]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/platforms/powernv/pci-ioda.c
de19edeaa7a75f1e21dedd0babbf57727c6d4afb
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2 * Support PCI/PCIe on PowerNV platforms
3 *
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26
27 #include <asm/sections.h>
28 #include <asm/io.h>
29 #include <asm/prom.h>
30 #include <asm/pci-bridge.h>
31 #include <asm/machdep.h>
32 #include <asm/msi_bitmap.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/opal.h>
35 #include <asm/iommu.h>
36 #include <asm/tce.h>
37 #include <asm/xics.h>
38 #include <asm/debug.h>
39
40 #include "powernv.h"
41 #include "pci.h"
42
43 #define define_pe_printk_level(func, kern_level) \
44 static int func(const struct pnv_ioda_pe *pe, const char *fmt, ...) \
45 { \
46 struct va_format vaf; \
47 va_list args; \
48 char pfix[32]; \
49 int r; \
50 \
51 va_start(args, fmt); \
52 \
53 vaf.fmt = fmt; \
54 vaf.va = &args; \
55 \
56 if (pe->pdev) \
57 strlcpy(pfix, dev_name(&pe->pdev->dev), \
58 sizeof(pfix)); \
59 else \
60 sprintf(pfix, "%04x:%02x ", \
61 pci_domain_nr(pe->pbus), \
62 pe->pbus->number); \
63 r = printk(kern_level "pci %s: [PE# %.3d] %pV", \
64 pfix, pe->pe_number, &vaf); \
65 \
66 va_end(args); \
67 \
68 return r; \
69 } \
70
71 define_pe_printk_level(pe_err, KERN_ERR);
72 define_pe_printk_level(pe_warn, KERN_WARNING);
73 define_pe_printk_level(pe_info, KERN_INFO);
74
75 /*
76 * stdcix is only supposed to be used in hypervisor real mode as per
77 * the architecture spec
78 */
79 static inline void __raw_rm_writeq(u64 val, volatile void __iomem *paddr)
80 {
81 __asm__ __volatile__("stdcix %0,0,%1"
82 : : "r" (val), "r" (paddr) : "memory");
83 }
84
85 static int pnv_ioda_alloc_pe(struct pnv_phb *phb)
86 {
87 unsigned long pe;
88
89 do {
90 pe = find_next_zero_bit(phb->ioda.pe_alloc,
91 phb->ioda.total_pe, 0);
92 if (pe >= phb->ioda.total_pe)
93 return IODA_INVALID_PE;
94 } while(test_and_set_bit(pe, phb->ioda.pe_alloc));
95
96 phb->ioda.pe_array[pe].phb = phb;
97 phb->ioda.pe_array[pe].pe_number = pe;
98 return pe;
99 }
100
101 static void pnv_ioda_free_pe(struct pnv_phb *phb, int pe)
102 {
103 WARN_ON(phb->ioda.pe_array[pe].pdev);
104
105 memset(&phb->ioda.pe_array[pe], 0, sizeof(struct pnv_ioda_pe));
106 clear_bit(pe, phb->ioda.pe_alloc);
107 }
108
109 /* Currently those 2 are only used when MSIs are enabled, this will change
110 * but in the meantime, we need to protect them to avoid warnings
111 */
112 #ifdef CONFIG_PCI_MSI
113 static struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
114 {
115 struct pci_controller *hose = pci_bus_to_host(dev->bus);
116 struct pnv_phb *phb = hose->private_data;
117 struct pci_dn *pdn = pci_get_pdn(dev);
118
119 if (!pdn)
120 return NULL;
121 if (pdn->pe_number == IODA_INVALID_PE)
122 return NULL;
123 return &phb->ioda.pe_array[pdn->pe_number];
124 }
125 #endif /* CONFIG_PCI_MSI */
126
127 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
128 {
129 struct pci_dev *parent;
130 uint8_t bcomp, dcomp, fcomp;
131 long rc, rid_end, rid;
132
133 /* Bus validation ? */
134 if (pe->pbus) {
135 int count;
136
137 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
138 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
139 parent = pe->pbus->self;
140 if (pe->flags & PNV_IODA_PE_BUS_ALL)
141 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
142 else
143 count = 1;
144
145 switch(count) {
146 case 1: bcomp = OpalPciBusAll; break;
147 case 2: bcomp = OpalPciBus7Bits; break;
148 case 4: bcomp = OpalPciBus6Bits; break;
149 case 8: bcomp = OpalPciBus5Bits; break;
150 case 16: bcomp = OpalPciBus4Bits; break;
151 case 32: bcomp = OpalPciBus3Bits; break;
152 default:
153 pr_err("%s: Number of subordinate busses %d"
154 " unsupported\n",
155 pci_name(pe->pbus->self), count);
156 /* Do an exact match only */
157 bcomp = OpalPciBusAll;
158 }
159 rid_end = pe->rid + (count << 8);
160 } else {
161 parent = pe->pdev->bus->self;
162 bcomp = OpalPciBusAll;
163 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
164 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
165 rid_end = pe->rid + 1;
166 }
167
168 /*
169 * Associate PE in PELT. We need add the PE into the
170 * corresponding PELT-V as well. Otherwise, the error
171 * originated from the PE might contribute to other
172 * PEs.
