]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/powerpc/platforms/powernv/pci-ioda.c
Merge tag 'asm-generic-nommu' of git://git.kernel.org/pub/scm/linux/kernel/git/arnd...
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2 * Support PCI/PCIe on PowerNV platforms
3 *
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/delay.h>
18 #include <linux/string.h>
19 #include <linux/init.h>
20 #include <linux/memblock.h>
21 #include <linux/irq.h>
22 #include <linux/io.h>
23 #include <linux/msi.h>
24 #include <linux/iommu.h>
25 #include <linux/rculist.h>
26 #include <linux/sizes.h>
27
28 #include <asm/sections.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/pci-bridge.h>
32 #include <asm/machdep.h>
33 #include <asm/msi_bitmap.h>
34 #include <asm/ppc-pci.h>
35 #include <asm/opal.h>
36 #include <asm/iommu.h>
37 #include <asm/tce.h>
38 #include <asm/xics.h>
39 #include <asm/debugfs.h>
40 #include <asm/firmware.h>
41 #include <asm/pnv-pci.h>
42 #include <asm/mmzone.h>
43
44 #include <misc/cxl-base.h>
45
46 #include "powernv.h"
47 #include "pci.h"
48 #include "../../../../drivers/pci/pci.h"
49
50 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */
51 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */
52 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
53
54 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU_NVLINK",
55 "NPU_OCAPI" };
56
57 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
58 const char *fmt, ...)
59 {
60 struct va_format vaf;
61 va_list args;
62 char pfix[32];
63
64 va_start(args, fmt);
65
66 vaf.fmt = fmt;
67 vaf.va = &args;
68
69 if (pe->flags & PNV_IODA_PE_DEV)
70 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
71 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
72 sprintf(pfix, "%04x:%02x ",
73 pci_domain_nr(pe->pbus), pe->pbus->number);
74 #ifdef CONFIG_PCI_IOV
75 else if (pe->flags & PNV_IODA_PE_VF)
76 sprintf(pfix, "%04x:%02x:%2x.%d",
77 pci_domain_nr(pe->parent_dev->bus),
78 (pe->rid & 0xff00) >> 8,
79 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
80 #endif /* CONFIG_PCI_IOV*/
81
82 printk("%spci %s: [PE# %.2x] %pV",
83 level, pfix, pe->pe_number, &vaf);
84
85 va_end(args);
86 }
87
88 static bool pnv_iommu_bypass_disabled __read_mostly;
89 static bool pci_reset_phbs __read_mostly;
90
91 static int __init iommu_setup(char *str)
92 {
93 if (!str)
94 return -EINVAL;
95
96 while (*str) {
97 if (!strncmp(str, "nobypass", 8)) {
98 pnv_iommu_bypass_disabled = true;
99 pr_info("PowerNV: IOMMU bypass window disabled.\n");
100 break;
101 }
102 str += strcspn(str, ",");
103 if (*str == ',')
104 str++;
105 }
106
107 return 0;
108 }
109 early_param("iommu", iommu_setup);
110
111 static int __init pci_reset_phbs_setup(char *str)
112 {
113 pci_reset_phbs = true;
114 return 0;
115 }
116
117 early_param("ppc_pci_reset_phbs", pci_reset_phbs_setup);
118
119 static inline bool pnv_pci_is_m64(struct pnv_phb *phb, struct resource *r)
120 {
121 /*
122 * WARNING: We cannot rely on the resource flags. The Linux PCI
123 * allocation code sometimes decides to put a 64-bit prefetchable
124 * BAR in the 32-bit window, so we have to compare the addresses.
125 *
126 * For simplicity we only test resource start.
127 */
128 return (r->start >= phb->ioda.m64_base &&
129 r->start < (phb->ioda.m64_base + phb->ioda.m64_size));
130 }
131
132 static inline bool pnv_pci_is_m64_flags(unsigned long resource_flags)
133 {
134 unsigned long flags = (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
135
136 return (resource_flags & flags) == flags;
137 }
138
139 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
140 {
141 s64 rc;
142
143 phb->ioda.pe_array[pe_no].phb = phb;
144 phb->ioda.pe_array[pe_no].pe_number = pe_no;
145
146 /*
147 * Clear the PE frozen state as it might be put into frozen state
148 * in the last PCI remove path. It's not harmful to do so when the
149 * PE is already in unfrozen state.
150 */
151 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no,
152 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
153 if (rc != OPAL_SUCCESS && rc != OPAL_UNSUPPORTED)
154 pr_warn("%s: Error %lld unfreezing PHB#%x-PE#%x\n",
155 __func__, rc, phb->hose->global_number, pe_no);
156
157 return &phb->ioda.pe_array[pe_no];
158 }
159
160 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
161 {
162 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
163 pr_warn("%s: Invalid PE %x on PHB#%x\n",
164 __func__, pe_no, phb->hose->global_number);
165 return;
166 }
167
168 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
169 pr_debug("%s: PE %x was reserved on PHB#%x\n",
170 __func__, pe_no, phb->hose->global_number);
171
172 pnv_ioda_init_pe(phb, pe_no);
173 }
174
175 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
176 {
177 long pe;
178
179 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
180 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
181 return pnv_ioda_init_pe(phb, pe);
182 }
183
184 return NULL;
185 }
186
187 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
188 {
189 struct pnv_phb *phb = pe->phb;
190 unsigned int pe_num = pe->pe_number;
191
192 WARN_ON(pe->pdev);
193 WARN_ON(pe->npucomp); /* NPUs are not supposed to be freed */
194 kfree(pe->npucomp);
195 memset(pe, 0, sizeof(struct pnv_ioda_pe));
196 clear_bit(pe_num, phb->ioda.pe_alloc);
197 }
198
199 /* The default M64 BAR is shared by all PEs */
200 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
201 {
202 const char *desc;
203 struct resource *r;
204 s64 rc;
205
206 /* Configure the default M64 BAR */
207 rc = opal_pci_set_phb_mem_window(phb->opal_id,
208 OPAL_M64_WINDOW_TYPE,
209 phb->ioda.m64_bar_idx,
210 phb->ioda.m64_base,
211 0, /* unused */
212 phb->ioda.m64_size);
213 if (rc != OPAL_SUCCESS) {
214 desc = "configuring";
215 goto fail;
216 }
217
218 /* Enable the default M64 BAR */
219 rc = opal_pci_phb_mmio_enable(phb->opal_id,
220 OPAL_M64_WINDOW_TYPE,
221 phb->ioda.m64_bar_idx,
222 OPAL_ENABLE_M64_SPLIT);
223 if (rc != OPAL_SUCCESS) {
224 desc = "enabling";
225 goto fail;
226 }
227
228 /*
229 * Exclude the segments for reserved and root bus PE, which
230 * are first or last two PEs.
