809
2810 /* Assign XIVE to PE */
2811 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2812 if (rc) {
2813 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2814 pci_name(dev), rc, xive_num);
2815 return -EIO;
2816 }
2817
2818 if (is_64) {
2819 __be64 addr64;
2820
2821 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2822 &addr64, &data);
2823 if (rc) {
2824 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2825 pci_name(dev), rc);
2826 return -EIO;
2827 }
2828 msg->address_hi = be64_to_cpu(addr64) >> 32;
2829 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2830 } else {
2831 __be32 addr32;
2832
2833 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2834 &addr32, &data);
2835 if (rc) {
2836 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2837 pci_name(dev), rc);
2838 return -EIO;
2839 }
2840 msg->address_hi = 0;
2841 msg->address_lo = be32_to_cpu(addr32);
2842 }
2843 msg->data = be32_to_cpu(data);
2844
2845 pnv_set_msi_irq_chip(phb, virq);
2846
2847 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2848 " address=%x_%08x data=%x PE# %x\n",
2849 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2850 msg->address_hi, msg->address_lo, data, pe->pe_number);
2851
2852 return 0;
2853 }
2854
2855 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2856 {
2857 unsigned int count;
2858 const __be32 *prop = of_get_property(phb->hose->dn,
2859 "ibm,opal-msi-ranges", NULL);
2860 if (!prop) {
2861 /* BML Fallback */
2862 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2863 }
2864 if (!prop)
2865 return;
2866
2867 phb->msi_base = be32_to_cpup(prop);
2868 count = be32_to_cpup(prop + 1);
2869 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2870 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2871 phb->hose->global_number);
2872 return;
2873 }
2874
2875 phb->msi_setup = pnv_pci_ioda_msi_setup;
2876 phb->msi32_support = 1;
2877 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2878 count, phb->msi_base);
2879 }
2880 #else
2881 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2882 #endif /* CONFIG_PCI_MSI */
2883
2884 #ifdef CONFIG_PCI_IOV
2885 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2886 {
2887 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2888 struct pnv_phb *phb = hose->private_data;
2889 const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2890 struct resource *res;
2891 int i;
2892 resource_size_t size, total_vf_bar_sz;
2893 struct pci_dn *pdn;
2894 int mul, total_vfs;
2895
2896 if (!pdev->is_physfn || pdev->is_added)
2897 return;
2898
2899 pdn = pci_get_pdn(pdev);
2900 pdn->vfs_expanded = 0;
2901 pdn->m64_single_mode = false;
2902
2903 total_vfs = pci_sriov_get_totalvfs(pdev);
2904 mul = phb->ioda.total_pe_num;
2905 total_vf_bar_sz = 0;
2906
2907 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2908 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2909 if (!res->flags || res->parent)
2910 continue;
2911 if (!pnv_pci_is_m64_flags(res->flags)) {
2912 dev_warn(&pdev->dev, "Don't support SR-IOV with"
2913 " non M64 VF BAR%d: %pR. \n",
2914 i, res);
2915 goto truncate_iov;
2916 }
2917
2918 total_vf_bar_sz += pci_iov_resource_size(pdev,
2919 i + PCI_IOV_RESOURCES);
2920
2921 /*
2922 * If bigger than quarter of M64 segment size, just round up
2923 * power of two.
2924 *
2925 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2926 * with other devices, IOV BAR size is expanded to be
2927 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64
2928 * segment size , the expanded size would equal to half of the
2929 * whole M64 space size, which will exhaust the M64 Space and
2930 * limit the system flexibility. This is a design decision to
2931 * set the boundary to quarter of the M64 segment size.
2932 */
2933 if (total_vf_bar_sz > gate) {
2934 mul = roundup_pow_of_two(total_vfs);
2935 dev_info(&pdev->dev,
2936 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2937 total_vf_bar_sz, gate, mul);
2938 pdn->m64_single_mode = true;
2939 break;
2940 }
2941 }
2942
2943 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2944 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2945 if (!res->flags || res->parent)
2946 continue;
2947
2948 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2949 /*
2950 * On PHB3, the minimum size alignment of M64 BAR in single
2951 * mode is 32MB.
