]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/platforms/powernv/pci-ioda.c
powerpc/powernv: Bail upon invalid master PE
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2 * Support PCI/PCIe on PowerNV platforms
3 *
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26
27 #include <asm/sections.h>
28 #include <asm/io.h>
29 #include <asm/prom.h>
30 #include <asm/pci-bridge.h>
31 #include <asm/machdep.h>
32 #include <asm/msi_bitmap.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/opal.h>
35 #include <asm/iommu.h>
36 #include <asm/tce.h>
37 #include <asm/xics.h>
38 #include <asm/debug.h>
39 #include <asm/firmware.h>
40 #include <asm/pnv-pci.h>
41
42 #include <misc/cxl.h>
43
44 #include "powernv.h"
45 #include "pci.h"
46
47 static void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
48 const char *fmt, ...)
49 {
50 struct va_format vaf;
51 va_list args;
52 char pfix[32];
53
54 va_start(args, fmt);
55
56 vaf.fmt = fmt;
57 vaf.va = &args;
58
59 if (pe->pdev)
60 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
61 else
62 sprintf(pfix, "%04x:%02x ",
63 pci_domain_nr(pe->pbus), pe->pbus->number);
64
65 printk("%spci %s: [PE# %.3d] %pV",
66 level, pfix, pe->pe_number, &vaf);
67
68 va_end(args);
69 }
70
71 #define pe_err(pe, fmt, ...) \
72 pe_level_printk(pe, KERN_ERR, fmt, ##__VA_ARGS__)
73 #define pe_warn(pe, fmt, ...) \
74 pe_level_printk(pe, KERN_WARNING, fmt, ##__VA_ARGS__)
75 #define pe_info(pe, fmt, ...) \
76 pe_level_printk(pe, KERN_INFO, fmt, ##__VA_ARGS__)
77
78 /*
79 * stdcix is only supposed to be used in hypervisor real mode as per
80 * the architecture spec
81 */
82 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
83 {
84 __asm__ __volatile__("stdcix %0,0,%1"
85 : : "r" (val), "r" (paddr) : "memory");
86 }
87
88 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
89 {
90 return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
91 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
92 }
93
94 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
95 {
96 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe)) {
97 pr_warn("%s: Invalid PE %d on PHB#%x\n",
98 __func__, pe_no, phb->hose->global_number);
99 return;
100 }
101
102 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc)) {
103 pr_warn("%s: PE %d was assigned on PHB#%x\n",
104 __func__, pe_no, phb->hose->global_number);
105 return;
106 }
107
108 phb->ioda.pe_array[pe_no].phb = phb;
109 phb->ioda.pe_array[pe_no].pe_number = pe_no;
110 }
111
112 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
113 {
114 unsigned long pe;
115
116 do {
117 pe = find_next_zero_bit(phb->ioda.pe_alloc,
118 phb->ioda.total_pe, 0);
119 if (pe >= phb->ioda.total_pe)
120 return IODA_INVALID_PE;
121 } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
122
123 phb->ioda.pe_array[pe].phb = phb;
124 phb->ioda.pe_array[pe].pe_number = pe;
125 return pe;
126 }
127
128 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
129 {
130 WARN_ON(phb->ioda.pe_array[pe].pdev);
131
132 memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
133 clear_bit(pe, phb->ioda.pe_alloc);
134 }
135
136 /* The default M64 BAR is shared by all PEs */
137 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
138 {
139 const char *desc;
140 struct resource *r;
141 s64 rc;
142
143 /* Configure the default M64 BAR */
144 rc = opal_pci_set_phb_mem_window(phb->opal_id,
145 OPAL_M64_WINDOW_TYPE,
146 phb->ioda.m64_bar_idx,
147 phb->ioda.m64_base,
148 0, /* unused */
149 phb->ioda.m64_size);
150 if (rc != OPAL_SUCCESS) {
151 desc = "configuring";
152 goto fail;
153 }
154
155 /* Enable the default M64 BAR */
156 rc = opal_pci_phb_mmio_enable(phb->opal_id,
157 OPAL_M64_WINDOW_TYPE,
158 phb->ioda.m64_bar_idx,
159 OPAL_ENABLE_M64_SPLIT);
160 if (rc != OPAL_SUCCESS) {
161 desc = "enabling";
162 goto fail;
163 }
164
165 /* Mark the M64 BAR assigned */
166 set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
167
168 /*
169 * Strip off the segment used by the reserved PE, which is
170 * expected to be 0 or last one of PE capabicity.
171 */
172 r = &phb->hose->mem_resources[1];
173 if (phb->ioda.reserved_pe == 0)
174 r->start += phb->ioda.m64_segsize;
175 else if (phb->ioda.reserved_pe == (phb->ioda.total_pe - 1))
176 r->end -= phb->ioda.m64_segsize;
177 else
178 pr_warn(" Cannot strip M64 segment for reserved PE#%d\n",
179 phb->ioda.reserved_pe);
180
181 return 0;
182
183 fail:
184 pr_warn(" Failure %lld %s M64 BAR#%d\n",
185 rc, desc, phb->ioda.m64_bar_idx);
186 opal_pci_phb_mmio_enable(phb->opal_id,
187 OPAL_M64_WINDOW_TYPE,
188 phb->ioda.m64_bar_idx,
189 OPAL_DISABLE_M64);
190 return -EIO;
191 }
192
193 static void pnv_ioda2_reserve_m64_pe(struct pnv_phb *phb)
194 {
195 resource_size_t sgsz = phb->ioda.m64_segsize;
196 struct pci_dev *pdev;
197 struct resource *r;
198 int base, step, i;
199
200 /*
201 * Root bus always has full M64 range and root port has
202 * M64 range used in reality. So we're checking root port
203 * instead of root bus.
204 */
205 list_for_each_entry(pdev, &phb->hose->bus->devices, bus_list) {
206 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
207 r = &pdev->resource[PCI_BRIDGE_RESOURCES + i];
208 if (!r->parent ||
209 !pnv_pci_is_mem_pref_64(r->flags))
210 continue;
211
212 base = (r->start - phb->ioda.m64_base) / sgsz;
213 for (step = 0; step < resource_size(r) / sgsz; step++)
214 pnv_ioda_reserve_pe(phb, base + step);
215 }
216 }
217 }
218
219 static int pnv_ioda2_pick_m64_pe(struct pnv_phb *phb,
220 struct pci_bus *bus, int all)
221 {
222 resource_size_t segsz = phb->ioda.m64_segsize;
223 struct pci_dev *pdev;
224 struct resource *r;
225 struct pnv_ioda_pe *master_pe, *pe;
226 unsigned long size, *pe_alloc;
227 bool found;
228 int start, i, j;
229
230 /* Root bus shouldn't use M64 */
231 if (pci_is_root_bus(bus))
232 return IODA_INVALID_PE;
233
234 /* We support only one M64 window on each bus */
235 found = false;
236 pci_bus_for_each_resource(bus, r, i) {
237 if (r && r->parent &&
238 pnv_pci_is_mem_pref_64(r->flags)) {
239 found = true;
240 break;
241 }
242 }
243
244 /* No M64 window found ? */
245 if (!found)
246 return IODA_INVALID_PE;
247
248 /* Allocate bitmap */
249 size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
250 pe_alloc = kzalloc(size, GFP_KERNEL);
251 if (!pe_alloc) {
252 pr_warn("%s: Out of memory !\n",
253 __func__);
254 return IODA_INVALID_PE;
255 }
256
257 /*
258 * Figure out reserved PE numbers by the PE
259 * the its child PEs.
260 */
261 start = (r->start - phb->ioda.m64_base) / segsz;
262 for (i = 0; i < resource_size(r) / segsz; i++)
263 set_bit(start + i, pe_alloc);
264
265 if (all)
266 goto done;
267
268 /*
269 * If the PE doesn't cover all subordinate buses,
270 * we need subtract from reserved PEs for children.
271 */
272 list_for_each_entry(pdev, &bus->devices, bus_list) {
273 if (!pdev->subordinate)
274 continue;
275
276 pci_bus_for_each_resource(pdev->subordinate, r, i) {
277 if (!r || !r->parent ||
278 !pnv_pci_is_mem_pref_64(r->flags))
279 continue;
280
281 start = (r->start - phb->ioda.m64_base) / segsz;
282 for (j = 0; j < resource_size(r) / segsz ; j++)
283 clear_bit(start + j, pe_alloc);
284 }
285 }
286
287 /*
288 * the current bus might not own M64 window and that's all
289 * contributed by its child buses. For the case, we needn't
290 * pick M64 dependent PE#.