231 */
232 r = &phb->hose->mem_resources[1];
233 if (phb->ioda.reserved_pe_idx == 0)
234 r->start += (2 * phb->ioda.m64_segsize);
235 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
236 r->end -= (2 * phb->ioda.m64_segsize);
237 else
238 pr_warn(" Cannot strip M64 segment for reserved PE#%x\n",
239 phb->ioda.reserved_pe_idx);
240
241 return 0;
242
243 fail:
244 pr_warn(" Failure %lld %s M64 BAR#%d\n",
245 rc, desc, phb->ioda.m64_bar_idx);
246 opal_pci_phb_mmio_enable(phb->opal_id,
247 OPAL_M64_WINDOW_TYPE,
248 phb->ioda.m64_bar_idx,
249 OPAL_DISABLE_M64);
250 return -EIO;
251 }
252
253 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
254 unsigned long *pe_bitmap)
255 {
256 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
257 struct pnv_phb *phb = hose->private_data;
258 struct resource *r;
259 resource_size_t base, sgsz, start, end;
260 int segno, i;
261
262 base = phb->ioda.m64_base;
263 sgsz = phb->ioda.m64_segsize;
264 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
265 r = &pdev->resource[i];
266 if (!r->parent || !pnv_pci_is_m64(phb, r))
267 continue;
268
269 start = _ALIGN_DOWN(r->start - base, sgsz);
270 end = _ALIGN_UP(r->end - base, sgsz);
271 for (segno = start / sgsz; segno < end / sgsz; segno++) {
272 if (pe_bitmap)
273 set_bit(segno, pe_bitmap);
274 else
275 pnv_ioda_reserve_pe(phb, segno);
276 }
277 }
278 }
279
280 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
281 {
282 struct resource *r;
283 int index;
284
285 /*
286 * There are 16 M64 BARs, each of which has 8 segments. So
287 * there are as many M64 segments as the maximum number of
288 * PEs, which is 128.
289 */
290 for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
291 unsigned long base, segsz = phb->ioda.m64_segsize;
292 int64_t rc;
293
294 base = phb->ioda.m64_base +
295 index * PNV_IODA1_M64_SEGS * segsz;
296 rc = opal_pci_set_phb_mem_window(phb->opal_id,
297 OPAL_M64_WINDOW_TYPE, index, base, 0,
298 PNV_IODA1_M64_SEGS * segsz);
299 if (rc != OPAL_SUCCESS) {
300 pr_warn(" Error %lld setting M64 PHB#%x-BAR#%d\n",
301 rc, phb->hose->global_number, index);
302 goto fail;
303 }
304
305 rc = opal_pci_phb_mmio_enable(phb->opal_id,
306 OPAL_M64_WINDOW_TYPE, index,
307 OPAL_ENABLE_M64_SPLIT);
308 if (rc != OPAL_SUCCESS) {
309 pr_warn(" Error %lld enabling M64 PHB#%x-BAR#%d\n",
310 rc, phb->hose->global_number, index);
311 goto fail;
312 }
313 }
314
315 /*
316 * Exclude the segments for reserved and root bus PE, which
317 * are first or last two PEs.
318 */
319 r = &phb->hose->mem_resources[1];
320 if (phb->ioda.reserved_pe_idx == 0)
321 r->start += (2 * phb->ioda.m64_segsize);
322 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
323 r->end -= (2 * phb->ioda.m64_segsize);
324 else
325 WARN(1, "Wrong reserved PE#%x on PHB#%x\n",
326 phb->ioda.reserved_pe_idx, phb->hose->global_number);
327
328 return 0;
329
330 fail:
331 for ( ; index >= 0; index--)
332 opal_pci_phb_mmio_enable(phb->opal_id,
333 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
334
335 return -EIO;
336 }
337
338 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
339 unsigned long *pe_bitmap,
340 bool all)
341 {
342 struct pci_dev *pdev;
343
344 list_for_each_entry(pdev, &bus->devices, bus_list) {
345 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
346
347 if (all && pdev->subordinate)
348 pnv_ioda_reserve_m64_pe(pdev->subordinate,
349 pe_bitmap, all);
350 }
351 }
352
353 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
354 {
355 struct pci_controller *hose = pci_bus_to_host(bus);
356 struct pnv_phb *phb = hose->private_data;
357 struct pnv_ioda_pe *master_pe, *pe;
358 unsigned long size, *pe_alloc;
359 int i;
360
361 /* Root bus shouldn't use M64 */
362 if (pci_is_root_bus(bus))
363 return NULL;
364
365 /* Allocate bitmap */
366 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
367 pe_alloc = kzalloc(size, GFP_KERNEL);
368 if (!pe_alloc) {
369 pr_warn("%s: Out of memory !\n",
370 __func__);
371 return NULL;
372 }
373
374 /* Figure out reserved PE numbers by the PE */
375 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
376
377 /*
378 * the current bus might not own M64 window and that's all
379 * contributed by its child buses. For the case, we needn't
380 * pick M64 dependent PE#.
381 */
382 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
383 kfree(pe_alloc);
384 return NULL;
385 }
386
387 /*
388 * Figure out the master PE and put all slave PEs to master
389 * PE's list to form compound PE.
390 */
391 master_pe = NULL;
392 i = -1;
393 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
394 phb->ioda.total_pe_num) {
395 pe = &phb->ioda.pe_array[i];
396
397 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
398 if (!master_pe) {
399 pe->flags |= PNV_IODA_PE_MASTER;
400 INIT_LIST_HEAD(&pe->slaves);
401 master_pe = pe;
402 } else {
403 pe->flags |= PNV_IODA_PE_SLAVE;
404 pe->master = master_pe;
405 list_add_tail(&pe->list, &master_pe->slaves);
406 }
407
408 /*
409 * P7IOC supports M64DT, which helps mapping M64 segment
410 * to one particular PE#. However, PHB3 has fixed mapping
411 * between M64 segment and PE#. In order to have same logic
412 * for P7IOC and PHB3, we enforce fixed mapping between M64
413 * segment and PE# on P7IOC.