2952 */
2953 if (pdn->m64_single_mode && (size < SZ_32M))
2954 goto truncate_iov;
2955 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2956 res->end = res->start + size * mul - 1;
2957 dev_dbg(&pdev->dev, " %pR\n", res);
2958 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2959 i, res, mul);
2960 }
2961 pdn->vfs_expanded = mul;
2962
2963 return;
2964
2965 truncate_iov:
2966 /* To save MMIO space, IOV BAR is truncated. */
2967 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2968 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2969 res->flags = 0;
2970 res->end = res->start - 1;
2971 }
2972 }
2973 #endif /* CONFIG_PCI_IOV */
2974
2975 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2976 struct resource *res)
2977 {
2978 struct pnv_phb *phb = pe->phb;
2979 struct pci_bus_region region;
2980 int index;
2981 int64_t rc;
2982
2983 if (!res || !res->flags || res->start > res->end)
2984 return;
2985
2986 if (res->flags & IORESOURCE_IO) {
2987 region.start = res->start - phb->ioda.io_pci_base;
2988 region.end = res->end - phb->ioda.io_pci_base;
2989 index = region.start / phb->ioda.io_segsize;
2990
2991 while (index < phb->ioda.total_pe_num &&
2992 region.start <= region.end) {
2993 phb->ioda.io_segmap[index] = pe->pe_number;
2994 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2995 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2996 if (rc != OPAL_SUCCESS) {
2997 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2998 __func__, rc, index, pe->pe_number);
2999 break;
3000 }
3001
3002 region.start += phb->ioda.io_segsize;
3003 index++;
3004 }
3005 } else if ((res->flags & IORESOURCE_MEM) &&
3006 !pnv_pci_is_m64(phb, res)) {
3007 region.start = res->start -
3008 phb->hose->mem_offset[0] -
3009 phb->ioda.m32_pci_base;
3010 region.end = res->end -
3011 phb->hose->mem_offset[0] -
3012 phb->ioda.m32_pci_base;
3013 index = region.start / phb->ioda.m32_segsize;
3014
3015 while (index < phb->ioda.total_pe_num &&
3016 region.start <= region.end) {
3017 phb->ioda.m32_segmap[index] = pe->pe_number;
3018 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3019 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3020 if (rc != OPAL_SUCCESS) {
3021 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3022 __func__, rc, index, pe->pe_number);
3023 break;
3024 }
3025
3026 region.start += phb->ioda.m32_segsize;
3027 index++;
3028 }
3029 }
3030 }
3031
3032 /*
3033 * This function is supposed to be called on basis of PE from top
3034 * to bottom style. So the the I/O or MMIO segment assigned to
3035 * parent PE could be overridden by its child PEs if necessary.
3036 */
3037 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3038 {
3039 struct pci_dev *pdev;
3040 int i;
3041
3042 /*
3043 * NOTE: We only care PCI bus based PE for now. For PCI
3044 * device based PE, for example SRIOV sensitive VF should
3045 * be figured out later.
3046 */
3047 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3048
3049 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3050 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3051 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3052
3053 /*
3054 * If the PE contains all subordinate PCI buses, the
3055 * windows of the child bridges should be mapped to
3056 * the PE as well.