291 */
292 if (bitmap_empty(pe_alloc, phb->ioda.total_pe)) {
293 kfree(pe_alloc);
294 return IODA_INVALID_PE;
295 }
296
297 /*
298 * Figure out the master PE and put all slave PEs to master
299 * PE's list to form compound PE.
300 */
301 done:
302 master_pe = NULL;
303 i = -1;
304 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe, i + 1)) <
305 phb->ioda.total_pe) {
306 pe = &phb->ioda.pe_array[i];
307
308 if (!master_pe) {
309 pe->flags |= PNV_IODA_PE_MASTER;
310 INIT_LIST_HEAD(&pe->slaves);
311 master_pe = pe;
312 } else {
313 pe->flags |= PNV_IODA_PE_SLAVE;
314 pe->master = master_pe;
315 list_add_tail(&pe->list, &master_pe->slaves);
316 }
317 }
318
319 kfree(pe_alloc);
320 return master_pe->pe_number;
321 }
322
323 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
324 {
325 struct pci_controller *hose = phb->hose;
326 struct device_node *dn = hose->dn;
327 struct resource *res;
328 const u32 *r;
329 u64 pci_addr;
330
331 /* FIXME: Support M64 for P7IOC */
332 if (phb->type != PNV_PHB_IODA2) {
333 pr_info(" Not support M64 window\n");
334 return;
335 }
336
337 if (!firmware_has_feature(FW_FEATURE_OPALv3)) {
338 pr_info(" Firmware too old to support M64 window\n");
339 return;
340 }
341
342 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
343 if (!r) {
344 pr_info(" No <ibm,opal-m64-window> on %s\n",
345 dn->full_name);
346 return;
347 }
348
349 res = &hose->mem_resources[1];
350 res->start = of_translate_address(dn, r + 2);
351 res->end = res->start + of_read_number(r + 4, 2) - 1;
352 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
353 pci_addr = of_read_number(r, 2);
354 hose->mem_offset[1] = res->start - pci_addr;
355
356 phb->ioda.m64_size = resource_size(res);
357 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe;
358 phb->ioda.m64_base = pci_addr;
359
360 /* Use last M64 BAR to cover M64 window */
361 phb->ioda.m64_bar_idx = 15;
362 phb->init_m64 = pnv_ioda2_init_m64;
363 phb->reserve_m64_pe = pnv_ioda2_reserve_m64_pe;
364 phb->pick_m64_pe = pnv_ioda2_pick_m64_pe;
365 }
366
367 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
368 {
369 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
370 struct pnv_ioda_pe *slave;
371 s64 rc;
372
373 /* Fetch master PE */
374 if (pe->flags & PNV_IODA_PE_SLAVE) {
375 pe = pe->master;
376 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
377 return;
378
379 pe_no = pe->pe_number;
380 }
381
382 /* Freeze master PE */
383 rc = opal_pci_eeh_freeze_set(phb->opal_id,
384 pe_no,
385 OPAL_EEH_ACTION_SET_FREEZE_ALL);
386 if (rc != OPAL_SUCCESS) {
387 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
388 __func__, rc, phb->hose->global_number, pe_no);
389 return;
390 }
391
392 /* Freeze slave PEs */
393 if (!(pe->flags & PNV_IODA_PE_MASTER))
394 return;
395
396 list_for_each_entry(slave, &pe->slaves, list) {
397 rc = opal_pci_eeh_freeze_set(phb->opal_id,
398 slave->pe_number,
399 OPAL_EEH_ACTION_SET_FREEZE_ALL);
400 if (rc != OPAL_SUCCESS)
401 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
402 __func__, rc, phb->hose->global_number,
403 slave->pe_number);
404 }
405 }
406
407 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
408 {
409 struct pnv_ioda_pe *pe, *slave;
410 s64 rc;
411
412 /* Find master PE */
413 pe = &phb->ioda.pe_array[pe_no];
414 if (pe->flags & PNV_IODA_PE_SLAVE) {
415 pe = pe->master;
416 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
417 pe_no = pe->pe_number;
418 }
419
420 /* Clear frozen state for master PE */
421 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
422 if (rc != OPAL_SUCCESS) {
423 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
424 __func__, rc, opt, phb->hose->global_number, pe_no);
425 return -EIO;
426 }
427
428 if (!(pe->flags & PNV_IODA_PE_MASTER))
429 return 0;
430
431 /* Clear frozen state for slave PEs */
432 list_for_each_entry(slave, &pe->slaves, list) {
433 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
434 slave->pe_number,
435 opt);
436 if (rc != OPAL_SUCCESS) {
437 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
438 __func__, rc, opt, phb->hose->global_number,
439 slave->pe_number);
440 return -EIO;
441 }
442 }
443
444 return 0;
445 }
446
447 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
448 {
449 struct pnv_ioda_pe *slave, *pe;
450 u8 fstate, state;
451 __be16 pcierr;
452 s64 rc;
453
454 /* Sanity check on PE number */
455 if (pe_no < 0 || pe_no >= phb->ioda.total_pe)
456 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
457
458 /*
459 * Fetch the master PE and the PE instance might be
460 * not initialized yet.
461 */
462 pe = &phb->ioda.pe_array[pe_no];
463 if (pe->flags & PNV_IODA_PE_SLAVE) {
464 pe = pe->master;
465 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
466 pe_no = pe->pe_number;
467 }
468
469 /* Check the master PE */
470 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
471 &state, &pcierr, NULL);
472 if (rc != OPAL_SUCCESS) {
473 pr_warn("%s: Failure %lld getting "
474 "PHB#%x-PE#%x state\n",
475 __func__, rc,
476 phb->hose->global_number, pe_no);
477 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
478 }
479
480 /* Check the slave PE */
481 if (!(pe->flags & PNV_IODA_PE_MASTER))
482 return state;
483
484 list_for_each_entry(slave, &pe->slaves, list) {
485 rc = opal_pci_eeh_freeze_status(phb->opal_id,
486 slave->pe_number,
487 &fstate,
488 &pcierr,
489 NULL);
490 if (rc != OPAL_SUCCESS) {
491 pr_warn("%s: Failure %lld getting "
492 "PHB#%x-PE#%x state\n",
493 __func__, rc,
494 phb->hose->global_number, slave->pe_number);
495 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
496 }
497
498 /*
499 * Override the result based on the ascending
500 * priority.
501 */
502 if (fstate > state)
503 state = fstate;
504 }
505
506 return state;
507 }
508
509 /* Currently those 2 are only used when MSIs are enabled, this will change
510 * but in the meantime, we need to protect them to avoid warnings
511 */
512 #ifdef CONFIG_PCI_MSI
513 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
514 {
515 struct pci_controller *hose = pci_bus_to_host(dev->bus);
516 struct pnv_phb *phb = hose->private_data;
517 struct pci_dn *pdn = pci_get_pdn(dev);
518
519 if (!pdn)
520 return NULL;
521 if (pdn->pe_number == IODA_INVALID_PE)
522 return NULL;
523 return &phb->ioda.pe_array[pdn->pe_number];
524 }
525 #endif /* CONFIG_PCI_MSI */
526
527 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
528 struct pnv_ioda_pe *parent,
529 struct pnv_ioda_pe *child,
530 bool is_add)
531 {
532 const char *desc = is_add ? "adding" : "removing";
533 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
534 OPAL_REMOVE_PE_FROM_DOMAIN;
535 struct pnv_ioda_pe *slave;
536 long rc;
537
538 /* Parent PE affects child PE */
539 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
540 child->pe_number, op);
541 if (rc != OPAL_SUCCESS) {
542 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
543 rc, desc);
544 return -ENXIO;
545 }
546
547 if (!(child->flags & PNV_IODA_PE_MASTER))
548 return 0;
549
550 /* Compound case: parent PE affects slave PEs */
551 list_for_each_entry(slave, &child->slaves, list) {
552 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
553 slave->pe_number, op);
554 if (rc != OPAL_SUCCESS) {
555 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
556 rc, desc);
557 return -ENXIO;
558 }
559 }
560
561 return 0;
562 }
563
564 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
565 struct pnv_ioda_pe *pe,
566 bool is_add)
567 {
568 struct pnv_ioda_pe *slave;
569 struct pci_dev *pdev;
570 int ret;
571
572 /*
573 * Clear PE frozen state. If it's master PE, we need
574 * clear slave PE frozen state as well.