414 */
415 if (phb->type == PNV_PHB_IODA1) {
416 int64_t rc;
417
418 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
419 pe->pe_number, OPAL_M64_WINDOW_TYPE,
420 pe->pe_number / PNV_IODA1_M64_SEGS,
421 pe->pe_number % PNV_IODA1_M64_SEGS);
422 if (rc != OPAL_SUCCESS)
423 pr_warn("%s: Error %lld mapping M64 for PHB#%x-PE#%x\n",
424 __func__, rc, phb->hose->global_number,
425 pe->pe_number);
426 }
427 }
428
429 kfree(pe_alloc);
430 return master_pe;
431 }
432
433 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
434 {
435 struct pci_controller *hose = phb->hose;
436 struct device_node *dn = hose->dn;
437 struct resource *res;
438 u32 m64_range[2], i;
439 const __be32 *r;
440 u64 pci_addr;
441
442 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
443 pr_info(" Not support M64 window\n");
444 return;
445 }
446
447 if (!firmware_has_feature(FW_FEATURE_OPAL)) {
448 pr_info(" Firmware too old to support M64 window\n");
449 return;
450 }
451
452 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
453 if (!r) {
454 pr_info(" No <ibm,opal-m64-window> on %pOF\n",
455 dn);
456 return;
457 }
458
459 /*
460 * Find the available M64 BAR range and pickup the last one for
461 * covering the whole 64-bits space. We support only one range.
462 */
463 if (of_property_read_u32_array(dn, "ibm,opal-available-m64-ranges",
464 m64_range, 2)) {
465 /* In absence of the property, assume 0..15 */
466 m64_range[0] = 0;
467 m64_range[1] = 16;
468 }
469 /* We only support 64 bits in our allocator */
470 if (m64_range[1] > 63) {
471 pr_warn("%s: Limiting M64 range to 63 (from %d) on PHB#%x\n",
472 __func__, m64_range[1], phb->hose->global_number);
473 m64_range[1] = 63;
474 }
475 /* Empty range, no m64 */
476 if (m64_range[1] <= m64_range[0]) {
477 pr_warn("%s: M64 empty, disabling M64 usage on PHB#%x\n",
478 __func__, phb->hose->global_number);
479 return;
480 }
481
482 /* Configure M64 informations */
483 res = &hose->mem_resources[1];
484 res->name = dn->full_name;
485 res->start = of_translate_address(dn, r + 2);
486 res->end = res->start + of_read_number(r + 4, 2) - 1;
487 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
488 pci_addr = of_read_number(r, 2);
489 hose->mem_offset[1] = res->start - pci_addr;
490
491 phb->ioda.m64_size = resource_size(res);
492 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
493 phb->ioda.m64_base = pci_addr;
494
495 /* This lines up nicely with the display from processing OF ranges */
496 pr_info(" MEM 0x%016llx..0x%016llx -> 0x%016llx (M64 #%d..%d)\n",
497 res->start, res->end, pci_addr, m64_range[0],
498 m64_range[0] + m64_range[1] - 1);
499
500 /* Mark all M64 used up by default */
501 phb->ioda.m64_bar_alloc = (unsigned long)-1;
502
503 /* Use last M64 BAR to cover M64 window */
504 m64_range[1]--;
505 phb->ioda.m64_bar_idx = m64_range[0] + m64_range[1];
506
507 pr_info(" Using M64 #%d as default window\n", phb->ioda.m64_bar_idx);
508
509 /* Mark remaining ones free */
510 for (i = m64_range[0]; i < m64_range[1]; i++)
511 clear_bit(i, &phb->ioda.m64_bar_alloc);
512
513 /*
514 * Setup init functions for M64 based on IODA version, IODA3 uses
515 * the IODA2 code.
516 */
517 if (phb->type == PNV_PHB_IODA1)
518 phb->init_m64 = pnv_ioda1_init_m64;
519 else
520 phb->init_m64 = pnv_ioda2_init_m64;
521 }
522
523 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
524 {
525 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
526 struct pnv_ioda_pe *slave;
527 s64 rc;
528
529 /* Fetch master PE */
530 if (pe->flags & PNV_IODA_PE_SLAVE) {
531 pe = pe->master;
532 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
533 return;
534
535 pe_no = pe->pe_number;
536 }
537
538 /* Freeze master PE */
539 rc = opal_pci_eeh_freeze_set(phb->opal_id,
540 pe_no,
541 OPAL_EEH_ACTION_SET_FREEZE_ALL);
542 if (rc != OPAL_SUCCESS) {
543 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
544 __func__, rc, phb->hose->global_number, pe_no);
545 return;
546 }
547
548 /* Freeze slave PEs */
549 if (!(pe->flags & PNV_IODA_PE_MASTER))
550 return;
551
552 list_for_each_entry(slave, &pe->slaves, list) {
553 rc = opal_pci_eeh_freeze_set(phb->opal_id,
554 slave->pe_number,
555 OPAL_EEH_ACTION_SET_FREEZE_ALL);
556 if (rc != OPAL_SUCCESS)
557 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
558 __func__, rc, phb->hose->global_number,
559 slave->pe_number);
560 }
561 }
562
563 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
564 {
565 struct pnv_ioda_pe *pe, *slave;
566 s64 rc;
567
568 /* Find master PE */
569 pe = &phb->ioda.pe_array[pe_no];
570 if (pe->flags & PNV_IODA_PE_SLAVE) {
571 pe = pe->master;
572 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
573 pe_no = pe->pe_number;
574 }
575
576 /* Clear frozen state for master PE */
577 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
578 if (rc != OPAL_SUCCESS) {
579 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
580 __func__, rc, opt, phb->hose->global_number, pe_no);
581 return -EIO;
582 }
583
584 if (!(pe->flags & PNV_IODA_PE_MASTER))
585 return 0;
586
587 /* Clear frozen state for slave PEs */
588 list_for_each_entry(slave, &pe->slaves, list) {
589 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
590 slave->pe_number,
591 opt);
592 if (rc != OPAL_SUCCESS) {
593 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
594 __func__, rc, opt, phb->hose->global_number,
595 slave->pe_number);
596 return -EIO;
597 }
598 }
599
600 return 0;
601 }
602
603 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
604 {
605 struct pnv_ioda_pe *slave, *pe;
606 u8 fstate = 0, state;
607 __be16 pcierr = 0;
608 s64 rc;
609
610 /* Sanity check on PE number */
611 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
612 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
613
614 /*
615 * Fetch the master PE and the PE instance might be
616 * not initialized yet.