3057 */
3058 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3059 continue;
3060 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3061 pnv_ioda_setup_pe_res(pe,
3062 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3063 }
3064 }
3065
3066 #ifdef CONFIG_DEBUG_FS
3067 static int pnv_pci_diag_data_set(void *data, u64 val)
3068 {
3069 struct pci_controller *hose;
3070 struct pnv_phb *phb;
3071 s64 ret;
3072
3073 if (val != 1ULL)
3074 return -EINVAL;
3075
3076 hose = (struct pci_controller *)data;
3077 if (!hose || !hose->private_data)
3078 return -ENODEV;
3079
3080 phb = hose->private_data;
3081
3082 /* Retrieve the diag data from firmware */
3083 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag.blob,
3084 PNV_PCI_DIAG_BUF_SIZE);
3085 if (ret != OPAL_SUCCESS)
3086 return -EIO;
3087
3088 /* Print the diag data to the kernel log */
3089 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag.blob);
3090 return 0;
3091 }
3092
3093 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3094 pnv_pci_diag_data_set, "%llu\n");
3095
3096 #endif /* CONFIG_DEBUG_FS */
3097
3098 static void pnv_pci_ioda_create_dbgfs(void)
3099 {
3100 #ifdef CONFIG_DEBUG_FS
3101 struct pci_controller *hose, *tmp;
3102 struct pnv_phb *phb;
3103 char name[16];
3104
3105 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3106 phb = hose->private_data;
3107
3108 /* Notify initialization of PHB done */
3109 phb->initialized = 1;
3110
3111 sprintf(name, "PCI%04x", hose->global_number);
3112 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3113 if (!phb->dbgfs) {
3114 pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3115 __func__, hose->global_number);
3116 continue;
3117 }
3118
3119 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3120 &pnv_pci_diag_data_fops);
3121 }
3122 #endif /* CONFIG_DEBUG_FS */
3123 }
3124
3125 static void pnv_pci_ioda_fixup(void)
3126 {
3127 pnv_pci_ioda_setup_PEs();
3128 pnv_pci_ioda_setup_iommu_api();
3129 pnv_pci_ioda_create_dbgfs();
3130
3131 #ifdef CONFIG_EEH
3132 eeh_init();
3133 eeh_addr_cache_build();
3134 #endif
3135 }
3136
3137 /*
3138 * Returns the alignment for I/O or memory windows for P2P
3139 * bridges. That actually depends on how PEs are segmented.
3140 * For now, we return I/O or M32 segment size for PE sensitive
3141 * P2P bridges. Otherwise, the default values (4KiB for I/O,
3142 * 1MiB for memory) will be returned.
3143 *
3144 * The current PCI bus might be put into one PE, which was
3145 * create against the parent PCI bridge. For that case, we
3146 * needn't enlarge the alignment so that we can save some
3147 * resources.
3148 */
3149 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3150 unsigned long type)
3151 {
3152 struct pci_dev *bridge;
3153 struct pci_controller *hose = pci_bus_to_host(bus);
3154 struct pnv_phb *phb = hose->private_data;
3155 int num_pci_bridges = 0;
3156
3157 bridge = bus->self;
3158 while (bridge) {
3159 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3160 num_pci_bridges++;
3161 if (num_pci_bridges >= 2)
3162 return 1;
3163 }
3164
3165 bridge = bridge->bus->self;
3166 }
3167
3168 /*
3169 * We fall back to M32 if M64 isn't supported. We enforce the M64
3170 * alignment for any 64-bit resource, PCIe doesn't care and
3171 * bridges only do 64-bit prefetchable anyway.
3172 */
3173 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3174 return phb->ioda.m64_segsize;
3175 if (type & IORESOURCE_MEM)
3176 return phb->ioda.m32_segsize;
3177
3178 return phb->ioda.io_segsize;
3179 }
3180
3181 /*
3182 * We are updating root port or the upstream port of the
3183 * bridge behind the root port with PHB's windows in order
3184 * to accommodate the changes on required resources during
3185 * PCI (slot) hotplug, which is connected to either root
3186 * port or the downstream ports of PCIe switch behind the
3187 * root port.
3188 */
3189 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3190 unsigned long type)
3191 {
3192 struct pci_controller *hose = pci_bus_to_host(bus);
3193 struct pnv_phb *phb = hose->private_data;
3194 struct pci_dev *bridge = bus->self;
3195 struct resource *r, *w;
3196 bool msi_region = false;
3197 int i;
3198
3199 /* Check if we need apply fixup to the bridge's windows */
3200 if (!pci_is_root_bus(bridge->bus) &&
3201 !pci_is_root_bus(bridge->bus->self->bus))
3202 return;
3203
3204 /* Fixup the resources */
3205 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3206 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3207 if (!r->flags || !r->parent)
3208 continue;
3209
3210 w = NULL;
3211 if (r->flags & type & IORESOURCE_IO)
3212 w = &hose->io_resource;
3213 else if (pnv_pci_is_m64(phb, r) &&
3214 (type & IORESOURCE_PREFETCH) &&
3215 phb->ioda.m64_segsize)
3216 w = &hose->mem_resources[1];
3217 else if (r->flags & type & IORESOURCE_MEM) {
3218 w = &hose->mem_resources[0];
3219 msi_region = true;
3220 }
3221
3222 r->start = w->start;
3223 r->end = w->end;
3224
3225 /* The 64KB 32-bits MSI region shouldn't be included in
3226 * the 32-bits bridge window. Otherwise, we can see strange
3227 * issues. One of them is EEH error observed on Garrison.