575 */
576 if (is_add) {
577 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
578 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
579 if (pe->flags & PNV_IODA_PE_MASTER) {
580 list_for_each_entry(slave, &pe->slaves, list)
581 opal_pci_eeh_freeze_clear(phb->opal_id,
582 slave->pe_number,
583 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
584 }
585 }
586
587 /*
588 * Associate PE in PELT. We need add the PE into the
589 * corresponding PELT-V as well. Otherwise, the error
590 * originated from the PE might contribute to other
591 * PEs.
592 */
593 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
594 if (ret)
595 return ret;
596
597 /* For compound PEs, any one affects all of them */
598 if (pe->flags & PNV_IODA_PE_MASTER) {
599 list_for_each_entry(slave, &pe->slaves, list) {
600 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
601 if (ret)
602 return ret;
603 }
604 }
605
606 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
607 pdev = pe->pbus->self;
608 else
609 pdev = pe->pdev->bus->self;
610 while (pdev) {
611 struct pci_dn *pdn = pci_get_pdn(pdev);
612 struct pnv_ioda_pe *parent;
613
614 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
615 parent = &phb->ioda.pe_array[pdn->pe_number];
616 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
617 if (ret)
618 return ret;
619 }
620
621 pdev = pdev->bus->self;
622 }
623
624 return 0;
625 }
626
627 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
628 {
629 struct pci_dev *parent;
630 uint8_t bcomp, dcomp, fcomp;
631 long rc, rid_end, rid;
632
633 /* Bus validation ? */
634 if (pe->pbus) {
635 int count;
636
637 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
638 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
639 parent = pe->pbus->self;
640 if (pe->flags & PNV_IODA_PE_BUS_ALL)
641 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
642 else
643 count = 1;
644
645 switch(count) {
646 case 1: bcomp = OpalPciBusAll; break;
647 case 2: bcomp = OpalPciBus7Bits; break;
648 case 4: bcomp = OpalPciBus6Bits; break;
649 case 8: bcomp = OpalPciBus5Bits; break;
650 case 16: bcomp = OpalPciBus4Bits; break;
651 case 32: bcomp = OpalPciBus3Bits; break;
652 default:
653 pr_err("%s: Number of subordinate busses %d"
654 " unsupported\n",
655 pci_name(pe->pbus->self), count);
656 /* Do an exact match only */
657 bcomp = OpalPciBusAll;
658 }
659 rid_end = pe->rid + (count << 8);
660 } else {
661 parent = pe->pdev->bus->self;
662 bcomp = OpalPciBusAll;
663 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
664 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
665 rid_end = pe->rid + 1;
666 }
667
668 /*
669 * Associate PE in PELT. We need add the PE into the
670 * corresponding PELT-V as well. Otherwise, the error
671 * originated from the PE might contribute to other
672 * PEs.
673 */
674 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
675 bcomp, dcomp, fcomp, OPAL_MAP_PE);
676 if (rc) {
677 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
678 return -ENXIO;
679 }
680
681 /* Configure PELTV */
682 pnv_ioda_set_peltv(phb, pe, true);
683
684 /* Setup reverse map */
685 for (rid = pe->rid; rid < rid_end; rid++)
686 phb->ioda.pe_rmap[rid] = pe->pe_number;
687
688 /* Setup one MVTs on IODA1 */
689 if (phb->type != PNV_PHB_IODA1) {
690 pe->mve_number = 0;
691 goto out;
692 }
693
694 pe->mve_number = pe->pe_number;
695 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
696 if (rc != OPAL_SUCCESS) {
697 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
698 rc, pe->mve_number);
699 pe->mve_number = -1;
700 } else {
701 rc = opal_pci_set_mve_enable(phb->opal_id,
702 pe->mve_number, OPAL_ENABLE_MVE);
703 if (rc) {
704 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
705 rc, pe->mve_number);
706 pe->mve_number = -1;
707 }
708 }
709
710 out:
711 return 0;
712 }
713
714 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
715 struct pnv_ioda_pe *pe)
716 {
717 struct pnv_ioda_pe *lpe;
718
719 list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
720 if (lpe->dma_weight < pe->dma_weight) {
721 list_add_tail(&pe->dma_link, &lpe->dma_link);
722 return;
723 }
724 }
725 list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
726 }
727
728 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
729 {
730 /* This is quite simplistic. The "base" weight of a device
731 * is 10. 0 means no DMA is to be accounted for it.
732 */
733
734 /* If it's a bridge, no DMA */
735 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
736 return 0;
737
738 /* Reduce the weight of slow USB controllers */
739 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
740 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
741 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
742 return 3;
743
744 /* Increase the weight of RAID (includes Obsidian) */
745 if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
746 return 15;
747
748 /* Default */
749 return 10;
750 }
751
752 #if 0
753 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
754 {
755 struct pci_controller *hose = pci_bus_to_host(dev->bus);
756 struct pnv_phb *phb = hose->private_data;
757 struct pci_dn *pdn = pci_get_pdn(dev);
758 struct pnv_ioda_pe *pe;
759 int pe_num;
760
761 if (!pdn) {
762 pr_err("%s: Device tree node not associated properly\n",
763 pci_name(dev));
764 return NULL;
765 }
766 if (pdn->pe_number != IODA_INVALID_PE)
767 return NULL;
768
769 /* PE#0 has been pre-set */
770 if (dev->bus->number == 0)
771 pe_num = 0;
772 else
773 pe_num = pnv_ioda_alloc_pe(phb);
774 if (pe_num == IODA_INVALID_PE) {
775 pr_warning("%s: Not enough PE# available, disabling device\n",
776 pci_name(dev));
777 return NULL;
778 }
779
780 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
781 * pointer in the PE data structure, both should be destroyed at the
782 * same time. However, this needs to be looked at more closely again
783 * once we actually start removing things (Hotplug, SR-IOV, ...)