617 */
618 pe = &phb->ioda.pe_array[pe_no];
619 if (pe->flags & PNV_IODA_PE_SLAVE) {
620 pe = pe->master;
621 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
622 pe_no = pe->pe_number;
623 }
624
625 /* Check the master PE */
626 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
627 &state, &pcierr, NULL);
628 if (rc != OPAL_SUCCESS) {
629 pr_warn("%s: Failure %lld getting "
630 "PHB#%x-PE#%x state\n",
631 __func__, rc,
632 phb->hose->global_number, pe_no);
633 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
634 }
635
636 /* Check the slave PE */
637 if (!(pe->flags & PNV_IODA_PE_MASTER))
638 return state;
639
640 list_for_each_entry(slave, &pe->slaves, list) {
641 rc = opal_pci_eeh_freeze_status(phb->opal_id,
642 slave->pe_number,
643 &fstate,
644 &pcierr,
645 NULL);
646 if (rc != OPAL_SUCCESS) {
647 pr_warn("%s: Failure %lld getting "
648 "PHB#%x-PE#%x state\n",
649 __func__, rc,
650 phb->hose->global_number, slave->pe_number);
651 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
652 }
653
654 /*
655 * Override the result based on the ascending
656 * priority.
657 */
658 if (fstate > state)
659 state = fstate;
660 }
661
662 return state;
663 }
664
665 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
666 {
667 struct pci_controller *hose = pci_bus_to_host(dev->bus);
668 struct pnv_phb *phb = hose->private_data;
669 struct pci_dn *pdn = pci_get_pdn(dev);
670
671 if (!pdn)
672 return NULL;
673 if (pdn->pe_number == IODA_INVALID_PE)
674 return NULL;
675 return &phb->ioda.pe_array[pdn->pe_number];
676 }
677
678 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
679 struct pnv_ioda_pe *parent,
680 struct pnv_ioda_pe *child,
681 bool is_add)
682 {
683 const char *desc = is_add ? "adding" : "removing";
684 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
685 OPAL_REMOVE_PE_FROM_DOMAIN;
686 struct pnv_ioda_pe *slave;
687 long rc;
688
689 /* Parent PE affects child PE */
690 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
691 child->pe_number, op);
692 if (rc != OPAL_SUCCESS) {
693 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
694 rc, desc);
695 return -ENXIO;
696 }
697
698 if (!(child->flags & PNV_IODA_PE_MASTER))
699 return 0;
700
701 /* Compound case: parent PE affects slave PEs */
702 list_for_each_entry(slave, &child->slaves, list) {
703 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
704 slave->pe_number, op);
705 if (rc != OPAL_SUCCESS) {
706 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
707 rc, desc);
708 return -ENXIO;
709 }
710 }
711
712 return 0;
713 }
714
715 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
716 struct pnv_ioda_pe *pe,
717 bool is_add)
718 {
719 struct pnv_ioda_pe *slave;
720 struct pci_dev *pdev = NULL;
721 int ret;
722
723 /*
724 * Clear PE frozen state. If it's master PE, we need
725 * clear slave PE frozen state as well.
726 */
727 if (is_add) {
728 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
729 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
730 if (pe->flags & PNV_IODA_PE_MASTER) {
731 list_for_each_entry(slave, &pe->slaves, list)
732 opal_pci_eeh_freeze_clear(phb->opal_id,
733 slave->pe_number,
734 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
735 }
736 }
737
738 /*
739 * Associate PE in PELT. We need add the PE into the
740 * corresponding PELT-V as well. Otherwise, the error
741 * originated from the PE might contribute to other
742 * PEs.
743 */
744 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
745 if (ret)
746 return ret;
747
748 /* For compound PEs, any one affects all of them */
749 if (pe->flags & PNV_IODA_PE_MASTER) {
750 list_for_each_entry(slave, &pe->slaves, list) {
751 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
752 if (ret)
753 return ret;
754 }
755 }
756
757 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
758 pdev = pe->pbus->self;
759 else if (pe->flags & PNV_IODA_PE_DEV)
760 pdev = pe->pdev->bus->self;
761 #ifdef CONFIG_PCI_IOV
762 else if (pe->flags & PNV_IODA_PE_VF)
763 pdev = pe->parent_dev;
764 #endif /* CONFIG_PCI_IOV */
765 while (pdev) {
766 struct pci_dn *pdn = pci_get_pdn(pdev);
767 struct pnv_ioda_pe *parent;
768
769 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770 parent = &phb->ioda.pe_array[pdn->pe_number];
771 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
772 if (ret)
773 return ret;
774 }
775
776 pdev = pdev->bus->self;
777 }
778
779 return 0;
780 }
781
782 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
783 {
784 struct pci_dev *parent;
785 uint8_t bcomp, dcomp, fcomp;
786 int64_t rc;
787 long rid_end, rid;
788
789 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
790 if (pe->pbus) {
791 int count;
792
793 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
794 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
795 parent = pe->pbus->self;
796 if (pe->flags & PNV_IODA_PE_BUS_ALL)
797 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
798 else
799 count = 1;
800
801 switch(count) {
802 case 1: bcomp = OpalPciBusAll; break;
803 case 2: bcomp = OpalPciBus7Bits; break;
804 case 4: bcomp = OpalPciBus6Bits; break;
805 case 8: bcomp = OpalPciBus5Bits; break;
806 case 16: bcomp = OpalPciBus4Bits; break;
807 case 32: bcomp = OpalPciBus3Bits; break;
808 default:
809 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
810 count);
811 /* Do an exact match only */
812 bcomp = OpalPciBusAll;
813 }
814 rid_end = pe->rid + (count << 8);
815 } else {
816 #ifdef CONFIG_PCI_IOV
817 if (pe->flags & PNV_IODA_PE_VF)
818 parent = pe->parent_dev;
819 else
820 #endif
821 parent = pe->pdev->bus->self;
822 bcomp = OpalPciBusAll;
823 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
824 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
825 rid_end = pe->rid + 1;
826 }
827
828 /* Clear the reverse map */
829 for (rid = pe->rid; rid < rid_end; rid++)
830 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
831
832 /* Release from all parents PELT-V */
833 while (parent) {
834 struct pci_dn *pdn = pci_get_pdn(parent);
835 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
836 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
837 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
838 /* XXX What to do in case of error ? */
839 }
840 parent = parent->bus->self;
841 }
842
843 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
844 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
845
846 /* Disassociate PE in PELT */
847 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
848 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
849 if (rc)
850 pe_warn(pe, "OPAL error %lld remove self from PELTV\n", rc);
851 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
852 bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
853 if (rc)
854 pe_err(pe, "OPAL error %lld trying to setup PELT table\n", rc);
855
856 pe->pbus = NULL;
857 pe->pdev = NULL;
858 #ifdef CONFIG_PCI_IOV
859 pe->parent_dev = NULL;
860 #endif
861
862 return 0;
863 }
864
865 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
866 {
867 struct pci_dev *parent;
868 uint8_t bcomp, dcomp, fcomp;
869 long rc, rid_end, rid;
870
871 /* Bus validation ? */
872 if (pe->pbus) {
873 int count;
874
875 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
876 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
877 parent = pe->pbus->self;
878 if (pe->flags & PNV_IODA_PE_BUS_ALL)
879 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
880 else
881 count = 1;
882
883 switch(count) {
884 case 1: bcomp = OpalPciBusAll; break;
885 case 2: bcomp = OpalPciBus7Bits; break;
886 case 4: bcomp = OpalPciBus6Bits; break;
887 case 8: bcomp = OpalPciBus5Bits; break;
888 case 16: bcomp = OpalPciBus4Bits; break;
889 case 32: bcomp = OpalPciBus3Bits; break;
890 default:
891 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
892 count);
893 /* Do an exact match only */
894 bcomp = OpalPciBusAll;
895 }
896 rid_end = pe->rid + (count << 8);
897 } else {
898 #ifdef CONFIG_PCI_IOV
899 if (pe->flags & PNV_IODA_PE_VF)
900 parent = pe->parent_dev;
901 else
902 #endif /* CONFIG_PCI_IOV */
903 parent = pe->pdev->bus->self;
904 bcomp = OpalPciBusAll;
905 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
906 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
907 rid_end = pe->rid + 1;
908 }
909
910 /*
911 * Associate PE in PELT. We need add the PE into the
912 * corresponding PELT-V as well. Otherwise, the error
913 * originated from the PE might contribute to other
914 * PEs.