3228 *
3229 * Exclude top 1MB region which is the minimal alignment of
3230 * 32-bits bridge window.
3231 */
3232 if (msi_region) {
3233 r->end += 0x10000;
3234 r->end -= 0x100000;
3235 }
3236 }
3237 }
3238
3239 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3240 {
3241 struct pci_controller *hose = pci_bus_to_host(bus);
3242 struct pnv_phb *phb = hose->private_data;
3243 struct pci_dev *bridge = bus->self;
3244 struct pnv_ioda_pe *pe;
3245 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3246
3247 /* Extend bridge's windows if necessary */
3248 pnv_pci_fixup_bridge_resources(bus, type);
3249
3250 /* The PE for root bus should be realized before any one else */
3251 if (!phb->ioda.root_pe_populated) {
3252 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3253 if (pe) {
3254 phb->ioda.root_pe_idx = pe->pe_number;
3255 phb->ioda.root_pe_populated = true;
3256 }
3257 }
3258
3259 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3260 if (list_empty(&bus->devices))
3261 return;
3262
3263 /* Reserve PEs according to used M64 resources */
3264 if (phb->reserve_m64_pe)
3265 phb->reserve_m64_pe(bus, NULL, all);
3266
3267 /*
3268 * Assign PE. We might run here because of partial hotplug.
3269 * For the case, we just pick up the existing PE and should
3270 * not allocate resources again.
3271 */
3272 pe = pnv_ioda_setup_bus_PE(bus, all);
3273 if (!pe)
3274 return;
3275
3276 pnv_ioda_setup_pe_seg(pe);
3277 switch (phb->type) {
3278 case PNV_PHB_IODA1:
3279 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3280 break;
3281 case PNV_PHB_IODA2:
3282 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3283 break;
3284 default:
3285 pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3286 __func__, phb->hose->global_number, phb->type);
3287 }
3288 }
3289
3290 #ifdef CONFIG_PCI_IOV
3291 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3292 int resno)
3293 {
3294 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3295 struct pnv_phb *phb = hose->private_data;
3296 struct pci_dn *pdn = pci_get_pdn(pdev);
3297 resource_size_t align;
3298
3299 /*
3300 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3301 * SR-IOV. While from hardware perspective, the range mapped by M64
3302 * BAR should be size aligned.
3303 *
3304 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3305 * powernv-specific hardware restriction is gone. But if just use the
3306 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3307 * in one segment of M64 #15, which introduces the PE conflict between
3308 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3309 * m64_segsize.
3310 *
3311 * This function returns the total IOV BAR size if M64 BAR is in
3312 * Shared PE mode or just VF BAR size if not.
3313 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3314 * M64 segment size if IOV BAR size is less.
3315 */
3316 align = pci_iov_resource_size(pdev, resno);
3317 if (!pdn->vfs_expanded)
3318 return align;
3319 if (pdn->m64_single_mode)
3320 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3321
3322 return pdn->vfs_expanded * align;
3323 }
3324 #endif /* CONFIG_PCI_IOV */
3325
3326 /* Prevent enabling devices for which we couldn't properly
3327 * assign a PE
3328 */
3329 bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3330 {
3331 struct pci_controller *hose = pci_bus_to_host(dev->bus);
3332 struct pnv_phb *phb = hose->private_data;
3333 struct pci_dn *pdn;
3334
3335 /* The function is probably called while the PEs have
3336 * not be created yet. For example, resource reassignment
3337 * during PCI probe period. We just skip the check if
3338 * PEs isn't ready.