784 *
785 * At some point we want to remove the PDN completely anyways
786 */
787 pe = &phb->ioda.pe_array[pe_num];
788 pci_dev_get(dev);
789 pdn->pcidev = dev;
790 pdn->pe_number = pe_num;
791 pe->pdev = dev;
792 pe->pbus = NULL;
793 pe->tce32_seg = -1;
794 pe->mve_number = -1;
795 pe->rid = dev->bus->number << 8 | pdn->devfn;
796
797 pe_info(pe, "Associated device to PE\n");
798
799 if (pnv_ioda_configure_pe(phb, pe)) {
800 /* XXX What do we do here ? */
801 if (pe_num)
802 pnv_ioda_free_pe(phb, pe_num);
803 pdn->pe_number = IODA_INVALID_PE;
804 pe->pdev = NULL;
805 pci_dev_put(dev);
806 return NULL;
807 }
808
809 /* Assign a DMA weight to the device */
810 pe->dma_weight = pnv_ioda_dma_weight(dev);
811 if (pe->dma_weight != 0) {
812 phb->ioda.dma_weight += pe->dma_weight;
813 phb->ioda.dma_pe_count++;
814 }
815
816 /* Link the PE */
817 pnv_ioda_link_pe_by_weight(phb, pe);
818
819 return pe;
820 }
821 #endif /* Useful for SRIOV case */
822
823 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
824 {
825 struct pci_dev *dev;
826
827 list_for_each_entry(dev, &bus->devices, bus_list) {
828 struct pci_dn *pdn = pci_get_pdn(dev);
829
830 if (pdn == NULL) {
831 pr_warn("%s: No device node associated with device !\n",
832 pci_name(dev));
833 continue;
834 }
835 pdn->pcidev = dev;
836 pdn->pe_number = pe->pe_number;
837 pe->dma_weight += pnv_ioda_dma_weight(dev);
838 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
839 pnv_ioda_setup_same_PE(dev->subordinate, pe);
840 }
841 }
842
843 /*
844 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
845 * single PCI bus. Another one that contains the primary PCI bus and its
846 * subordinate PCI devices and buses. The second type of PE is normally
847 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
848 */
849 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
850 {
851 struct pci_controller *hose = pci_bus_to_host(bus);
852 struct pnv_phb *phb = hose->private_data;
853 struct pnv_ioda_pe *pe;
854 int pe_num = IODA_INVALID_PE;
855
856 /* Check if PE is determined by M64 */
857 if (phb->pick_m64_pe)
858 pe_num = phb->pick_m64_pe(phb, bus, all);
859
860 /* The PE number isn't pinned by M64 */
861 if (pe_num == IODA_INVALID_PE)
862 pe_num = pnv_ioda_alloc_pe(phb);
863
864 if (pe_num == IODA_INVALID_PE) {
865 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
866 __func__, pci_domain_nr(bus), bus->number);
867 return;
868 }
869
870 pe = &phb->ioda.pe_array[pe_num];
871 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
872 pe->pbus = bus;
873 pe->pdev = NULL;
874 pe->tce32_seg = -1;
875 pe->mve_number = -1;
876 pe->rid = bus->busn_res.start << 8;
877 pe->dma_weight = 0;
878
879 if (all)
880 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
881 bus->busn_res.start, bus->busn_res.end, pe_num);
882 else
883 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
884 bus->busn_res.start, pe_num);
885
886 if (pnv_ioda_configure_pe(phb, pe)) {
887 /* XXX What do we do here ? */
888 if (pe_num)
889 pnv_ioda_free_pe(phb, pe_num);
890 pe->pbus = NULL;
891 return;
892 }
893
894 /* Associate it with all child devices */
895 pnv_ioda_setup_same_PE(bus, pe);
896
897 /* Put PE to the list */
898 list_add_tail(&pe->list, &phb->ioda.pe_list);
899
900 /* Account for one DMA PE if at least one DMA capable device exist
901 * below the bridge
902 */
903 if (pe->dma_weight != 0) {
904 phb->ioda.dma_weight += pe->dma_weight;
905 phb->ioda.dma_pe_count++;
906 }
907
908 /* Link the PE */
909 pnv_ioda_link_pe_by_weight(phb, pe);
910 }
911
912 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
913 {
914 struct pci_dev *dev;
915
916 pnv_ioda_setup_bus_PE(bus, 0);
917
918 list_for_each_entry(dev, &bus->devices, bus_list) {
919 if (dev->subordinate) {
920 if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
921 pnv_ioda_setup_bus_PE(dev->subordinate, 1);
922 else
923 pnv_ioda_setup_PEs(dev->subordinate);
924 }
925 }
926 }
927
928 /*
929 * Configure PEs so that the downstream PCI buses and devices
930 * could have their associated PE#. Unfortunately, we didn't
931 * figure out the way to identify the PLX bridge yet. So we
932 * simply put the PCI bus and the subordinate behind the root
933 * port to PE# here. The game rule here is expected to be changed
934 * as soon as we can detected PLX bridge correctly.
935 */
936 static void pnv_pci_ioda_setup_PEs(void)
937 {
938 struct pci_controller *hose, *tmp;
939 struct pnv_phb *phb;
940
941 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
942 phb = hose->private_data;
943
944 /* M64 layout might affect PE allocation */
945 if (phb->reserve_m64_pe)
946 phb->reserve_m64_pe(phb);
947
948 pnv_ioda_setup_PEs(hose->bus);
949 }
950 }
951
952 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
953 {
954 struct pci_dn *pdn = pci_get_pdn(pdev);
955 struct pnv_ioda_pe *pe;
956
957 /*
958 * The function can be called while the PE#
959 * hasn't been assigned. Do nothing for the
960 * case.
961 */
962 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
963 return;
964
965 pe = &phb->ioda.pe_array[pdn->pe_number];
966 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
967 set_iommu_table_base_and_group(&pdev->dev, &pe->tce32_table);
968 }
969
970 static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb,
971 struct pci_dev *pdev, u64 dma_mask)
972 {
973 struct pci_dn *pdn = pci_get_pdn(pdev);
974 struct pnv_ioda_pe *pe;
975 uint64_t top;
976 bool bypass = false;
977
978 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
979 return -ENODEV;;
980
981 pe = &phb->ioda.pe_array[pdn->pe_number];
982 if (pe->tce_bypass_enabled) {
983 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
984 bypass = (dma_mask >= top);
985 }
986
987 if (bypass) {
988 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
989 set_dma_ops(&pdev->dev, &dma_direct_ops);
990 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
991 } else {
992 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
993 set_dma_ops(&pdev->dev, &dma_iommu_ops);
994 set_iommu_table_base(&pdev->dev, &pe->tce32_table);
995 }
996 *pdev->dev.dma_mask = dma_mask;
997 return 0;
998 }
999
1000 static u64 pnv_pci_ioda_dma_get_required_mask(struct pnv_phb *phb,
1001 struct pci_dev *pdev)
1002 {
1003 struct pci_dn *pdn = pci_get_pdn(pdev);
1004 struct pnv_ioda_pe *pe;
1005 u64 end, mask;
1006
1007 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1008 return 0;
1009
1010 pe = &phb->ioda.pe_array[pdn->pe_number];
1011 if (!pe->tce_bypass_enabled)
1012 return __dma_get_required_mask(&pdev->dev);
1013
1014
1015 end = pe->tce_bypass_base + memblock_end_of_DRAM();
1016 mask = 1ULL << (fls64(end) - 1);
1017 mask += mask - 1;
1018
1019 return mask;
1020 }
1021
1022 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1023 struct pci_bus *bus,
1024 bool add_to_iommu_group)
1025 {
1026 struct pci_dev *dev;
1027
1028 list_for_each_entry(dev, &bus->devices, bus_list) {
1029 if (add_to_iommu_group)
1030 set_iommu_table_base_and_group(&dev->dev,
1031 &pe->tce32_table);
1032 else
1033 set_iommu_table_base(&dev->dev, &pe->tce32_table);
1034
1035 if (dev->subordinate)
1036 pnv_ioda_setup_bus_dma(pe, dev->subordinate,
1037 add_to_iommu_group);
1038 }
1039 }
1040
1041 static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
1042 struct iommu_table *tbl,
1043 __be64 *startp, __be64 *endp, bool rm)
1044 {
1045 __be64 __iomem *invalidate = rm ?
1046 (__be64 __iomem *)pe->tce_inval_reg_phys :
1047 (__be64 __iomem *)tbl->it_index;
1048 unsigned long start, end, inc;
1049 const unsigned shift = tbl->it_page_shift;
1050
1051 start = __pa(startp);
1052 end = __pa(endp);
1053
1054 /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1055 if (tbl->it_busno) {
1056 start <<= shift;
1057 end <<= shift;
1058 inc = 128ull << shift;
1059 start |= tbl->it_busno;
1060 end |= tbl->it_busno;
1061 } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1062 /* p7ioc-style invalidation, 2 TCEs per write */
1063 start |= (1ull << 63);
1064 end |= (1ull << 63);
1065 inc = 16;
1066 } else {
1067 /* Default (older HW) */
1068 inc = 128;
1069 }
1070
1071 end |= inc - 1; /* round up end to be different than start */
1072
1073 mb(); /* Ensure above stores are visible */
1074 while (start <= end) {
1075 if (rm)
1076 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1077 else
1078 __raw_writeq(cpu_to_be64(start), invalidate);
1079 start += inc;
1080 }
1081
1082 /*
1083 * The iommu layer will do another mb() for us on build()
1084 * and we don't care on free()
1085 */
1086 }
1087
1088 static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
1089 struct iommu_table *tbl,
1090 __be64 *startp, __be64 *endp, bool rm)
1091 {
1092 unsigned long start, end, inc;
1093 __be64 __iomem *invalidate = rm ?