915 */
916 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
917 bcomp, dcomp, fcomp, OPAL_MAP_PE);
918 if (rc) {
919 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
920 return -ENXIO;
921 }
922
923 /*
924 * Configure PELTV. NPUs don't have a PELTV table so skip
925 * configuration on them.
926 */
927 if (phb->type != PNV_PHB_NPU_NVLINK && phb->type != PNV_PHB_NPU_OCAPI)
928 pnv_ioda_set_peltv(phb, pe, true);
929
930 /* Setup reverse map */
931 for (rid = pe->rid; rid < rid_end; rid++)
932 phb->ioda.pe_rmap[rid] = pe->pe_number;
933
934 /* Setup one MVTs on IODA1 */
935 if (phb->type != PNV_PHB_IODA1) {
936 pe->mve_number = 0;
937 goto out;
938 }
939
940 pe->mve_number = pe->pe_number;
941 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
942 if (rc != OPAL_SUCCESS) {
943 pe_err(pe, "OPAL error %ld setting up MVE %x\n",
944 rc, pe->mve_number);
945 pe->mve_number = -1;
946 } else {
947 rc = opal_pci_set_mve_enable(phb->opal_id,
948 pe->mve_number, OPAL_ENABLE_MVE);
949 if (rc) {
950 pe_err(pe, "OPAL error %ld enabling MVE %x\n",
951 rc, pe->mve_number);
952 pe->mve_number = -1;
953 }
954 }
955
956 out:
957 return 0;
958 }
959
960 #ifdef CONFIG_PCI_IOV
961 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
962 {
963 struct pci_dn *pdn = pci_get_pdn(dev);
964 int i;
965 struct resource *res, res2;
966 resource_size_t size;
967 u16 num_vfs;
968
969 if (!dev->is_physfn)
970 return -EINVAL;
971
972 /*
973 * "offset" is in VFs. The M64 windows are sized so that when they
974 * are segmented, each segment is the same size as the IOV BAR.
975 * Each segment is in a separate PE, and the high order bits of the
976 * address are the PE number. Therefore, each VF's BAR is in a
977 * separate PE, and changing the IOV BAR start address changes the
978 * range of PEs the VFs are in.
979 */
980 num_vfs = pdn->num_vfs;
981 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
982 res = &dev->resource[i + PCI_IOV_RESOURCES];
983 if (!res->flags || !res->parent)
984 continue;
985
986 /*
987 * The actual IOV BAR range is determined by the start address
988 * and the actual size for num_vfs VFs BAR. This check is to
989 * make sure that after shifting, the range will not overlap
990 * with another device.
991 */
992 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
993 res2.flags = res->flags;
994 res2.start = res->start + (size * offset);
995 res2.end = res2.start + (size * num_vfs) - 1;
996
997 if (res2.end > res->end) {
998 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
999 i, &res2, res, num_vfs, offset);
1000 return -EBUSY;
1001 }
1002 }
1003
1004 /*
1005 * Since M64 BAR shares segments among all possible 256 PEs,
1006 * we have to shift the beginning of PF IOV BAR to make it start from
1007 * the segment which belongs to the PE number assigned to the first VF.
1008 * This creates a "hole" in the /proc/iomem which could be used for
1009 * allocating other resources so we reserve this area below and
1010 * release when IOV is released.
1011 */
1012 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1013 res = &dev->resource[i + PCI_IOV_RESOURCES];
1014 if (!res->flags || !res->parent)
1015 continue;
1016
1017 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
1018 res2 = *res;
1019 res->start += size * offset;
1020
1021 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
1022 i, &res2, res, (offset > 0) ? "En" : "Dis",
1023 num_vfs, offset);
1024
1025 if (offset < 0) {
1026 devm_release_resource(&dev->dev, &pdn->holes[i]);
1027 memset(&pdn->holes[i], 0, sizeof(pdn->holes[i]));
1028 }
1029
1030 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
1031
1032 if (offset > 0) {
1033 pdn->holes[i].start = res2.start;
1034 pdn->holes[i].end = res2.start + size * offset - 1;
1035 pdn->holes[i].flags = IORESOURCE_BUS;
1036 pdn->holes[i].name = "pnv_iov_reserved";
1037 devm_request_resource(&dev->dev, res->parent,
1038 &pdn->holes[i]);
1039 }
1040 }
1041 return 0;
1042 }
1043 #endif /* CONFIG_PCI_IOV */
1044
1045 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
1046 {
1047 struct pci_controller *hose = pci_bus_to_host(dev->bus);
1048 struct pnv_phb *phb = hose->private_data;
1049 struct pci_dn *pdn = pci_get_pdn(dev);
1050 struct pnv_ioda_pe *pe;
1051
1052 if (!pdn) {
1053 pr_err("%s: Device tree node not associated properly\n",
1054 pci_name(dev));
1055 return NULL;
1056 }
1057 if (pdn->pe_number != IODA_INVALID_PE)
1058 return NULL;
1059
1060 pe = pnv_ioda_alloc_pe(phb);
1061 if (!pe) {
1062 pr_warn("%s: Not enough PE# available, disabling device\n",
1063 pci_name(dev));
1064 return NULL;
1065 }
1066
1067 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
1068 * pointer in the PE data structure, both should be destroyed at the
1069 * same time. However, this needs to be looked at more closely again
1070 * once we actually start removing things (Hotplug, SR-IOV, ...)