3339 */
3340 if (!phb->initialized)
3341 return true;
3342
3343 pdn = pci_get_pdn(dev);
3344 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3345 return false;
3346
3347 return true;
3348 }
3349
3350 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3351 int num)
3352 {
3353 struct pnv_ioda_pe *pe = container_of(table_group,
3354 struct pnv_ioda_pe, table_group);
3355 struct pnv_phb *phb = pe->phb;
3356 unsigned int idx;
3357 long rc;
3358
3359 pe_info(pe, "Removing DMA window #%d\n", num);
3360 for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3361 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3362 continue;
3363
3364 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3365 idx, 0, 0ul, 0ul, 0ul);
3366 if (rc != OPAL_SUCCESS) {
3367 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3368 rc, idx);
3369 return rc;
3370 }
3371
3372 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3373 }
3374
3375 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3376 return OPAL_SUCCESS;
3377 }
3378
3379 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3380 {
3381 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3382 struct iommu_table *tbl = pe->table_group.tables[0];
3383 int64_t rc;
3384
3385 if (!weight)
3386 return;
3387
3388 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3389 if (rc != OPAL_SUCCESS)
3390 return;
3391
3392 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3393 if (pe->table_group.group) {
3394 iommu_group_put(pe->table_group.group);
3395 WARN_ON(pe->table_group.group);
3396 }
3397
3398 free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3399 iommu_free_table(tbl, "pnv");
3400 }
3401
3402 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3403 {
3404 struct iommu_table *tbl = pe->table_group.tables[0];
3405 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3406 #ifdef CONFIG_IOMMU_API
3407 int64_t rc;
3408 #endif
3409
3410 if (!weight)
3411 return;
3412
3413 #ifdef CONFIG_IOMMU_API
3414 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3415 if (rc)
3416 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3417 #endif
3418
3419 pnv_pci_ioda2_set_bypass(pe, false);
3420 if (pe->table_group.group) {
3421 iommu_group_put(pe->table_group.group);
3422 WARN_ON(pe->table_group.group);
3423 }
3424
3425 pnv_pci_ioda2_table_free_pages(tbl);
3426 iommu_free_table(tbl, "pnv");
3427 }
3428
3429 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3430 unsigned short win,
3431 unsigned int *map)
3432 {
3433 struct pnv_phb *phb = pe->phb;
3434 int idx;
3435 int64_t rc;
3436
3437 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3438 if (map[idx] != pe->pe_number)
3439 continue;
3440
3441 if (win == OPAL_M64_WINDOW_TYPE)
3442 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3443 phb->ioda.reserved_pe_idx, win,
3444 idx / PNV_IODA1_M64_SEGS,
3445 idx % PNV_IODA1_M64_SEGS);
3446 else
3447 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3448 phb->ioda.reserved_pe_idx, win, 0, idx);
3449
3450 if (rc != OPAL_SUCCESS)
3451 pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3452 rc, win, idx);
3453
3454 map[idx] = IODA_INVALID_PE;
3455 }
3456 }
3457
3458 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3459 {
3460 struct pnv_phb *phb = pe->phb;
3461
3462 if (phb->type == PNV_PHB_IODA1) {
3463 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3464 phb->ioda.io_segmap);
3465 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3466 phb->ioda.m32_segmap);
3467 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3468 phb->ioda.m64_segmap);
3469 } else if (phb->type == PNV_PHB_IODA2) {
3470 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3471 phb->ioda.m32_segmap);
3472 }
3473 }
3474
3475 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3476 {
3477 struct pnv_phb *phb = pe->phb;
3478 struct pnv_ioda_pe *slave, *tmp;
3479
3480 list_del(&pe->list);
3481 switch (phb->type) {
3482 case PNV_PHB_IODA1:
3483 pnv_pci_ioda1_release_pe_dma(pe);
3484 break;
3485 case PNV_PHB_IODA2:
3486 pnv_pci_ioda2_release_pe_dma(pe);
3487 break;
3488 default:
3489 WARN_ON(1);
3490 }
3491
3492 pnv_ioda_release_pe_seg(pe);
3493 pnv_ioda_deconfigure_pe(pe->phb, pe);
3494
3495 /* Release slave PEs in the compound PE */
3496 if (pe->flags & PNV_IODA_PE_MASTER) {
3497 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3498 list_del(&slave->list);
3499 pnv_ioda_free_pe(slave);
3500 }
3501 }
3502
3503 /*
3504 * The PE for root bus can be removed because of hotplug in EEH
3505 * recovery for fenced PHB error. We need to mark the PE dead so
3506 * that it can be populated again in PCI hot add path. The PE
3507 * shouldn't be destroyed as it's the global reserved resource.