1094 (__be64 __iomem *)pe->tce_inval_reg_phys :
1095 (__be64 __iomem *)tbl->it_index;
1096 const unsigned shift = tbl->it_page_shift;
1097
1098 /* We'll invalidate DMA address in PE scope */
1099 start = 0x2ull << 60;
1100 start |= (pe->pe_number & 0xFF);
1101 end = start;
1102
1103 /* Figure out the start, end and step */
1104 inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
1105 start |= (inc << shift);
1106 inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
1107 end |= (inc << shift);
1108 inc = (0x1ull << shift);
1109 mb();
1110
1111 while (start <= end) {
1112 if (rm)
1113 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1114 else
1115 __raw_writeq(cpu_to_be64(start), invalidate);
1116 start += inc;
1117 }
1118 }
1119
1120 void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
1121 __be64 *startp, __be64 *endp, bool rm)
1122 {
1123 struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
1124 tce32_table);
1125 struct pnv_phb *phb = pe->phb;
1126
1127 if (phb->type == PNV_PHB_IODA1)
1128 pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
1129 else
1130 pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
1131 }
1132
1133 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
1134 struct pnv_ioda_pe *pe, unsigned int base,
1135 unsigned int segs)
1136 {
1137
1138 struct page *tce_mem = NULL;
1139 const __be64 *swinvp;
1140 struct iommu_table *tbl;
1141 unsigned int i;
1142 int64_t rc;
1143 void *addr;
1144
1145 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
1146 #define TCE32_TABLE_SIZE ((0x10000000 / 0x1000) * 8)
1147
1148 /* XXX FIXME: Handle 64-bit only DMA devices */
1149 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
1150 /* XXX FIXME: Allocate multi-level tables on PHB3 */
1151
1152 /* We shouldn't already have a 32-bit DMA associated */
1153 if (WARN_ON(pe->tce32_seg >= 0))
1154 return;
1155
1156 /* Grab a 32-bit TCE table */
1157 pe->tce32_seg = base;
1158 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
1159 (base << 28), ((base + segs) << 28) - 1);
1160
1161 /* XXX Currently, we allocate one big contiguous table for the
1162 * TCEs. We only really need one chunk per 256M of TCE space
1163 * (ie per segment) but that's an optimization for later, it
1164 * requires some added smarts with our get/put_tce implementation
1165 */
1166 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1167 get_order(TCE32_TABLE_SIZE * segs));
1168 if (!tce_mem) {
1169 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
1170 goto fail;
1171 }
1172 addr = page_address(tce_mem);
1173 memset(addr, 0, TCE32_TABLE_SIZE * segs);
1174
1175 /* Configure HW */
1176 for (i = 0; i < segs; i++) {
1177 rc = opal_pci_map_pe_dma_window(phb->opal_id,
1178 pe->pe_number,
1179 base + i, 1,
1180 __pa(addr) + TCE32_TABLE_SIZE * i,
1181 TCE32_TABLE_SIZE, 0x1000);
1182 if (rc) {
1183 pe_err(pe, " Failed to configure 32-bit TCE table,"
1184 " err %ld\n", rc);
1185 goto fail;
1186 }
1187 }
1188
1189 /* Setup linux iommu table */
1190 tbl = &pe->tce32_table;
1191 pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
1192 base << 28, IOMMU_PAGE_SHIFT_4K);
1193
1194 /* OPAL variant of P7IOC SW invalidated TCEs */
1195 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1196 if (swinvp) {
1197 /* We need a couple more fields -- an address and a data
1198 * to or. Since the bus is only printed out on table free
1199 * errors, and on the first pass the data will be a relative
1200 * bus number, print that out instead.
1201 */
1202 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1203 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1204 8);
1205 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
1206 TCE_PCI_SWINV_FREE |
1207 TCE_PCI_SWINV_PAIR);
1208 }
1209 iommu_init_table(tbl, phb->hose->node);
1210 iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
1211
1212 if (pe->pdev)
1213 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
1214 else
1215 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
1216
1217 return;
1218 fail:
1219 /* XXX Failure: Try to fallback to 64-bit only ? */
1220 if (pe->tce32_seg >= 0)
1221 pe->tce32_seg = -1;
1222 if (tce_mem)
1223 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
1224 }
1225
1226 static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
1227 {
1228 struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
1229 tce32_table);
1230 uint16_t window_id = (pe->pe_number << 1 ) + 1;
1231 int64_t rc;
1232
1233 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
1234 if (enable) {
1235 phys_addr_t top = memblock_end_of_DRAM();
1236
1237 top = roundup_pow_of_two(top);
1238 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1239 pe->pe_number,
1240 window_id,
1241 pe->tce_bypass_base,
1242 top);
1243 } else {
1244 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
1245 pe->pe_number,
1246 window_id,
1247 pe->tce_bypass_base,
1248 0);
1249
1250 /*
1251 * EEH needs the mapping between IOMMU table and group
1252 * of those VFIO/KVM pass-through devices. We can postpone
1253 * resetting DMA ops until the DMA mask is configured in
1254 * host side.
1255 */
1256 if (pe->pdev)
1257 set_iommu_table_base(&pe->pdev->dev, tbl);
1258 else
1259 pnv_ioda_setup_bus_dma(pe, pe->pbus, false);
1260 }
1261 if (rc)
1262 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
1263 else
1264 pe->tce_bypass_enabled = enable;
1265 }
1266
1267 static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
1268 struct pnv_ioda_pe *pe)
1269 {
1270 /* TVE #1 is selected by PCI address bit 59 */
1271 pe->tce_bypass_base = 1ull << 59;
1272
1273 /* Install set_bypass callback for VFIO */
1274 pe->tce32_table.set_bypass = pnv_pci_ioda2_set_bypass;
1275
1276 /* Enable bypass by default */
1277 pnv_pci_ioda2_set_bypass(&pe->tce32_table, true);
1278 }
1279
1280 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1281 struct pnv_ioda_pe *pe)
1282 {
1283 struct page *tce_mem = NULL;
1284 void *addr;
1285 const __be64 *swinvp;
1286 struct iommu_table *tbl;
1287 unsigned int tce_table_size, end;
1288 int64_t rc;
1289
1290 /* We shouldn't already have a 32-bit DMA associated */
1291 if (WARN_ON(pe->tce32_seg >= 0))
1292 return;
1293
1294 /* The PE will reserve all possible 32-bits space */
1295 pe->tce32_seg = 0;
1296 end = (1 << ilog2(phb->ioda.m32_pci_base));
1297 tce_table_size = (end / 0x1000) * 8;
1298 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
1299 end);
1300
1301 /* Allocate TCE table */
1302 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
1303 get_order(tce_table_size));
1304 if (!tce_mem) {
1305 pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
1306 goto fail;
1307 }
1308 addr = page_address(tce_mem);
1309 memset(addr, 0, tce_table_size);
1310
1311 /*
1312 * Map TCE table through TVT. The TVE index is the PE number
1313 * shifted by 1 bit for 32-bits DMA space.
1314 */
1315 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
1316 pe->pe_number << 1, 1, __pa(addr),
1317 tce_table_size, 0x1000);
1318 if (rc) {
1319 pe_err(pe, "Failed to configure 32-bit TCE table,"
1320 " err %ld\n", rc);
1321 goto fail;
1322 }
1323
1324 /* Setup linux iommu table */
1325 tbl = &pe->tce32_table;
1326 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0,
1327 IOMMU_PAGE_SHIFT_4K);
1328
1329 /* OPAL variant of PHB3 invalidated TCEs */
1330 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
1331 if (swinvp) {
1332 /* We need a couple more fields -- an address and a data
1333 * to or. Since the bus is only printed out on table free
1334 * errors, and on the first pass the data will be a relative
1335 * bus number, print that out instead.
1336 */
1337 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
1338 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
1339 8);
1340 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
1341 }
1342 iommu_init_table(tbl, phb->hose->node);
1343 iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
1344
1345 if (pe->pdev)
1346 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
1347 else
1348 pnv_ioda_setup_bus_dma(pe, pe->pbus, true);
1349
1350 /* Also create a bypass window */
1351 pnv_pci_ioda2_setup_bypass_pe(phb, pe);
1352 return;
1353 fail:
1354 if (pe->tce32_seg >= 0)
1355 pe->tce32_seg = -1;
1356 if (tce_mem)
1357 __free_pages(tce_mem, get_order(tce_table_size));
1358 }
1359
1360 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
1361 {
1362 struct pci_controller *hose = phb->hose;
1363 unsigned int residual, remaining, segs, tw, base;
1364 struct pnv_ioda_pe *pe;
1365
1366 /* If we have more PE# than segments available, hand out one
1367 * per PE until we run out and let the rest fail. If not,
1368 * then we assign at least one segment per PE, plus more based
1369 * on the amount of devices under that PE
1370 */
1371 if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
1372 residual = 0;
1373 else
1374 residual = phb->ioda.tce32_count -
1375 phb->ioda.dma_pe_count;
1376
1377 pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
1378 hose->global_number, phb->ioda.tce32_count);
1379 pr_info("PCI: %d PE# for a total weight of %d\n",
1380 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
1381
1382 /* Walk our PE list and configure their DMA segments, hand them
1383 * out one base segment plus any residual segments based on
1384 * weight
1385 */
1386 remaining = phb->ioda.tce32_count;
1387 tw = phb->ioda.dma_weight;
1388 base = 0;
1389 list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
1390 if (!pe->dma_weight)
1391 continue;
1392 if (!remaining) {
1393 pe_warn(pe, "No DMA32 resources available\n");
1394 continue;
1395 }
1396 segs = 1;
1397 if (residual) {
1398 segs += ((pe->dma_weight * residual) + (tw / 2)) / tw;
1399 if (segs > remaining)
1400 segs = remaining;
1401 }
1402
1403 /*
1404 * For IODA2 compliant PHB3, we needn't care about the weight.