1071 *
1072 * At some point we want to remove the PDN completely anyways
1073 */
1074 pci_dev_get(dev);
1075 pdn->pe_number = pe->pe_number;
1076 pe->flags = PNV_IODA_PE_DEV;
1077 pe->pdev = dev;
1078 pe->pbus = NULL;
1079 pe->mve_number = -1;
1080 pe->rid = dev->bus->number << 8 | pdn->devfn;
1081
1082 pe_info(pe, "Associated device to PE\n");
1083
1084 if (pnv_ioda_configure_pe(phb, pe)) {
1085 /* XXX What do we do here ? */
1086 pnv_ioda_free_pe(pe);
1087 pdn->pe_number = IODA_INVALID_PE;
1088 pe->pdev = NULL;
1089 pci_dev_put(dev);
1090 return NULL;
1091 }
1092
1093 /* Put PE to the list */
1094 list_add_tail(&pe->list, &phb->ioda.pe_list);
1095
1096 return pe;
1097 }
1098
1099 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1100 {
1101 struct pci_dev *dev;
1102
1103 list_for_each_entry(dev, &bus->devices, bus_list) {
1104 struct pci_dn *pdn = pci_get_pdn(dev);
1105
1106 if (pdn == NULL) {
1107 pr_warn("%s: No device node associated with device !\n",
1108 pci_name(dev));
1109 continue;
1110 }
1111
1112 /*
1113 * In partial hotplug case, the PCI device might be still
1114 * associated with the PE and needn't attach it to the PE
1115 * again.
1116 */
1117 if (pdn->pe_number != IODA_INVALID_PE)
1118 continue;
1119
1120 pe->device_count++;
1121 pdn->pe_number = pe->pe_number;
1122 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1123 pnv_ioda_setup_same_PE(dev->subordinate, pe);
1124 }
1125 }
1126
1127 /*
1128 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1129 * single PCI bus. Another one that contains the primary PCI bus and its
1130 * subordinate PCI devices and buses. The second type of PE is normally
1131 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1132 */
1133 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1134 {
1135 struct pci_controller *hose = pci_bus_to_host(bus);
1136 struct pnv_phb *phb = hose->private_data;
1137 struct pnv_ioda_pe *pe = NULL;
1138 unsigned int pe_num;
1139
1140 /*
1141 * In partial hotplug case, the PE instance might be still alive.
1142 * We should reuse it instead of allocating a new one.
1143 */
1144 pe_num = phb->ioda.pe_rmap[bus->number << 8];
1145 if (pe_num != IODA_INVALID_PE) {
1146 pe = &phb->ioda.pe_array[pe_num];
1147 pnv_ioda_setup_same_PE(bus, pe);
1148 return NULL;
1149 }
1150
1151 /* PE number for root bus should have been reserved */
1152 if (pci_is_root_bus(bus) &&
1153 phb->ioda.root_pe_idx != IODA_INVALID_PE)
1154 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1155
1156 /* Check if PE is determined by M64 */
1157 if (!pe)
1158 pe = pnv_ioda_pick_m64_pe(bus, all);
1159
1160 /* The PE number isn't pinned by M64 */
1161 if (!pe)
1162 pe = pnv_ioda_alloc_pe(phb);
1163
1164 if (!pe) {
1165 pr_warn("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1166 __func__, pci_domain_nr(bus), bus->number);
1167 return NULL;
1168 }
1169
1170 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1171 pe->pbus = bus;
1172 pe->pdev = NULL;
1173 pe->mve_number = -1;
1174 pe->rid = bus->busn_res.start << 8;
1175
1176 if (all)
1177 pe_info(pe, "Secondary bus %pad..%pad associated with PE#%x\n",
1178 &bus->busn_res.start, &bus->busn_res.end,
1179 pe->pe_number);
1180 else
1181 pe_info(pe, "Secondary bus %pad associated with PE#%x\n",
1182 &bus->busn_res.start, pe->pe_number);
1183
1184 if (pnv_ioda_configure_pe(phb, pe)) {
1185 /* XXX What do we do here ? */
1186 pnv_ioda_free_pe(pe);
1187 pe->pbus = NULL;
1188 return NULL;
1189 }
1190
1191 /* Associate it with all child devices */
1192 pnv_ioda_setup_same_PE(bus, pe);
1193
1194 /* Put PE to the list */
1195 list_add_tail(&pe->list, &phb->ioda.pe_list);
1196
1197 return pe;
1198 }
1199
1200 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1201 {
1202 int pe_num, found_pe = false, rc;
1203 long rid;
1204 struct pnv_ioda_pe *pe;
1205 struct pci_dev *gpu_pdev;
1206 struct pci_dn *npu_pdn;
1207 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1208 struct pnv_phb *phb = hose->private_data;
1209
1210 /*
1211 * Due to a hardware errata PE#0 on the NPU is reserved for
1212 * error handling. This means we only have three PEs remaining
1213 * which need to be assigned to four links, implying some
1214 * links must share PEs.
1215 *
1216 * To achieve this we assign PEs such that NPUs linking the
1217 * same GPU get assigned the same PE.
1218 */
1219 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1220 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1221 pe = &phb->ioda.pe_array[pe_num];
1222 if (!pe->pdev)
1223 continue;
1224
1225 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1226 /*
1227 * This device has the same peer GPU so should
1228 * be assigned the same PE as the existing
1229 * peer NPU.
1230 */
1231 dev_info(&npu_pdev->dev,
1232 "Associating to existing PE %x\n", pe_num);
1233 pci_dev_get(npu_pdev);
1234 npu_pdn = pci_get_pdn(npu_pdev);
1235 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1236 npu_pdn->pe_number = pe_num;
1237 phb->ioda.pe_rmap[rid] = pe->pe_number;
1238
1239 /* Map the PE to this link */
1240 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1241 OpalPciBusAll,
1242 OPAL_COMPARE_RID_DEVICE_NUMBER,
1243 OPAL_COMPARE_RID_FUNCTION_NUMBER,
1244 OPAL_MAP_PE);
1245 WARN_ON(rc != OPAL_SUCCESS);
1246 found_pe = true;
1247 break;
1248 }
1249 }
1250
1251 if (!found_pe)
1252 /*
1253 * Could not find an existing PE so allocate a new
1254 * one.