3508 */
3509 if (phb->ioda.root_pe_populated &&
3510 phb->ioda.root_pe_idx == pe->pe_number)
3511 phb->ioda.root_pe_populated = false;
3512 else
3513 pnv_ioda_free_pe(pe);
3514 }
3515
3516 static void pnv_pci_release_device(struct pci_dev *pdev)
3517 {
3518 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3519 struct pnv_phb *phb = hose->private_data;
3520 struct pci_dn *pdn = pci_get_pdn(pdev);
3521 struct pnv_ioda_pe *pe;
3522
3523 if (pdev->is_virtfn)
3524 return;
3525
3526 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3527 return;
3528
3529 /*
3530 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3531 * isn't removed and added afterwards in this scenario. We should
3532 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3533 * device count is decreased on removing devices while failing to
3534 * be increased on adding devices. It leads to unbalanced PE's device
3535 * count and eventually make normal PCI hotplug path broken.
3536 */
3537 pe = &phb->ioda.pe_array[pdn->pe_number];
3538 pdn->pe_number = IODA_INVALID_PE;
3539
3540 WARN_ON(--pe->device_count < 0);
3541 if (pe->device_count == 0)
3542 pnv_ioda_release_pe(pe);
3543 }
3544
3545 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3546 {
3547 struct pnv_phb *phb = hose->private_data;
3548
3549 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3550 OPAL_ASSERT_RESET);
3551 }
3552
3553 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3554 .dma_dev_setup = pnv_pci_dma_dev_setup,
3555 .dma_bus_setup = pnv_pci_dma_bus_setup,
3556 #ifdef CONFIG_PCI_MSI
3557 .setup_msi_irqs = pnv_setup_msi_irqs,
3558 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3559 #endif
3560 .enable_device_hook = pnv_pci_enable_device_hook,
3561 .release_device = pnv_pci_release_device,
3562 .window_alignment = pnv_pci_window_alignment,
3563 .setup_bridge = pnv_pci_setup_bridge,
3564 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3565 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3566 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3567 .shutdown = pnv_pci_ioda_shutdown,
3568 };
3569
3570 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3571 {
3572 dev_err_once(&npdev->dev,
3573 "%s operation unsupported for NVLink devices\n",
3574 __func__);
3575 return -EPERM;
3576 }
3577
3578 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3579 .dma_dev_setup = pnv_pci_dma_dev_setup,
3580 #ifdef CONFIG_PCI_MSI
3581 .setup_msi_irqs = pnv_setup_msi_irqs,
3582 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3583 #endif
3584 .enable_device_hook = pnv_pci_enable_device_hook,
3585 .window_alignment = pnv_pci_window_alignment,
3586 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3587 .dma_set_mask = pnv_npu_dma_set_mask,
3588 .shutdown = pnv_pci_ioda_shutdown,
3589 };
3590
3591 #ifdef CONFIG_CXL_BASE
3592 const struct pci_controller_ops pnv_cxl_cx4_ioda_controller_ops = {
3593 .dma_dev_setup = pnv_pci_dma_dev_setup,
3594 .dma_bus_setup = pnv_pci_dma_bus_setup,
3595 #ifdef CONFIG_PCI_MSI
3596 .setup_msi_irqs = pnv_cxl_cx4_setup_msi_irqs,
3597 .teardown_msi_irqs = pnv_cxl_cx4_teardown_msi_irqs,
3598 #endif
3599 .enable_device_hook = pnv_cxl_enable_device_hook,
3600 .disable_device = pnv_cxl_disable_device,
3601 .release_device = pnv_pci_release_device,
3602 .window_alignment = pnv_pci_window_alignment,
3603 .setup_bridge = pnv_pci_setup_bridge,
3604 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3605 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3606 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3607 .shutdown = pnv_pci_ioda_shutdown,
3608 };
3609 #endif
3610
3611 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3612 u64 hub_id, int ioda_type)
3613 {
3614 struct pci_controller *hose;
3615 struct pnv_phb *phb;
3616 unsigned long size, m64map_off, m32map_off, pemap_off;
3617 unsigned long iomap_off = 0, dma32map_off = 0;
3618 struct resource r;
3619 const __be64 *prop64;
3620 const __be32 *prop32;
3621 int len;
3622 unsigned int segno;
3623 u64 phb_id;
3624 void *aux;
3625 long rc;
3626
3627 if (!of_device_is_available(np))
3628 return;
3629
3630 pr_info("Initializing %s PHB (%s)\n",
3631 pnv_phb_names[ioda_type], of_node_full_name(np));
3632
3633 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3634 if (!prop64) {
3635 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
3636 return;
3637 }
3638 phb_id = be64_to_cpup(prop64);
3639 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