1405 * The all available 32-bits DMA space will be assigned to
1406 * the specific PE.
1407 */
1408 if (phb->type == PNV_PHB_IODA1) {
1409 pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
1410 pe->dma_weight, segs);
1411 pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
1412 } else {
1413 pe_info(pe, "Assign DMA32 space\n");
1414 segs = 0;
1415 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1416 }
1417
1418 remaining -= segs;
1419 base += segs;
1420 }
1421 }
1422
1423 #ifdef CONFIG_PCI_MSI
1424 static void pnv_ioda2_msi_eoi(struct irq_data *d)
1425 {
1426 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1427 struct irq_chip *chip = irq_data_get_irq_chip(d);
1428 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
1429 ioda.irq_chip);
1430 int64_t rc;
1431
1432 rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
1433 WARN_ON_ONCE(rc);
1434
1435 icp_native_eoi(d);
1436 }
1437
1438
1439 static void set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
1440 {
1441 struct irq_data *idata;
1442 struct irq_chip *ichip;
1443
1444 if (phb->type != PNV_PHB_IODA2)
1445 return;
1446
1447 if (!phb->ioda.irq_chip_init) {
1448 /*
1449 * First time we setup an MSI IRQ, we need to setup the
1450 * corresponding IRQ chip to route correctly.
1451 */
1452 idata = irq_get_irq_data(virq);
1453 ichip = irq_data_get_irq_chip(idata);
1454 phb->ioda.irq_chip_init = 1;
1455 phb->ioda.irq_chip = *ichip;
1456 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
1457 }
1458 irq_set_chip(virq, &phb->ioda.irq_chip);
1459 }
1460
1461 #ifdef CONFIG_CXL_BASE
1462
1463 struct device_node *pnv_pci_to_phb_node(struct pci_dev *dev)
1464 {
1465 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1466
1467 return hose->dn;
1468 }
1469 EXPORT_SYMBOL(pnv_pci_to_phb_node);
1470
1471 int pnv_phb_to_cxl(struct pci_dev *dev)
1472 {
1473 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1474 struct pnv_phb *phb = hose->private_data;
1475 struct pnv_ioda_pe *pe;
1476 int rc;
1477
1478 pe = pnv_ioda_get_pe(dev);
1479 if (!pe)
1480 return -ENODEV;
1481
1482 pe_info(pe, "Switching PHB to CXL\n");
1483
1484 rc = opal_pci_set_phb_cxl_mode(phb->opal_id, 1, pe->pe_number);
1485 if (rc)
1486 dev_err(&dev->dev, "opal_pci_set_phb_cxl_mode failed: %i\n", rc);
1487
1488 return rc;
1489 }
1490 EXPORT_SYMBOL(pnv_phb_to_cxl);
1491
1492 /* Find PHB for cxl dev and allocate MSI hwirqs?
1493 * Returns the absolute hardware IRQ number
1494 */
1495 int pnv_cxl_alloc_hwirqs(struct pci_dev *dev, int num)
1496 {
1497 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1498 struct pnv_phb *phb = hose->private_data;
1499 int hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, num);
1500
1501 if (hwirq < 0) {
1502 dev_warn(&dev->dev, "Failed to find a free MSI\n");
1503 return -ENOSPC;
1504 }
1505
1506 return phb->msi_base + hwirq;
1507 }
1508 EXPORT_SYMBOL(pnv_cxl_alloc_hwirqs);
1509
1510 void pnv_cxl_release_hwirqs(struct pci_dev *dev, int hwirq, int num)
1511 {
1512 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1513 struct pnv_phb *phb = hose->private_data;
1514
1515 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq - phb->msi_base, num);
1516 }
1517 EXPORT_SYMBOL(pnv_cxl_release_hwirqs);
1518
1519 void pnv_cxl_release_hwirq_ranges(struct cxl_irq_ranges *irqs,
1520 struct pci_dev *dev)
1521 {
1522 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1523 struct pnv_phb *phb = hose->private_data;
1524 int i, hwirq;
1525
1526 for (i = 1; i < CXL_IRQ_RANGES; i++) {
1527 if (!irqs->range[i])
1528 continue;
1529 pr_devel("cxl release irq range 0x%x: offset: 0x%lx limit: %ld\n",
1530 i, irqs->offset[i],
1531 irqs->range[i]);
1532 hwirq = irqs->offset[i] - phb->msi_base;
1533 msi_bitmap_free_hwirqs(&phb->msi_bmp, hwirq,
1534 irqs->range[i]);
1535 }
1536 }
1537 EXPORT_SYMBOL(pnv_cxl_release_hwirq_ranges);
1538
1539 int pnv_cxl_alloc_hwirq_ranges(struct cxl_irq_ranges *irqs,
1540 struct pci_dev *dev, int num)
1541 {
1542 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1543 struct pnv_phb *phb = hose->private_data;
1544 int i, hwirq, try;
1545
1546 memset(irqs, 0, sizeof(struct cxl_irq_ranges));
1547
1548 /* 0 is reserved for the multiplexed PSL DSI interrupt */
1549 for (i = 1; i < CXL_IRQ_RANGES && num; i++) {
1550 try = num;
1551 while (try) {
1552 hwirq = msi_bitmap_alloc_hwirqs(&phb->msi_bmp, try);
1553 if (hwirq >= 0)
1554 break;
1555 try /= 2;
1556 }
1557 if (!try)
1558 goto fail;
1559
1560 irqs->offset[i] = phb->msi_base + hwirq;
1561 irqs->range[i] = try;
1562 pr_devel("cxl alloc irq range 0x%x: offset: 0x%lx limit: %li\n",
1563 i, irqs->offset[i], irqs->range[i]);
1564 num -= try;
1565 }
1566 if (num)
1567 goto fail;
1568
1569 return 0;
1570 fail:
1571 pnv_cxl_release_hwirq_ranges(irqs, dev);
1572 return -ENOSPC;
1573 }
1574 EXPORT_SYMBOL(pnv_cxl_alloc_hwirq_ranges);
1575
1576 int pnv_cxl_get_irq_count(struct pci_dev *dev)
1577 {
1578 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1579 struct pnv_phb *phb = hose->private_data;
1580
1581 return phb->msi_bmp.irq_count;
1582 }
1583 EXPORT_SYMBOL(pnv_cxl_get_irq_count);
1584
1585 int pnv_cxl_ioda_msi_setup(struct pci_dev *dev, unsigned int hwirq,
1586 unsigned int virq)
1587 {
1588 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1589 struct pnv_phb *phb = hose->private_data;
1590 unsigned int xive_num = hwirq - phb->msi_base;
1591 struct pnv_ioda_pe *pe;
1592 int rc;
1593
1594 if (!(pe = pnv_ioda_get_pe(dev)))
1595 return -ENODEV;
1596
1597 /* Assign XIVE to PE */
1598 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1599 if (rc) {
1600 pe_warn(pe, "%s: OPAL error %d setting msi_base 0x%x "
1601 "hwirq 0x%x XIVE 0x%x PE\n",
1602 pci_name(dev), rc, phb->msi_base, hwirq, xive_num);
1603 return -EIO;
1604 }
1605 set_msi_irq_chip(phb, virq);
1606
1607 return 0;
1608 }
1609 EXPORT_SYMBOL(pnv_cxl_ioda_msi_setup);
1610 #endif
1611
1612 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
1613 unsigned int hwirq, unsigned int virq,
1614 unsigned int is_64, struct msi_msg *msg)
1615 {
1616 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
1617 struct pci_dn *pdn = pci_get_pdn(dev);
1618 unsigned int xive_num = hwirq - phb->msi_base;
1619 __be32 data;
1620 int rc;
1621
1622 /* No PE assigned ? bail out ... no MSI for you ! */
1623 if (pe == NULL)
1624 return -ENXIO;
1625
1626 /* Check if we have an MVE */
1627 if (pe->mve_number < 0)
1628 return -ENXIO;
1629
1630 /* Force 32-bit MSI on some broken devices */
1631 if (pdn && pdn->force_32bit_msi)
1632 is_64 = 0;
1633
1634 /* Assign XIVE to PE */
1635 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
1636 if (rc) {
1637 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
1638 pci_name(dev), rc, xive_num);
1639 return -EIO;
1640 }
1641
1642 if (is_64) {
1643 __be64 addr64;
1644
1645 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
1646 &addr64, &data);
1647 if (rc) {
1648 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
1649 pci_name(dev), rc);
1650 return -EIO;
1651 }
1652 msg->address_hi = be64_to_cpu(addr64) >> 32;
1653 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
1654 } else {