1255 */
1256 return pnv_ioda_setup_dev_PE(npu_pdev);
1257 else
1258 return pe;
1259 }
1260
1261 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1262 {
1263 struct pci_dev *pdev;
1264
1265 list_for_each_entry(pdev, &bus->devices, bus_list)
1266 pnv_ioda_setup_npu_PE(pdev);
1267 }
1268
1269 static void pnv_pci_ioda_setup_PEs(void)
1270 {
1271 struct pci_controller *hose;
1272 struct pnv_phb *phb;
1273 struct pci_bus *bus;
1274 struct pci_dev *pdev;
1275 struct pnv_ioda_pe *pe;
1276
1277 list_for_each_entry(hose, &hose_list, list_node) {
1278 phb = hose->private_data;
1279 if (phb->type == PNV_PHB_NPU_NVLINK) {
1280 /* PE#0 is needed for error reporting */
1281 pnv_ioda_reserve_pe(phb, 0);
1282 pnv_ioda_setup_npu_PEs(hose->bus);
1283 if (phb->model == PNV_PHB_MODEL_NPU2)
1284 WARN_ON_ONCE(pnv_npu2_init(hose));
1285 }
1286 if (phb->type == PNV_PHB_NPU_OCAPI) {
1287 bus = hose->bus;
1288 list_for_each_entry(pdev, &bus->devices, bus_list)
1289 pnv_ioda_setup_dev_PE(pdev);
1290 }
1291 }
1292 list_for_each_entry(hose, &hose_list, list_node) {
1293 phb = hose->private_data;
1294 if (phb->type != PNV_PHB_IODA2)
1295 continue;
1296
1297 list_for_each_entry(pe, &phb->ioda.pe_list, list)
1298 pnv_npu2_map_lpar(pe, MSR_DR | MSR_PR | MSR_HV);
1299 }
1300 }
1301
1302 #ifdef CONFIG_PCI_IOV
1303 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1304 {
1305 struct pci_bus *bus;
1306 struct pci_controller *hose;
1307 struct pnv_phb *phb;
1308 struct pci_dn *pdn;
1309 int i, j;
1310 int m64_bars;
1311
1312 bus = pdev->bus;
1313 hose = pci_bus_to_host(bus);
1314 phb = hose->private_data;
1315 pdn = pci_get_pdn(pdev);
1316
1317 if (pdn->m64_single_mode)
1318 m64_bars = num_vfs;
1319 else
1320 m64_bars = 1;
1321
1322 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1323 for (j = 0; j < m64_bars; j++) {
1324 if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1325 continue;
1326 opal_pci_phb_mmio_enable(phb->opal_id,
1327 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1328 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1329 pdn->m64_map[j][i] = IODA_INVALID_M64;
1330 }
1331
1332 kfree(pdn->m64_map);
1333 return 0;
1334 }
1335
1336 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1337 {
1338 struct pci_bus *bus;
1339 struct pci_controller *hose;
1340 struct pnv_phb *phb;
1341 struct pci_dn *pdn;
1342 unsigned int win;
1343 struct resource *res;
1344 int i, j;
1345 int64_t rc;
1346 int total_vfs;
1347 resource_size_t size, start;
1348 int pe_num;
1349 int m64_bars;
1350
1351 bus = pdev->bus;
1352 hose = pci_bus_to_host(bus);
1353 phb = hose->private_data;
1354 pdn = pci_get_pdn(pdev);
1355 total_vfs = pci_sriov_get_totalvfs(pdev);
1356
1357 if (pdn->m64_single_mode)
1358 m64_bars = num_vfs;
1359 else
1360 m64_bars = 1;
1361
1362 pdn->m64_map = kmalloc_array(m64_bars,
1363 sizeof(*pdn->m64_map),
1364 GFP_KERNEL);
1365 if (!pdn->m64_map)
1366 return -ENOMEM;
1367 /* Initialize the m64_map to IODA_INVALID_M64 */
1368 for (i = 0; i < m64_bars ; i++)
1369 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1370 pdn->m64_map[i][j] = IODA_INVALID_M64;
1371
1372
1373 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1374 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1375 if (!res->flags || !res->parent)
1376 continue;
1377
1378 for (j = 0; j < m64_bars; j++) {
1379 do {
1380 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1381 phb->ioda.m64_bar_idx + 1, 0);
1382
1383 if (win >= phb->ioda.m64_bar_idx + 1)
1384 goto m64_failed;
1385 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1386
1387 pdn->m64_map[j][i] = win;
1388
1389 if (pdn->m64_single_mode) {
1390 size = pci_iov_resource_size(pdev,
1391 PCI_IOV_RESOURCES + i);
1392 start = res->start + size * j;
1393 } else {
1394 size = resource_size(res);
1395 start = res->start;
1396 }
1397
1398 /* Map the M64 here */
1399 if (pdn->m64_single_mode) {
1400 pe_num = pdn->pe_num_map[j];
1401 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1402 pe_num, OPAL_M64_WINDOW_TYPE,
1403 pdn->m64_map[j][i], 0);
1404 }
1405
1406 rc = opal_pci_set_phb_mem_window(phb->opal_id,
1407 OPAL_M64_WINDOW_TYPE,
1408 pdn->m64_map[j][i],
1409 start,
1410 0, /* unused */
1411 size);
1412
1413
1414 if (rc != OPAL_SUCCESS) {
1415 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1416 win, rc);
1417 goto m64_failed;
1418 }
1419
1420 if (pdn->m64_single_mode)
1421 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1422 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1423 else
1424 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1425 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1426
1427 if (rc != OPAL_SUCCESS) {
1428 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1429 win, rc);
1430 goto m64_failed;
1431 }
1432 }
1433 }
1434 return 0;
1435
1436 m64_failed:
1437 pnv_pci_vf_release_m64(pdev, num_vfs);
1438 return -EBUSY;
1439 }
1440
1441 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1442 int num);
1443
1444 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1445 {
1446 struct iommu_table *tbl;
1447 int64_t rc;
1448
1449 tbl = pe->table_group.tables[0];
1450 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1451 if (rc)
1452 pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
1453
1454 pnv_pci_ioda2_set_bypass(pe, false);
1455 if (pe->table_group.group) {
1456 iommu_group_put(pe->table_group.group);
1457 BUG_ON(pe->table_group.group);
1458 }
1459 iommu_tce_table_put(tbl);
1460 }
1461
1462 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1463 {
1464 struct pci_bus *bus;
1465 struct pci_controller *hose;
1466 struct pnv_phb *phb;
1467 struct pnv_ioda_pe *pe, *pe_n;