3640
3641 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3642
3643 /* Allocate PCI controller */
3644 phb->hose = hose = pcibios_alloc_controller(np);
3645 if (!phb->hose) {
3646 pr_err(" Can't allocate PCI controller for %s\n",
3647 np->full_name);
3648 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3649 return;
3650 }
3651
3652 spin_lock_init(&phb->lock);
3653 prop32 = of_get_property(np, "bus-range", &len);
3654 if (prop32 && len == 8) {
3655 hose->first_busno = be32_to_cpu(prop32[0]);
3656 hose->last_busno = be32_to_cpu(prop32[1]);
3657 } else {
3658 pr_warn(" Broken <bus-range> on %s\n", np->full_name);
3659 hose->first_busno = 0;
3660 hose->last_busno = 0xff;
3661 }
3662 hose->private_data = phb;
3663 phb->hub_id = hub_id;
3664 phb->opal_id = phb_id;
3665 phb->type = ioda_type;
3666 mutex_init(&phb->ioda.pe_alloc_mutex);
3667
3668 /* Detect specific models for error handling */
3669 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3670 phb->model = PNV_PHB_MODEL_P7IOC;
3671 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3672 phb->model = PNV_PHB_MODEL_PHB3;
3673 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3674 phb->model = PNV_PHB_MODEL_NPU;
3675 else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3676 phb->model = PNV_PHB_MODEL_NPU2;
3677 else
3678 phb->model = PNV_PHB_MODEL_UNKNOWN;
3679
3680 /* Parse 32-bit and IO ranges (if any) */
3681 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3682
3683 /* Get registers */
3684 if (!of_address_to_resource(np, 0, &r)) {
3685 phb->regs_phys = r.start;
3686 phb->regs = ioremap(r.start, resource_size(&r));
3687 if (phb->regs == NULL)
3688 pr_err(" Failed to map registers !\n");
3689 }
3690
3691 /* Initialize more IODA stuff */
3692 phb->ioda.total_pe_num = 1;
3693 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3694 if (prop32)
3695 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3696 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3697 if (prop32)
3698 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3699
3700 /* Invalidate RID to PE# mapping */
3701 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3702 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3703
3704 /* Parse 64-bit MMIO range */
3705 pnv_ioda_parse_m64_window(phb);
3706
3707 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3708 /* FW Has already off top 64k of M32 space (MSI space) */
3709 phb->ioda.m32_size += 0x10000;
3710
3711 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3712 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3713 phb->ioda.io_size = hose->pci_io_size;
3714 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3715 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3716
3717 /* Calculate how many 32-bit TCE segments we have */
3718 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3719 PNV_IODA1_DMA32_SEGSIZE;
3720
3721 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3722 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3723 sizeof(unsigned long));
3724 m64map_off = size;
3725 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3726 m32map_off = size;
3727 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3728 if (phb->type == PNV_PHB_IODA1) {
3729 iomap_off = size;
3730 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3731 dma32map_off = size;
3732 size += phb->ioda.dma32_count *
3733 sizeof(phb->ioda.dma32_segmap[0]);
3734 }
3735 pemap_off = size;
3736 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3737 aux = memblock_virt_alloc(size, 0);
3738 phb->ioda.pe_alloc = aux;
3739 phb->ioda.m64_segmap = aux + m64map_off;
3740 phb->ioda.m32_segmap = aux + m32map_off;
3741 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3742 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3743 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3744 }
3745 if (phb->type == PNV_PHB_IODA1) {
3746 phb->ioda.io_segmap = aux + iomap_off;
3747 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3748 phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3749
3750 phb->ioda.dma32_segmap = aux + dma32map_off;
3751 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3752 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3753 }
3754 phb->ioda.pe_array = aux + pemap_off;
3755
3756 /*
3757 * Choose PE number for root bus, which shouldn't have
3758 * M64 resources consumed by its child devices. To pick
3759 * the PE number adjacent to the reserved one if possible.