173 */
174 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
175 bcomp, dcomp, fcomp, OPAL_MAP_PE);
176 if (rc) {
177 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
178 return -ENXIO;
179 }
180
181 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
182 pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
183 if (rc)
184 pe_warn(pe, "OPAL error %d adding self to PELTV\n", rc);
185 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
186 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
187
188 /* Add to all parents PELT-V */
189 while (parent) {
190 struct pci_dn *pdn = pci_get_pdn(parent);
191 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
192 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
193 pe->pe_number, OPAL_ADD_PE_TO_DOMAIN);
194 /* XXX What to do in case of error ? */
195 }
196 parent = parent->bus->self;
197 }
198 /* Setup reverse map */
199 for (rid = pe->rid; rid < rid_end; rid++)
200 phb->ioda.pe_rmap[rid] = pe->pe_number;
201
202 /* Setup one MVTs on IODA1 */
203 if (phb->type == PNV_PHB_IODA1) {
204 pe->mve_number = pe->pe_number;
205 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number,
206 pe->pe_number);
207 if (rc) {
208 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
209 rc, pe->mve_number);
210 pe->mve_number = -1;
211 } else {
212 rc = opal_pci_set_mve_enable(phb->opal_id,
213 pe->mve_number, OPAL_ENABLE_MVE);
214 if (rc) {
215 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
216 rc, pe->mve_number);
217 pe->mve_number = -1;
218 }
219 }
220 } else if (phb->type == PNV_PHB_IODA2)
221 pe->mve_number = 0;
222
223 return 0;
224 }
225
226 static void pnv_ioda_link_pe_by_weight(struct pnv_phb *phb,
227 struct pnv_ioda_pe *pe)
228 {
229 struct pnv_ioda_pe *lpe;
230
231 list_for_each_entry(lpe, &phb->ioda.pe_dma_list, dma_link) {
232 if (lpe->dma_weight < pe->dma_weight) {
233 list_add_tail(&pe->dma_link, &lpe->dma_link);
234 return;
235 }
236 }
237 list_add_tail(&pe->dma_link, &phb->ioda.pe_dma_list);
238 }
239
240 static unsigned int pnv_ioda_dma_weight(struct pci_dev *dev)
241 {
242 /* This is quite simplistic. The "base" weight of a device
243 * is 10. 0 means no DMA is to be accounted for it.
244 */
245
246 /* If it's a bridge, no DMA */
247 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
248 return 0;
249
250 /* Reduce the weight of slow USB controllers */
251 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
252 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
253 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
254 return 3;
255
256 /* Increase the weight of RAID (includes Obsidian) */
257 if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
258 return 15;
259
260 /* Default */
261 return 10;
262 }
263
264 #if 0
265 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
266 {
267 struct pci_controller *hose = pci_bus_to_host(dev->bus);
268 struct pnv_phb *phb = hose->private_data;
269 struct pci_dn *pdn = pci_get_pdn(dev);
270 struct pnv_ioda_pe *pe;
271 int pe_num;
272
273 if (!pdn) {
274 pr_err("%s: Device tree node not associated properly\n",
275 pci_name(dev));
276 return NULL;
277 }
278 if (pdn->pe_number != IODA_INVALID_PE)
279 return NULL;
280
281 /* PE#0 has been pre-set */
282 if (dev->bus->number == 0)
283 pe_num = 0;
284 else
285 pe_num = pnv_ioda_alloc_pe(phb);
286 if (pe_num == IODA_INVALID_PE) {
287 pr_warning("%s: Not enough PE# available, disabling device\n",
288 pci_name(dev));
289 return NULL;
290 }
291
292 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
293 * pointer in the PE data structure, both should be destroyed at the
294 * same time. However, this needs to be looked at more closely again
295 * once we actually start removing things (Hotplug, SR-IOV, ...)
296 *
297 * At some point we want to remove the PDN completely anyways
298 */
299 pe = &phb->ioda.pe_array[pe_num];
300 pci_dev_get(dev);
301 pdn->pcidev = dev;
302 pdn->pe_number = pe_num;
303 pe->pdev = dev;
304 pe->pbus = NULL;
305 pe->tce32_seg = -1;
306 pe->mve_number = -1;
307 pe->rid = dev->bus->number << 8 | pdn->devfn;
308
309 pe_info(pe, "Associated device to PE\n");
310
311 if (pnv_ioda_configure_pe(phb, pe)) {
312 /* XXX What do we do here ? */
313 if (pe_num)
314 pnv_ioda_free_pe(phb, pe_num);
315 pdn->pe_number = IODA_INVALID_PE;
316 pe->pdev = NULL;
317 pci_dev_put(dev);
318 return NULL;
319 }
320
321 /* Assign a DMA weight to the device */
322 pe->dma_weight = pnv_ioda_dma_weight(dev);
323 if (pe->dma_weight != 0) {
324 phb->ioda.dma_weight += pe->dma_weight;
325 phb->ioda.dma_pe_count++;
326 }
327
328 /* Link the PE */
329 pnv_ioda_link_pe_by_weight(phb, pe);
330
331 return pe;
332 }
333 #endif /* Useful for SRIOV case */
334
335 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
336 {
337 struct pci_dev *dev;
338
339 list_for_each_entry(dev, &bus->devices, bus_list) {
340 struct pci_dn *pdn = pci_get_pdn(dev);
341
342 if (pdn == NULL) {
343 pr_warn("%s: No device node associated with device !\n",
344 pci_name(dev));
345 continue;
346 }
347 pdn->pcidev = dev;
348 pdn->pe_number = pe->pe_number;
349 pe->dma_weight += pnv_ioda_dma_weight(dev);
350 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
351 pnv_ioda_setup_same_PE(dev->subordinate, pe);
352 }
353 }
354
355 /*
356 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
357 * single PCI bus. Another one that contains the primary PCI bus and its
358 * subordinate PCI devices and buses. The second type of PE is normally
359 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
360 */
361 static void pnv_ioda_setup_bus_PE(struct pci_bus *bus, int all)