1655 __be32 addr32;
1656
1657 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
1658 &addr32, &data);
1659 if (rc) {
1660 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
1661 pci_name(dev), rc);
1662 return -EIO;
1663 }
1664 msg->address_hi = 0;
1665 msg->address_lo = be32_to_cpu(addr32);
1666 }
1667 msg->data = be32_to_cpu(data);
1668
1669 set_msi_irq_chip(phb, virq);
1670
1671 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
1672 " address=%x_%08x data=%x PE# %d\n",
1673 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
1674 msg->address_hi, msg->address_lo, data, pe->pe_number);
1675
1676 return 0;
1677 }
1678
1679 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
1680 {
1681 unsigned int count;
1682 const __be32 *prop = of_get_property(phb->hose->dn,
1683 "ibm,opal-msi-ranges", NULL);
1684 if (!prop) {
1685 /* BML Fallback */
1686 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
1687 }
1688 if (!prop)
1689 return;
1690
1691 phb->msi_base = be32_to_cpup(prop);
1692 count = be32_to_cpup(prop + 1);
1693 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
1694 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
1695 phb->hose->global_number);
1696 return;
1697 }
1698
1699 phb->msi_setup = pnv_pci_ioda_msi_setup;
1700 phb->msi32_support = 1;
1701 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1702 count, phb->msi_base);
1703 }
1704 #else
1705 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
1706 #endif /* CONFIG_PCI_MSI */
1707
1708 /*
1709 * This function is supposed to be called on basis of PE from top
1710 * to bottom style. So the the I/O or MMIO segment assigned to
1711 * parent PE could be overrided by its child PEs if necessary.
1712 */
1713 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
1714 struct pnv_ioda_pe *pe)
1715 {
1716 struct pnv_phb *phb = hose->private_data;
1717 struct pci_bus_region region;
1718 struct resource *res;
1719 int i, index;
1720 int rc;
1721
1722 /*
1723 * NOTE: We only care PCI bus based PE for now. For PCI
1724 * device based PE, for example SRIOV sensitive VF should
1725 * be figured out later.
1726 */
1727 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
1728
1729 pci_bus_for_each_resource(pe->pbus, res, i) {
1730 if (!res || !res->flags ||
1731 res->start > res->end)
1732 continue;
1733
1734 if (res->flags & IORESOURCE_IO) {
1735 region.start = res->start - phb->ioda.io_pci_base;
1736 region.end = res->end - phb->ioda.io_pci_base;
1737 index = region.start / phb->ioda.io_segsize;
1738
1739 while (index < phb->ioda.total_pe &&
1740 region.start <= region.end) {
1741 phb->ioda.io_segmap[index] = pe->pe_number;
1742 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1743 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
1744 if (rc != OPAL_SUCCESS) {
1745 pr_err("%s: OPAL error %d when mapping IO "
1746 "segment #%d to PE#%d\n",
1747 __func__, rc, index, pe->pe_number);
1748 break;
1749 }
1750
1751 region.start += phb->ioda.io_segsize;
1752 index++;
1753 }
1754 } else if (res->flags & IORESOURCE_MEM) {
1755 region.start = res->start -
1756 hose->mem_offset[0] -
1757 phb->ioda.m32_pci_base;
1758 region.end = res->end -
1759 hose->mem_offset[0] -
1760 phb->ioda.m32_pci_base;
1761 index = region.start / phb->ioda.m32_segsize;
1762
1763 while (index < phb->ioda.total_pe &&
1764 region.start <= region.end) {
1765 phb->ioda.m32_segmap[index] = pe->pe_number;
1766 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1767 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
1768 if (rc != OPAL_SUCCESS) {
1769 pr_err("%s: OPAL error %d when mapping M32 "
1770 "segment#%d to PE#%d",
1771 __func__, rc, index, pe->pe_number);
1772 break;
1773 }
1774
1775 region.start += phb->ioda.m32_segsize;
1776 index++;
1777 }
1778 }
1779 }
1780 }
1781
1782 static void pnv_pci_ioda_setup_seg(void)
1783 {
1784 struct pci_controller *tmp, *hose;
1785 struct pnv_phb *phb;
1786 struct pnv_ioda_pe *pe;
1787
1788 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1789 phb = hose->private_data;
1790 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
1791 pnv_ioda_setup_pe_seg(hose, pe);
1792 }
1793 }
1794 }
1795
1796 static void pnv_pci_ioda_setup_DMA(void)
1797 {
1798 struct pci_controller *hose, *tmp;
1799 struct pnv_phb *phb;
1800
1801 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1802 pnv_ioda_setup_dma(hose->private_data);
1803
1804 /* Mark the PHB initialization done */
1805 phb = hose->private_data;
1806 phb->initialized = 1;
1807 }
1808 }
1809
1810 static void pnv_pci_ioda_create_dbgfs(void)
1811 {
1812 #ifdef CONFIG_DEBUG_FS
1813 struct pci_controller *hose, *tmp;
1814 struct pnv_phb *phb;
1815 char name[16];
1816
1817 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1818 phb = hose->private_data;
1819
1820 sprintf(name, "PCI%04x", hose->global_number);
1821 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
1822 if (!phb->dbgfs)
1823 pr_warning("%s: Error on creating debugfs on PHB#%x\n",
1824 __func__, hose->global_number);
1825 }
1826 #endif /* CONFIG_DEBUG_FS */
1827 }
1828
1829 static void pnv_pci_ioda_fixup(void)
1830 {
1831 pnv_pci_ioda_setup_PEs();
1832 pnv_pci_ioda_setup_seg();
1833 pnv_pci_ioda_setup_DMA();
1834
1835 pnv_pci_ioda_create_dbgfs();
1836
1837 #ifdef CONFIG_EEH
1838 eeh_init();
1839 eeh_addr_cache_build();
1840 #endif
1841 }
1842
1843 /*
1844 * Returns the alignment for I/O or memory windows for P2P
1845 * bridges. That actually depends on how PEs are segmented.
1846 * For now, we return I/O or M32 segment size for PE sensitive
1847 * P2P bridges. Otherwise, the default values (4KiB for I/O,
1848 * 1MiB for memory) will be returned.
1849 *
1850 * The current PCI bus might be put into one PE, which was
1851 * create against the parent PCI bridge. For that case, we
1852 * needn't enlarge the alignment so that we can save some
1853 * resources.
1854 */
1855 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
1856 unsigned long type)
1857 {
1858 struct pci_dev *bridge;
1859 struct pci_controller *hose = pci_bus_to_host(bus);
1860 struct pnv_phb *phb = hose->private_data;
1861 int num_pci_bridges = 0;
1862
1863 bridge = bus->self;
1864 while (bridge) {
1865 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
1866 num_pci_bridges++;
1867 if (num_pci_bridges >= 2)
1868 return 1;
1869 }
1870
1871 bridge = bridge->bus->self;
1872 }
1873
1874 /* We fail back to M32 if M64 isn't supported */
1875 if (phb->ioda.m64_segsize &&
1876 pnv_pci_is_mem_pref_64(type))
1877 return phb->ioda.m64_segsize;
1878 if (type & IORESOURCE_MEM)
1879 return phb->ioda.m32_segsize;
1880
1881 return phb->ioda.io_segsize;
1882 }
1883
1884 /* Prevent enabling devices for which we couldn't properly
1885 * assign a PE
1886 */
1887 static int pnv_pci_enable_device_hook(struct pci_dev *dev)
1888 {
1889 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1890 struct pnv_phb *phb = hose->private_data;
1891 struct pci_dn *pdn;
1892
1893 /* The function is probably called while the PEs have
1894 * not be created yet. For example, resource reassignment
1895 * during PCI probe period. We just skip the check if
1896 * PEs isn't ready.