3760 */
3761 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3762 if (phb->ioda.reserved_pe_idx == 0) {
3763 phb->ioda.root_pe_idx = 1;
3764 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3765 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3766 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3767 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3768 } else {
3769 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3770 }
3771
3772 INIT_LIST_HEAD(&phb->ioda.pe_list);
3773 mutex_init(&phb->ioda.pe_list_mutex);
3774
3775 /* Calculate how many 32-bit TCE segments we have */
3776 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3777 PNV_IODA1_DMA32_SEGSIZE;
3778
3779 #if 0 /* We should really do that ... */
3780 rc = opal_pci_set_phb_mem_window(opal->phb_id,
3781 window_type,
3782 window_num,
3783 starting_real_address,
3784 starting_pci_address,
3785 segment_size);
3786 #endif
3787
3788 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3789 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3790 phb->ioda.m32_size, phb->ioda.m32_segsize);
3791 if (phb->ioda.m64_size)
3792 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
3793 phb->ioda.m64_size, phb->ioda.m64_segsize);
3794 if (phb->ioda.io_size)
3795 pr_info(" IO: 0x%x [segment=0x%x]\n",
3796 phb->ioda.io_size, phb->ioda.io_segsize);
3797
3798
3799 phb->hose->ops = &pnv_pci_ops;
3800 phb->get_pe_state = pnv_ioda_get_pe_state;
3801 phb->freeze_pe = pnv_ioda_freeze_pe;
3802 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3803
3804 /* Setup MSI support */
3805 pnv_pci_init_ioda_msis(phb);
3806
3807 /*
3808 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3809 * to let the PCI core do resource assignment. It's supposed
3810 * that the PCI core will do correct I/O and MMIO alignment
3811 * for the P2P bridge bars so that each PCI bus (excluding
3812 * the child P2P bridges) can form individual PE.
3813 */
3814 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3815
3816 if (phb->type == PNV_PHB_NPU) {
3817 hose->controller_ops = pnv_npu_ioda_controller_ops;
3818 } else {
3819 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3820 hose->controller_ops = pnv_pci_ioda_controller_ops;
3821 }
3822
3823 #ifdef CONFIG_PCI_IOV
3824 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3825 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3826 #endif
3827
3828 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3829
3830 /* Reset IODA tables to a clean state */
3831 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3832 if (rc)
3833 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
3834
3835 /*
3836 * If we're running in kdump kernel, the previous kernel never
3837 * shutdown PCI devices correctly. We already got IODA table
3838 * cleaned out. So we have to issue PHB reset to stop all PCI
3839 * transactions from previous kernel.
3840 */
3841 if (is_kdump_kernel()) {
3842 pr_info(" Issue PHB reset ...\n");
3843 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3844 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3845 }
3846
3847 /* Remove M64 resource if we can't configure it successfully */
3848 if (!phb->init_m64 || phb->init_m64(phb))
3849 hose->mem_resources[1].flags = 0;
3850 }
3851
3852 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3853 {
3854 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3855 }
3856
3857 void __init pnv_pci_init_npu_phb(struct device_node *np)
3858 {
3859 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3860 }
3861
3862 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3863 {
3864 struct device_node *phbn;
3865 const __be64 *prop64;
3866 u64 hub_id;
3867
3868 pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3869
3870 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3871 if (!prop64) {
3872 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3873 return;
3874 }
3875 hub_id = be64_to_cpup(prop64);
3876 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3877
3878 /* Count child PHBs */
3879 for_each_child_of_node(np, phbn) {
3880 /* Look for IODA1 PHBs */
3881 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3882 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3883 }
3884 }