362 {
363 struct pci_controller *hose = pci_bus_to_host(bus);
364 struct pnv_phb *phb = hose->private_data;
365 struct pnv_ioda_pe *pe;
366 int pe_num;
367
368 pe_num = pnv_ioda_alloc_pe(phb);
369 if (pe_num == IODA_INVALID_PE) {
370 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
371 __func__, pci_domain_nr(bus), bus->number);
372 return;
373 }
374
375 pe = &phb->ioda.pe_array[pe_num];
376 pe->flags = (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
377 pe->pbus = bus;
378 pe->pdev = NULL;
379 pe->tce32_seg = -1;
380 pe->mve_number = -1;
381 pe->rid = bus->busn_res.start << 8;
382 pe->dma_weight = 0;
383
384 if (all)
385 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
386 bus->busn_res.start, bus->busn_res.end, pe_num);
387 else
388 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
389 bus->busn_res.start, pe_num);
390
391 if (pnv_ioda_configure_pe(phb, pe)) {
392 /* XXX What do we do here ? */
393 if (pe_num)
394 pnv_ioda_free_pe(phb, pe_num);
395 pe->pbus = NULL;
396 return;
397 }
398
399 /* Associate it with all child devices */
400 pnv_ioda_setup_same_PE(bus, pe);
401
402 /* Put PE to the list */
403 list_add_tail(&pe->list, &phb->ioda.pe_list);
404
405 /* Account for one DMA PE if at least one DMA capable device exist
406 * below the bridge
407 */
408 if (pe->dma_weight != 0) {
409 phb->ioda.dma_weight += pe->dma_weight;
410 phb->ioda.dma_pe_count++;
411 }
412
413 /* Link the PE */
414 pnv_ioda_link_pe_by_weight(phb, pe);
415 }
416
417 static void pnv_ioda_setup_PEs(struct pci_bus *bus)
418 {
419 struct pci_dev *dev;
420
421 pnv_ioda_setup_bus_PE(bus, 0);
422
423 list_for_each_entry(dev, &bus->devices, bus_list) {
424 if (dev->subordinate) {
425 if (pci_pcie_type(dev) == PCI_EXP_TYPE_PCI_BRIDGE)
426 pnv_ioda_setup_bus_PE(dev->subordinate, 1);
427 else
428 pnv_ioda_setup_PEs(dev->subordinate);
429 }
430 }
431 }
432
433 /*
434 * Configure PEs so that the downstream PCI buses and devices
435 * could have their associated PE#. Unfortunately, we didn't
436 * figure out the way to identify the PLX bridge yet. So we
437 * simply put the PCI bus and the subordinate behind the root
438 * port to PE# here. The game rule here is expected to be changed
439 * as soon as we can detected PLX bridge correctly.
440 */
441 static void pnv_pci_ioda_setup_PEs(void)
442 {
443 struct pci_controller *hose, *tmp;
444
445 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
446 pnv_ioda_setup_PEs(hose->bus);
447 }
448 }
449
450 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
451 {
452 struct pci_dn *pdn = pci_get_pdn(pdev);
453 struct pnv_ioda_pe *pe;
454
455 /*
456 * The function can be called while the PE#
457 * hasn't been assigned. Do nothing for the
458 * case.
459 */
460 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
461 return;
462
463 pe = &phb->ioda.pe_array[pdn->pe_number];
464 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
465 set_iommu_table_base(&pdev->dev, &pe->tce32_table);
466 }
467
468 static int pnv_pci_ioda_dma_set_mask(struct pnv_phb *phb,
469 struct pci_dev *pdev, u64 dma_mask)
470 {
471 struct pci_dn *pdn = pci_get_pdn(pdev);
472 struct pnv_ioda_pe *pe;
473 uint64_t top;
474 bool bypass = false;
475
476 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
477 return -ENODEV;;
478
479 pe = &phb->ioda.pe_array[pdn->pe_number];
480 if (pe->tce_bypass_enabled) {
481 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
482 bypass = (dma_mask >= top);
483 }
484
485 if (bypass) {
486 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
487 set_dma_ops(&pdev->dev, &dma_direct_ops);
488 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
489 } else {
490 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
491 set_dma_ops(&pdev->dev, &dma_iommu_ops);
492 set_iommu_table_base(&pdev->dev, &pe->tce32_table);
493 }
494 return 0;
495 }
496
497 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
498 {
499 struct pci_dev *dev;
500
501 list_for_each_entry(dev, &bus->devices, bus_list) {
502 set_iommu_table_base_and_group(&dev->dev, &pe->tce32_table);
503 if (dev->subordinate)
504 pnv_ioda_setup_bus_dma(pe, dev->subordinate);
505 }
506 }
507
508 static void pnv_pci_ioda1_tce_invalidate(struct pnv_ioda_pe *pe,
509 struct iommu_table *tbl,
510 __be64 *startp, __be64 *endp, bool rm)
511 {
512 __be64 __iomem *invalidate = rm ?
513 (__be64 __iomem *)pe->tce_inval_reg_phys :
514 (__be64 __iomem *)tbl->it_index;
515 unsigned long start, end, inc;
516
517 start = __pa(startp);
518 end = __pa(endp);
519
520 /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
521 if (tbl->it_busno) {
522 start <<= 12;
523 end <<= 12;
524 inc = 128 << 12;
525 start |= tbl->it_busno;
526 end |= tbl->it_busno;
527 } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
528 /* p7ioc-style invalidation, 2 TCEs per write */
529 start |= (1ull << 63);
530 end |= (1ull << 63);
531 inc = 16;
532 } else {
533 /* Default (older HW) */
534 inc = 128;
535 }
536
537 end |= inc - 1; /* round up end to be different than start */
538
539 mb(); /* Ensure above stores are visible */
540 while (start <= end) {
541 if (rm)
542 __raw_rm_writeq(cpu_to_be64(start), invalidate);
543 else
544 __raw_writeq(cpu_to_be64(start), invalidate);
545 start += inc;
546 }
547
548 /*
549 * The iommu layer will do another mb() for us on build()
550 * and we don't care on free()
551 */
552 }
553
554 static void pnv_pci_ioda2_tce_invalidate(struct pnv_ioda_pe *pe,
555 struct iommu_table *tbl,
556 __be64 *startp, __be64 *endp, bool rm)
557 {
558 unsigned long start, end, inc;
559 __be64 __iomem *invalidate = rm ?