1897 */
1898 if (!phb->initialized)
1899 return 0;
1900
1901 pdn = pci_get_pdn(dev);
1902 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1903 return -EINVAL;
1904
1905 return 0;
1906 }
1907
1908 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
1909 u32 devfn)
1910 {
1911 return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
1912 }
1913
1914 static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
1915 {
1916 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
1917 OPAL_ASSERT_RESET);
1918 }
1919
1920 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
1921 u64 hub_id, int ioda_type)
1922 {
1923 struct pci_controller *hose;
1924 struct pnv_phb *phb;
1925 unsigned long size, m32map_off, pemap_off, iomap_off = 0;
1926 const __be64 *prop64;
1927 const __be32 *prop32;
1928 int len;
1929 u64 phb_id;
1930 void *aux;
1931 long rc;
1932
1933 pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
1934
1935 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
1936 if (!prop64) {
1937 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
1938 return;
1939 }
1940 phb_id = be64_to_cpup(prop64);
1941 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
1942
1943 phb = alloc_bootmem(sizeof(struct pnv_phb));
1944 if (!phb) {
1945 pr_err(" Out of memory !\n");
1946 return;
1947 }
1948
1949 /* Allocate PCI controller */
1950 memset(phb, 0, sizeof(struct pnv_phb));
1951 phb->hose = hose = pcibios_alloc_controller(np);
1952 if (!phb->hose) {
1953 pr_err(" Can't allocate PCI controller for %s\n",
1954 np->full_name);
1955 free_bootmem((unsigned long)phb, sizeof(struct pnv_phb));
1956 return;
1957 }
1958
1959 spin_lock_init(&phb->lock);
1960 prop32 = of_get_property(np, "bus-range", &len);
1961 if (prop32 && len == 8) {
1962 hose->first_busno = be32_to_cpu(prop32[0]);
1963 hose->last_busno = be32_to_cpu(prop32[1]);
1964 } else {
1965 pr_warn(" Broken <bus-range> on %s\n", np->full_name);
1966 hose->first_busno = 0;
1967 hose->last_busno = 0xff;
1968 }
1969 hose->private_data = phb;
1970 phb->hub_id = hub_id;
1971 phb->opal_id = phb_id;
1972 phb->type = ioda_type;
1973
1974 /* Detect specific models for error handling */
1975 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
1976 phb->model = PNV_PHB_MODEL_P7IOC;
1977 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
1978 phb->model = PNV_PHB_MODEL_PHB3;
1979 else
1980 phb->model = PNV_PHB_MODEL_UNKNOWN;
1981
1982 /* Parse 32-bit and IO ranges (if any) */
1983 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
1984
1985 /* Get registers */
1986 phb->regs = of_iomap(np, 0);
1987 if (phb->regs == NULL)
1988 pr_err(" Failed to map registers !\n");
1989
1990 /* Initialize more IODA stuff */
1991 phb->ioda.total_pe = 1;
1992 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
1993 if (prop32)
1994 phb->ioda.total_pe = be32_to_cpup(prop32);
1995 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
1996 if (prop32)
1997 phb->ioda.reserved_pe = be32_to_cpup(prop32);
1998
1999 /* Parse 64-bit MMIO range */
2000 pnv_ioda_parse_m64_window(phb);
2001
2002 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
2003 /* FW Has already off top 64k of M32 space (MSI space) */
2004 phb->ioda.m32_size += 0x10000;
2005
2006 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
2007 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
2008 phb->ioda.io_size = hose->pci_io_size;
2009 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
2010 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
2011
2012 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
2013 size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
2014 m32map_off = size;
2015 size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
2016 if (phb->type == PNV_PHB_IODA1) {
2017 iomap_off = size;
2018 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
2019 }
2020 pemap_off = size;
2021 size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
2022 aux = alloc_bootmem(size);
2023 memset(aux, 0, size);
2024 phb->ioda.pe_alloc = aux;
2025 phb->ioda.m32_segmap = aux + m32map_off;
2026 if (phb->type == PNV_PHB_IODA1)
2027 phb->ioda.io_segmap = aux + iomap_off;
2028 phb->ioda.pe_array = aux + pemap_off;
2029 set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
2030
2031 INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
2032 INIT_LIST_HEAD(&phb->ioda.pe_list);
2033
2034 /* Calculate how many 32-bit TCE segments we have */
2035 phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
2036
2037 #if 0 /* We should really do that ... */
2038 rc = opal_pci_set_phb_mem_window(opal->phb_id,
2039 window_type,
2040 window_num,
2041 starting_real_address,
2042 starting_pci_address,
2043 segment_size);
2044 #endif
2045
2046 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
2047 phb->ioda.total_pe, phb->ioda.reserved_pe,
2048 phb->ioda.m32_size, phb->ioda.m32_segsize);
2049 if (phb->ioda.m64_size)
2050 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
2051 phb->ioda.m64_size, phb->ioda.m64_segsize);
2052 if (phb->ioda.io_size)
2053 pr_info(" IO: 0x%x [segment=0x%x]\n",
2054 phb->ioda.io_size, phb->ioda.io_segsize);
2055
2056
2057 phb->hose->ops = &pnv_pci_ops;
2058 phb->get_pe_state = pnv_ioda_get_pe_state;
2059 phb->freeze_pe = pnv_ioda_freeze_pe;
2060 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
2061 #ifdef CONFIG_EEH
2062 phb->eeh_ops = &ioda_eeh_ops;
2063 #endif
2064
2065 /* Setup RID -> PE mapping function */
2066 phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
2067
2068 /* Setup TCEs */
2069 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
2070 phb->dma_set_mask = pnv_pci_ioda_dma_set_mask;
2071 phb->dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask;
2072
2073 /* Setup shutdown function for kexec */
2074 phb->shutdown = pnv_pci_ioda_shutdown;
2075
2076 /* Setup MSI support */
2077 pnv_pci_init_ioda_msis(phb);
2078
2079 /*
2080 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
2081 * to let the PCI core do resource assignment. It's supposed
2082 * that the PCI core will do correct I/O and MMIO alignment
2083 * for the P2P bridge bars so that each PCI bus (excluding
2084 * the child P2P bridges) can form individual PE.
2085 */
2086 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
2087 ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
2088 ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
2089 ppc_md.pcibios_reset_secondary_bus = pnv_pci_reset_secondary_bus;
2090 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
2091
2092 /* Reset IODA tables to a clean state */
2093 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
2094 if (rc)
2095 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
2096
2097 /* If we're running in kdump kerenl, the previous kerenl never
2098 * shutdown PCI devices correctly. We already got IODA table
2099 * cleaned out. So we have to issue PHB reset to stop all PCI
2100 * transactions from previous kerenl.
2101 */
2102 if (is_kdump_kernel()) {
2103 pr_info(" Issue PHB reset ...\n");
2104 ioda_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
2105 ioda_eeh_phb_reset(hose, OPAL_DEASSERT_RESET);
2106 }
2107
2108 /* Remove M64 resource if we can't configure it successfully */
2109 if (!phb->init_m64 || phb->init_m64(phb))
2110 hose->mem_resources[1].flags = 0;
2111 }
2112
2113 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
2114 {
2115 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
2116 }
2117
2118 void __init pnv_pci_init_ioda_hub(struct device_node *np)
2119 {
2120 struct device_node *phbn;
2121 const __be64 *prop64;
2122 u64 hub_id;
2123
2124 pr_info("Probing IODA IO-Hub %s\n", np->full_name);
2125
2126 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
2127 if (!prop64) {
2128 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
2129 return;
2130 }
2131 hub_id = be64_to_cpup(prop64);
2132 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
2133
2134 /* Count child PHBs */
2135 for_each_child_of_node(np, phbn) {
2136 /* Look for IODA1 PHBs */
2137 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
2138 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
2139 }
2140 }