560 (__be64 __iomem *)pe->tce_inval_reg_phys :
561 (__be64 __iomem *)tbl->it_index;
562
563 /* We'll invalidate DMA address in PE scope */
564 start = 0x2ul << 60;
565 start |= (pe->pe_number & 0xFF);
566 end = start;
567
568 /* Figure out the start, end and step */
569 inc = tbl->it_offset + (((u64)startp - tbl->it_base) / sizeof(u64));
570 start |= (inc << 12);
571 inc = tbl->it_offset + (((u64)endp - tbl->it_base) / sizeof(u64));
572 end |= (inc << 12);
573 inc = (0x1ul << 12);
574 mb();
575
576 while (start <= end) {
577 if (rm)
578 __raw_rm_writeq(cpu_to_be64(start), invalidate);
579 else
580 __raw_writeq(cpu_to_be64(start), invalidate);
581 start += inc;
582 }
583 }
584
585 void pnv_pci_ioda_tce_invalidate(struct iommu_table *tbl,
586 __be64 *startp, __be64 *endp, bool rm)
587 {
588 struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
589 tce32_table);
590 struct pnv_phb *phb = pe->phb;
591
592 if (phb->type == PNV_PHB_IODA1)
593 pnv_pci_ioda1_tce_invalidate(pe, tbl, startp, endp, rm);
594 else
595 pnv_pci_ioda2_tce_invalidate(pe, tbl, startp, endp, rm);
596 }
597
598 static void pnv_pci_ioda_setup_dma_pe(struct pnv_phb *phb,
599 struct pnv_ioda_pe *pe, unsigned int base,
600 unsigned int segs)
601 {
602
603 struct page *tce_mem = NULL;
604 const __be64 *swinvp;
605 struct iommu_table *tbl;
606 unsigned int i;
607 int64_t rc;
608 void *addr;
609
610 /* 256M DMA window, 4K TCE pages, 8 bytes TCE */
611 #define TCE32_TABLE_SIZE ((0x10000000 / 0x1000) * 8)
612
613 /* XXX FIXME: Handle 64-bit only DMA devices */
614 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
615 /* XXX FIXME: Allocate multi-level tables on PHB3 */
616
617 /* We shouldn't already have a 32-bit DMA associated */
618 if (WARN_ON(pe->tce32_seg >= 0))
619 return;
620
621 /* Grab a 32-bit TCE table */
622 pe->tce32_seg = base;
623 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
624 (base << 28), ((base + segs) << 28) - 1);
625
626 /* XXX Currently, we allocate one big contiguous table for the
627 * TCEs. We only really need one chunk per 256M of TCE space
628 * (ie per segment) but that's an optimization for later, it
629 * requires some added smarts with our get/put_tce implementation
630 */
631 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
632 get_order(TCE32_TABLE_SIZE * segs));
633 if (!tce_mem) {
634 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
635 goto fail;
636 }
637 addr = page_address(tce_mem);
638 memset(addr, 0, TCE32_TABLE_SIZE * segs);
639
640 /* Configure HW */
641 for (i = 0; i < segs; i++) {
642 rc = opal_pci_map_pe_dma_window(phb->opal_id,
643 pe->pe_number,
644 base + i, 1,
645 __pa(addr) + TCE32_TABLE_SIZE * i,
646 TCE32_TABLE_SIZE, 0x1000);
647 if (rc) {
648 pe_err(pe, " Failed to configure 32-bit TCE table,"
649 " err %ld\n", rc);
650 goto fail;
651 }
652 }
653
654 /* Setup linux iommu table */
655 tbl = &pe->tce32_table;
656 pnv_pci_setup_iommu_table(tbl, addr, TCE32_TABLE_SIZE * segs,
657 base << 28);
658
659 /* OPAL variant of P7IOC SW invalidated TCEs */
660 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
661 if (swinvp) {
662 /* We need a couple more fields -- an address and a data
663 * to or. Since the bus is only printed out on table free
664 * errors, and on the first pass the data will be a relative
665 * bus number, print that out instead.
666 */
667 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
668 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
669 8);
670 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
671 TCE_PCI_SWINV_FREE |
672 TCE_PCI_SWINV_PAIR);
673 }
674 iommu_init_table(tbl, phb->hose->node);
675 iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
676
677 if (pe->pdev)
678 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
679 else
680 pnv_ioda_setup_bus_dma(pe, pe->pbus);
681
682 return;
683 fail:
684 /* XXX Failure: Try to fallback to 64-bit only ? */
685 if (pe->tce32_seg >= 0)
686 pe->tce32_seg = -1;
687 if (tce_mem)
688 __free_pages(tce_mem, get_order(TCE32_TABLE_SIZE * segs));
689 }
690
691 static void pnv_pci_ioda2_set_bypass(struct iommu_table *tbl, bool enable)
692 {
693 struct pnv_ioda_pe *pe = container_of(tbl, struct pnv_ioda_pe,
694 tce32_table);
695 uint16_t window_id = (pe->pe_number << 1 ) + 1;
696 int64_t rc;
697
698 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
699 if (enable) {
700 phys_addr_t top = memblock_end_of_DRAM();
701
702 top = roundup_pow_of_two(top);
703 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
704 pe->pe_number,
705 window_id,
706 pe->tce_bypass_base,
707 top);
708 } else {
709 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
710 pe->pe_number,
711 window_id,
712 pe->tce_bypass_base,
713 0);
714
715 /*
716 * We might want to reset the DMA ops of all devices on
717 * this PE. However in theory, that shouldn't be necessary
718 * as this is used for VFIO/KVM pass-through and the device
719 * hasn't yet been returned to its kernel driver
720 */
721 }
722 if (rc)
723 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
724 else
725 pe->tce_bypass_enabled = enable;
726 }
727
728 static void pnv_pci_ioda2_setup_bypass_pe(struct pnv_phb *phb,
729 struct pnv_ioda_pe *pe)
730 {
731 /* TVE #1 is selected by PCI address bit 59 */
732 pe->tce_bypass_base = 1ull << 59;
733
734 /* Install set_bypass callback for VFIO */
735 pe->tce32_table.set_bypass = pnv_pci_ioda2_set_bypass;
736
737 /* Enable bypass by default */
738 pnv_pci_ioda2_set_bypass(&pe->tce32_table, true);
739 }
740
741 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
742 struct pnv_ioda_pe *pe)
743 {
744 struct page *tce_mem = NULL;
745 void *addr;
746 const __be64 *swinvp;
747 struct iommu_table *tbl;
748 unsigned int tce_table_size, end;
749 int64_t rc;
750
751 /* We shouldn't already have a 32-bit DMA associated */
752 if (WARN_ON(pe->tce32_seg >= 0))
753 return;
754
755 /* The PE will reserve all possible 32-bits space */
756 pe->tce32_seg = 0;
757 end = (1 << ilog2(phb->ioda.m32_pci_base));
758 tce_table_size = (end / 0x1000) * 8;
759 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
760 end);
761
762 /* Allocate TCE table */
763 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
764 get_order(tce_table_size));
765 if (!tce_mem) {
766 pe_err(pe, "Failed to allocate a 32-bit TCE memory\n");
767 goto fail;
768 }
769 addr = page_address(tce_mem);
770 memset(addr, 0, tce_table_size);
771
772 /*
773 * Map TCE table through TVT. The TVE index is the PE number
774 * shifted by 1 bit for 32-bits DMA space.
775 */
776 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
777 pe->pe_number << 1, 1, __pa(addr),
778 tce_table_size, 0x1000);
779 if (rc) {
780 pe_err(pe, "Failed to configure 32-bit TCE table,"
781 " err %ld\n", rc);
782 goto fail;
783 }
784
785 /* Setup linux iommu table */
786 tbl = &pe->tce32_table;
787 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, 0);
788
789 /* OPAL variant of PHB3 invalidated TCEs */
790 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
791 if (swinvp) {
792 /* We need a couple more fields -- an address and a data
793 * to or. Since the bus is only printed out on table free
794 * errors, and on the first pass the data will be a relative
795 * bus number, print that out instead.
796 */
797 pe->tce_inval_reg_phys = be64_to_cpup(swinvp);
798 tbl->it_index = (unsigned long)ioremap(pe->tce_inval_reg_phys,
799 8);
800 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
801 }
802 iommu_init_table(tbl, phb->hose->node);
803 iommu_register_group(tbl, phb->hose->global_number, pe->pe_number);
804
805 if (pe->pdev)
806 set_iommu_table_base_and_group(&pe->pdev->dev, tbl);
807 else
808 pnv_ioda_setup_bus_dma(pe, pe->pbus);
809
810 /* Also create a bypass window */
811 pnv_pci_ioda2_setup_bypass_pe(phb, pe);
812 return;
813 fail:
814 if (pe->tce32_seg >= 0)
815 pe->tce32_seg = -1;
816 if (tce_mem)
817 __free_pages(tce_mem, get_order(tce_table_size));
818 }
819
820 static void pnv_ioda_setup_dma(struct pnv_phb *phb)
821 {
822 struct pci_controller *hose = phb->hose;
823 unsigned int residual, remaining, segs, tw, base;
824 struct pnv_ioda_pe *pe;
825
826 /* If we have more PE# than segments available, hand out one
827 * per PE until we run out and let the rest fail. If not,
828 * then we assign at least one segment per PE, plus more based
829 * on the amount of devices under that PE
830 */
831 if (phb->ioda.dma_pe_count > phb->ioda.tce32_count)
832 residual = 0;
833 else
834 residual = phb->ioda.tce32_count -
835 phb->ioda.dma_pe_count;
836
837 pr_info("PCI: Domain %04x has %ld available 32-bit DMA segments\n",
838 hose->global_number, phb->ioda.tce32_count);
839 pr_info("PCI: %d PE# for a total weight of %d\n",
840 phb->ioda.dma_pe_count, phb->ioda.dma_weight);
841
842 /* Walk our PE list and configure their DMA segments, hand them
843 * out one base segment plus any residual segments based on
844 * weight
845 */
846 remaining = phb->ioda.tce32_count;
847 tw = phb->ioda.dma_weight;
848 base = 0;
849 list_for_each_entry(pe, &phb->ioda.pe_dma_list, dma_link) {
850 if (!pe->dma_weight)
851 continue;
852 if (!remaining) {
853 pe_warn(pe, "No DMA32 resources available\n");
854 continue;
855 }
856 segs = 1;
857 if (residual) {
858 segs += ((pe->dma_weight * residual) + (tw / 2)) / tw;
859 if (segs > remaining)
860 segs = remaining;
861 }
862
863 /*
864 * For IODA2 compliant PHB3, we needn't care about the weight.
865 * The all available 32-bits DMA space will be assigned to
866 * the specific PE.
867 */
868 if (phb->type == PNV_PHB_IODA1) {
869 pe_info(pe, "DMA weight %d, assigned %d DMA32 segments\n",
870 pe->dma_weight, segs);
871 pnv_pci_ioda_setup_dma_pe(phb, pe, base, segs);
872 } else {
873 pe_info(pe, "Assign DMA32 space\n");
874 segs = 0;
875 pnv_pci_ioda2_setup_dma_pe(phb, pe);
876 }
877
878 remaining -= segs;
879 base += segs;
880 }
881 }
882
883 #ifdef CONFIG_PCI_MSI
884 static void pnv_ioda2_msi_eoi(struct irq_data *d)
885 {
886 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
887 struct irq_chip *chip = irq_data_get_irq_chip(d);
888 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
889 ioda.irq_chip);
890 int64_t rc;
891
892 rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
893 WARN_ON_ONCE(rc);
894
895 icp_native_eoi(d);
896 }
897
898 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
899 unsigned int hwirq, unsigned int virq,
900 unsigned int is_64, struct msi_msg *msg)
901 {
902 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
903 struct pci_dn *pdn = pci_get_pdn(dev);
904 struct irq_data *idata;
905 struct irq_chip *ichip;
906 unsigned int xive_num = hwirq - phb->msi_base;
907 __be32 data;
908 int rc;
909
910 /* No PE assigned ? bail out ... no MSI for you ! */
911 if (pe == NULL)
912 return -ENXIO;
913
914 /* Check if we have an MVE */
915 if (pe->mve_number < 0)
916 return -ENXIO;
917
918 /* Force 32-bit MSI on some broken devices */
919 if (pdn && pdn->force_32bit_msi)
920 is_64 = 0;
921
922 /* Assign XIVE to PE */
923 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
924 if (rc) {
925 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
926 pci_name(dev), rc, xive_num);
927 return -EIO;
928 }
929
930 if (is_64) {
931 __be64 addr64;
932
933 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
934 &addr64, &data);
935 if (rc) {
936 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
937 pci_name(dev), rc);
938 return -EIO;
939 }
940 msg->address_hi = be64_to_cpu(addr64) >> 32;
941 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
942 } else {
943 __be32 addr32;
944
945 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
946 &addr32, &data);
947 if (rc) {
948 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
949 pci_name(dev), rc);
950 return -EIO;
951 }
952 msg->address_hi = 0;
953 msg->address_lo = be32_to_cpu(addr32);
954 }
955 msg->data = be32_to_cpu(data);
956
957 /*
958 * Change the IRQ chip for the MSI interrupts on PHB3.
959 * The corresponding IRQ chip should be populated for
960 * the first time.
961 */
962 if (phb->type == PNV_PHB_IODA2) {
963 if (!phb->ioda.irq_chip_init) {
964 idata = irq_get_irq_data(virq);
965 ichip = irq_data_get_irq_chip(idata);
966 phb->ioda.irq_chip_init = 1;
967 phb->ioda.irq_chip = *ichip;
968 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
969 }
970
971 irq_set_chip(virq, &phb->ioda.irq_chip);
972 }
973
974 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
975 " address=%x_%08x data=%x PE# %d\n",
976 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
977 msg->address_hi, msg->address_lo, data, pe->pe_number);
978
979 return 0;
980 }
981
982 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
983 {
984 unsigned int count;
985 const __be32 *prop = of_get_property(phb->hose->dn,
986 "ibm,opal-msi-ranges", NULL);
987 if (!prop) {
988 /* BML Fallback */
989 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
990 }
991 if (!prop)
992 return;
993
994 phb->msi_base = be32_to_cpup(prop);
995 count = be32_to_cpup(prop + 1);
996 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
997 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
998 phb->hose->global_number);
999 return;
1000 }
1001
1002 phb->msi_setup = pnv_pci_ioda_msi_setup;
1003 phb->msi32_support = 1;
1004 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
1005 count, phb->msi_base);
1006 }
1007 #else
1008 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
1009 #endif /* CONFIG_PCI_MSI */
1010
1011 /*
1012 * This function is supposed to be called on basis of PE from top
1013 * to bottom style. So the the I/O or MMIO segment assigned to
1014 * parent PE could be overrided by its child PEs if necessary.
1015 */
1016 static void pnv_ioda_setup_pe_seg(struct pci_controller *hose,
1017 struct pnv_ioda_pe *pe)
1018 {
1019 struct pnv_phb *phb = hose->private_data;
1020 struct pci_bus_region region;
1021 struct resource *res;
1022 int i, index;
1023 int rc;
1024
1025 /*
1026 * NOTE: We only care PCI bus based PE for now. For PCI
1027 * device based PE, for example SRIOV sensitive VF should
1028 * be figured out later.
1029 */
1030 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
1031
1032 pci_bus_for_each_resource(pe->pbus, res, i) {
1033 if (!res || !res->flags ||
1034 res->start > res->end)
1035 continue;
1036
1037 if (res->flags & IORESOURCE_IO) {
1038 region.start = res->start - phb->ioda.io_pci_base;
1039 region.end = res->end - phb->ioda.io_pci_base;
1040 index = region.start / phb->ioda.io_segsize;
1041
1042 while (index < phb->ioda.total_pe &&
1043 region.start <= region.end) {
1044 phb->ioda.io_segmap[index] = pe->pe_number;
1045 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1046 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
1047 if (rc != OPAL_SUCCESS) {
1048 pr_err("%s: OPAL error %d when mapping IO "
1049 "segment #%d to PE#%d\n",
1050 __func__, rc, index, pe->pe_number);
1051 break;
1052 }
1053
1054 region.start += phb->ioda.io_segsize;
1055 index++;
1056 }
1057 } else if (res->flags & IORESOURCE_MEM) {
1058 /* WARNING: Assumes M32 is mem region 0 in PHB. We need to
1059 * harden that algorithm when we start supporting M64
1060 */
1061 region.start = res->start -
1062 hose->mem_offset[0] -
1063 phb->ioda.m32_pci_base;
1064 region.end = res->end -
1065 hose->mem_offset[0] -
1066 phb->ioda.m32_pci_base;
1067 index = region.start / phb->ioda.m32_segsize;
1068
1069 while (index < phb->ioda.total_pe &&
1070 region.start <= region.end) {
1071 phb->ioda.m32_segmap[index] = pe->pe_number;
1072 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1073 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
1074 if (rc != OPAL_SUCCESS) {
1075 pr_err("%s: OPAL error %d when mapping M32 "
1076 "segment#%d to PE#%d",
1077 __func__, rc, index, pe->pe_number);
1078 break;
1079 }
1080
1081 region.start += phb->ioda.m32_segsize;
1082 index++;
1083 }
1084 }
1085 }
1086 }
1087
1088 static void pnv_pci_ioda_setup_seg(void)
1089 {
1090 struct pci_controller *tmp, *hose;
1091 struct pnv_phb *phb;
1092 struct pnv_ioda_pe *pe;
1093
1094 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1095 phb = hose->private_data;
1096 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
1097 pnv_ioda_setup_pe_seg(hose, pe);
1098 }
1099 }
1100 }
1101
1102 static void pnv_pci_ioda_setup_DMA(void)
1103 {
1104 struct pci_controller *hose, *tmp;
1105 struct pnv_phb *phb;
1106
1107 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1108 pnv_ioda_setup_dma(hose->private_data);
1109
1110 /* Mark the PHB initialization done */
1111 phb = hose->private_data;
1112 phb->initialized = 1;
1113 }
1114 }
1115
1116 static void pnv_pci_ioda_create_dbgfs(void)
1117 {
1118 #ifdef CONFIG_DEBUG_FS
1119 struct pci_controller *hose, *tmp;
1120 struct pnv_phb *phb;
1121 char name[16];
1122
1123 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1124 phb = hose->private_data;
1125
1126 sprintf(name, "PCI%04x", hose->global_number);
1127 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
1128 if (!phb->dbgfs)
1129 pr_warning("%s: Error on creating debugfs on PHB#%x\n",
1130 __func__, hose->global_number);
1131 }
1132 #endif /* CONFIG_DEBUG_FS */
1133 }
1134
1135 static void pnv_pci_ioda_fixup(void)
1136 {
1137 pnv_pci_ioda_setup_PEs();
1138 pnv_pci_ioda_setup_seg();
1139 pnv_pci_ioda_setup_DMA();
1140
1141 pnv_pci_ioda_create_dbgfs();
1142
1143 #ifdef CONFIG_EEH
1144 eeh_probe_mode_set(EEH_PROBE_MODE_DEV);
1145 eeh_addr_cache_build();
1146 eeh_init();
1147 #endif
1148 }
1149
1150 /*
1151 * Returns the alignment for I/O or memory windows for P2P
1152 * bridges. That actually depends on how PEs are segmented.
1153 * For now, we return I/O or M32 segment size for PE sensitive
1154 * P2P bridges. Otherwise, the default values (4KiB for I/O,
1155 * 1MiB for memory) will be returned.
1156 *
1157 * The current PCI bus might be put into one PE, which was
1158 * create against the parent PCI bridge. For that case, we
1159 * needn't enlarge the alignment so that we can save some
1160 * resources.
1161 */
1162 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
1163 unsigned long type)
1164 {
1165 struct pci_dev *bridge;
1166 struct pci_controller *hose = pci_bus_to_host(bus);
1167 struct pnv_phb *phb = hose->private_data;
1168 int num_pci_bridges = 0;
1169
1170 bridge = bus->self;
1171 while (bridge) {
1172 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
1173 num_pci_bridges++;
1174 if (num_pci_bridges >= 2)
1175 return 1;
1176 }
1177
1178 bridge = bridge->bus->self;
1179 }
1180
1181 /* We need support prefetchable memory window later */
1182 if (type & IORESOURCE_MEM)
1183 return phb->ioda.m32_segsize;
1184
1185 return phb->ioda.io_segsize;
1186 }
1187
1188 /* Prevent enabling devices for which we couldn't properly
1189 * assign a PE
1190 */
1191 static int pnv_pci_enable_device_hook(struct pci_dev *dev)
1192 {
1193 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1194 struct pnv_phb *phb = hose->private_data;
1195 struct pci_dn *pdn;
1196
1197 /* The function is probably called while the PEs have
1198 * not be created yet. For example, resource reassignment
1199 * during PCI probe period. We just skip the check if
1200 * PEs isn't ready.
1201 */
1202 if (!phb->initialized)
1203 return 0;
1204
1205 pdn = pci_get_pdn(dev);
1206 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1207 return -EINVAL;
1208
1209 return 0;
1210 }
1211
1212 static u32 pnv_ioda_bdfn_to_pe(struct pnv_phb *phb, struct pci_bus *bus,
1213 u32 devfn)
1214 {
1215 return phb->ioda.pe_rmap[(bus->number << 8) | devfn];
1216 }
1217
1218 static void pnv_pci_ioda_shutdown(struct pnv_phb *phb)
1219 {
1220 opal_pci_reset(phb->opal_id, OPAL_PCI_IODA_TABLE_RESET,
1221 OPAL_ASSERT_RESET);
1222 }
1223
1224 void __init pnv_pci_init_ioda_phb(struct device_node *np,
1225 u64 hub_id, int ioda_type)
1226 {
1227 struct pci_controller *hose;
1228 struct pnv_phb *phb;
1229 unsigned long size, m32map_off, pemap_off, iomap_off = 0;
1230 const __be64 *prop64;
1231 const __be32 *prop32;
1232 int len;
1233 u64 phb_id;
1234 void *aux;
1235 long rc;
1236
1237 pr_info("Initializing IODA%d OPAL PHB %s\n", ioda_type, np->full_name);
1238
1239 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
1240 if (!prop64) {
1241 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
1242 return;
1243 }
1244 phb_id = be64_to_cpup(prop64);
1245 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
1246
1247 phb = alloc_bootmem(sizeof(struct pnv_phb));
1248 if (!phb) {
1249 pr_err(" Out of memory !\n");
1250 return;
1251 }
1252
1253 /* Allocate PCI controller */
1254 memset(phb, 0, sizeof(struct pnv_phb));
1255 phb->hose = hose = pcibios_alloc_controller(np);
1256 if (!phb->hose) {
1257 pr_err(" Can't allocate PCI controller for %s\n",
1258 np->full_name);
1259 free_bootmem((unsigned long)phb, sizeof(struct pnv_phb));
1260 return;
1261 }
1262
1263 spin_lock_init(&phb->lock);
1264 prop32 = of_get_property(np, "bus-range", &len);
1265 if (prop32 && len == 8) {
1266 hose->first_busno = be32_to_cpu(prop32[0]);
1267 hose->last_busno = be32_to_cpu(prop32[1]);
1268 } else {
1269 pr_warn(" Broken <bus-range> on %s\n", np->full_name);
1270 hose->first_busno = 0;
1271 hose->last_busno = 0xff;
1272 }
1273 hose->private_data = phb;
1274 phb->hub_id = hub_id;
1275 phb->opal_id = phb_id;
1276 phb->type = ioda_type;
1277
1278 /* Detect specific models for error handling */
1279 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
1280 phb->model = PNV_PHB_MODEL_P7IOC;
1281 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
1282 phb->model = PNV_PHB_MODEL_PHB3;
1283 else
1284 phb->model = PNV_PHB_MODEL_UNKNOWN;
1285
1286 /* Parse 32-bit and IO ranges (if any) */
1287 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
1288
1289 /* Get registers */
1290 phb->regs = of_iomap(np, 0);
1291 if (phb->regs == NULL)
1292 pr_err(" Failed to map registers !\n");
1293
1294 /* Initialize more IODA stuff */
1295 phb->ioda.total_pe = 1;
1296 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
1297 if (prop32)
1298 phb->ioda.total_pe = be32_to_cpup(prop32);
1299 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
1300 if (prop32)
1301 phb->ioda.reserved_pe = be32_to_cpup(prop32);
1302 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
1303 /* FW Has already off top 64k of M32 space (MSI space) */
1304 phb->ioda.m32_size += 0x10000;
1305
1306 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe;
1307 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
1308 phb->ioda.io_size = hose->pci_io_size;
1309 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe;
1310 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
1311
1312 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
1313 size = _ALIGN_UP(phb->ioda.total_pe / 8, sizeof(unsigned long));
1314 m32map_off = size;
1315 size += phb->ioda.total_pe * sizeof(phb->ioda.m32_segmap[0]);
1316 if (phb->type == PNV_PHB_IODA1) {
1317 iomap_off = size;
1318 size += phb->ioda.total_pe * sizeof(phb->ioda.io_segmap[0]);
1319 }
1320 pemap_off = size;
1321 size += phb->ioda.total_pe * sizeof(struct pnv_ioda_pe);
1322 aux = alloc_bootmem(size);
1323 memset(aux, 0, size);
1324 phb->ioda.pe_alloc = aux;
1325 phb->ioda.m32_segmap = aux + m32map_off;
1326 if (phb->type == PNV_PHB_IODA1)
1327 phb->ioda.io_segmap = aux + iomap_off;
1328 phb->ioda.pe_array = aux + pemap_off;
1329 set_bit(phb->ioda.reserved_pe, phb->ioda.pe_alloc);
1330
1331 INIT_LIST_HEAD(&phb->ioda.pe_dma_list);
1332 INIT_LIST_HEAD(&phb->ioda.pe_list);
1333
1334 /* Calculate how many 32-bit TCE segments we have */
1335 phb->ioda.tce32_count = phb->ioda.m32_pci_base >> 28;
1336
1337 /* Clear unusable m64 */
1338 hose->mem_resources[1].flags = 0;
1339 hose->mem_resources[1].start = 0;
1340 hose->mem_resources[1].end = 0;
1341 hose->mem_resources[2].flags = 0;
1342 hose->mem_resources[2].start = 0;
1343 hose->mem_resources[2].end = 0;
1344
1345 #if 0 /* We should really do that ... */
1346 rc = opal_pci_set_phb_mem_window(opal->phb_id,
1347 window_type,
1348 window_num,
1349 starting_real_address,
1350 starting_pci_address,
1351 segment_size);
1352 #endif
1353
1354 pr_info(" %d (%d) PE's M32: 0x%x [segment=0x%x]"
1355 " IO: 0x%x [segment=0x%x]\n",
1356 phb->ioda.total_pe,
1357 phb->ioda.reserved_pe,
1358 phb->ioda.m32_size, phb->ioda.m32_segsize,
1359 phb->ioda.io_size, phb->ioda.io_segsize);
1360
1361 phb->hose->ops = &pnv_pci_ops;
1362 #ifdef CONFIG_EEH
1363 phb->eeh_ops = &ioda_eeh_ops;
1364 #endif
1365
1366 /* Setup RID -> PE mapping function */
1367 phb->bdfn_to_pe = pnv_ioda_bdfn_to_pe;
1368
1369 /* Setup TCEs */
1370 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
1371 phb->dma_set_mask = pnv_pci_ioda_dma_set_mask;
1372
1373 /* Setup shutdown function for kexec */
1374 phb->shutdown = pnv_pci_ioda_shutdown;
1375
1376 /* Setup MSI support */
1377 pnv_pci_init_ioda_msis(phb);
1378
1379 /*
1380 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
1381 * to let the PCI core do resource assignment. It's supposed
1382 * that the PCI core will do correct I/O and MMIO alignment
1383 * for the P2P bridge bars so that each PCI bus (excluding
1384 * the child P2P bridges) can form individual PE.
1385 */
1386 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
1387 ppc_md.pcibios_enable_device_hook = pnv_pci_enable_device_hook;
1388 ppc_md.pcibios_window_alignment = pnv_pci_window_alignment;
1389 ppc_md.pcibios_reset_secondary_bus = pnv_pci_reset_secondary_bus;
1390 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
1391
1392 /* Reset IODA tables to a clean state */
1393 rc = opal_pci_reset(phb_id, OPAL_PCI_IODA_TABLE_RESET, OPAL_ASSERT_RESET);
1394 if (rc)
1395 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
1396
1397 /* If we're running in kdump kerenl, the previous kerenl never
1398 * shutdown PCI devices correctly. We already got IODA table
1399 * cleaned out. So we have to issue PHB reset to stop all PCI
1400 * transactions from previous kerenl.
1401 */
1402 if (is_kdump_kernel()) {
1403 pr_info(" Issue PHB reset ...\n");
1404 ioda_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
1405 ioda_eeh_phb_reset(hose, OPAL_DEASSERT_RESET);
1406 }
1407 }
1408
1409 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
1410 {
1411 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
1412 }
1413
1414 void __init pnv_pci_init_ioda_hub(struct device_node *np)
1415 {
1416 struct device_node *phbn;
1417 const __be64 *prop64;
1418 u64 hub_id;
1419
1420 pr_info("Probing IODA IO-Hub %s\n", np->full_name);
1421
1422 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
1423 if (!prop64) {
1424 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
1425 return;
1426 }
1427 hub_id = be64_to_cpup(prop64);
1428 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
1429
1430 /* Count child PHBs */
1431 for_each_child_of_node(np, phbn) {
1432 /* Look for IODA1 PHBs */
1433 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
1434 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
1435 }
1436 }