1468 struct pci_dn *pdn;
1469
1470 bus = pdev->bus;
1471 hose = pci_bus_to_host(bus);
1472 phb = hose->private_data;
1473 pdn = pci_get_pdn(pdev);
1474
1475 if (!pdev->is_physfn)
1476 return;
1477
1478 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1479 if (pe->parent_dev != pdev)
1480 continue;
1481
1482 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1483
1484 /* Remove from list */
1485 mutex_lock(&phb->ioda.pe_list_mutex);
1486 list_del(&pe->list);
1487 mutex_unlock(&phb->ioda.pe_list_mutex);
1488
1489 pnv_ioda_deconfigure_pe(phb, pe);
1490
1491 pnv_ioda_free_pe(pe);
1492 }
1493 }
1494
1495 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1496 {
1497 struct pci_bus *bus;
1498 struct pci_controller *hose;
1499 struct pnv_phb *phb;
1500 struct pnv_ioda_pe *pe;
1501 struct pci_dn *pdn;
1502 u16 num_vfs, i;
1503
1504 bus = pdev->bus;
1505 hose = pci_bus_to_host(bus);
1506 phb = hose->private_data;
1507 pdn = pci_get_pdn(pdev);
1508 num_vfs = pdn->num_vfs;
1509
1510 /* Release VF PEs */
1511 pnv_ioda_release_vf_PE(pdev);
1512
1513 if (phb->type == PNV_PHB_IODA2) {
1514 if (!pdn->m64_single_mode)
1515 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1516
1517 /* Release M64 windows */
1518 pnv_pci_vf_release_m64(pdev, num_vfs);
1519
1520 /* Release PE numbers */
1521 if (pdn->m64_single_mode) {
1522 for (i = 0; i < num_vfs; i++) {
1523 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1524 continue;
1525
1526 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1527 pnv_ioda_free_pe(pe);
1528 }
1529 } else
1530 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1531 /* Releasing pe_num_map */
1532 kfree(pdn->pe_num_map);
1533 }
1534 }
1535
1536 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1537 struct pnv_ioda_pe *pe);
1538 #ifdef CONFIG_IOMMU_API
1539 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
1540 struct iommu_table_group *table_group, struct pci_bus *bus);
1541
1542 #endif
1543 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1544 {
1545 struct pci_bus *bus;
1546 struct pci_controller *hose;
1547 struct pnv_phb *phb;
1548 struct pnv_ioda_pe *pe;
1549 int pe_num;
1550 u16 vf_index;
1551 struct pci_dn *pdn;
1552
1553 bus = pdev->bus;
1554 hose = pci_bus_to_host(bus);
1555 phb = hose->private_data;
1556 pdn = pci_get_pdn(pdev);
1557
1558 if (!pdev->is_physfn)
1559 return;
1560
1561 /* Reserve PE for each VF */
1562 for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1563 if (pdn->m64_single_mode)
1564 pe_num = pdn->pe_num_map[vf_index];
1565 else
1566 pe_num = *pdn->pe_num_map + vf_index;
1567
1568 pe = &phb->ioda.pe_array[pe_num];
1569 pe->pe_number = pe_num;
1570 pe->phb = phb;
1571 pe->flags = PNV_IODA_PE_VF;
1572 pe->pbus = NULL;
1573 pe->parent_dev = pdev;
1574 pe->mve_number = -1;
1575 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1576 pci_iov_virtfn_devfn(pdev, vf_index);
1577
1578 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
1579 hose->global_number, pdev->bus->number,
1580 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1581 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1582
1583 if (pnv_ioda_configure_pe(phb, pe)) {
1584 /* XXX What do we do here ? */
1585 pnv_ioda_free_pe(pe);
1586 pe->pdev = NULL;
1587 continue;
1588 }
1589
1590 /* Put PE to the list */
1591 mutex_lock(&phb->ioda.pe_list_mutex);
1592 list_add_tail(&pe->list, &phb->ioda.pe_list);
1593 mutex_unlock(&phb->ioda.pe_list_mutex);
1594
1595 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1596 #ifdef CONFIG_IOMMU_API
1597 iommu_register_group(&pe->table_group,
1598 pe->phb->hose->global_number, pe->pe_number);
1599 pnv_ioda_setup_bus_iommu_group(pe, &pe->table_group, NULL);
1600 #endif
1601 }
1602 }
1603
1604 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1605 {
1606 struct pci_bus *bus;
1607 struct pci_controller *hose;
1608 struct pnv_phb *phb;
1609 struct pnv_ioda_pe *pe;
1610 struct pci_dn *pdn;
1611 int ret;
1612 u16 i;
1613
1614 bus = pdev->bus;
1615 hose = pci_bus_to_host(bus);
1616 phb = hose->private_data;
1617 pdn = pci_get_pdn(pdev);
1618
1619 if (phb->type == PNV_PHB_IODA2) {
1620 if (!pdn->vfs_expanded) {
1621 dev_info(&pdev->dev, "don't support this SRIOV device"
1622 " with non 64bit-prefetchable IOV BAR\n");
1623 return -ENOSPC;
1624 }
1625
1626 /*
1627 * When M64 BARs functions in Single PE mode, the number of VFs
1628 * could be enabled must be less than the number of M64 BARs.
1629 */
1630 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1631 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1632 return -EBUSY;
1633 }
1634
1635 /* Allocating pe_num_map */
1636 if (pdn->m64_single_mode)
1637 pdn->pe_num_map = kmalloc_array(num_vfs,
1638 sizeof(*pdn->pe_num_map),
1639 GFP_KERNEL);
1640 else
1641 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1642
1643 if (!pdn->pe_num_map)
1644 return -ENOMEM;
1645
1646 if (pdn->m64_single_mode)
1647 for (i = 0; i < num_vfs; i++)
1648 pdn->pe_num_map[i] = IODA_INVALID_PE;
1649
1650 /* Calculate available PE for required VFs */
1651 if (pdn->m64_single_mode) {
1652 for (i = 0; i < num_vfs; i++) {
1653 pe = pnv_ioda_alloc_pe(phb);
1654 if (!pe) {
1655 ret = -EBUSY;
1656 goto m64_failed;
1657 }
1658
1659 pdn->pe_num_map[i] = pe->pe_number;
1660 }
1661 } else {
1662 mutex_lock(&phb->ioda.pe_alloc_mutex);
1663 *pdn->pe_num_map = bitmap_find_next_zero_area(
1664 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1665 0, num_vfs, 0);
1666 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1667 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1668 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1669 kfree(pdn->pe_num_map);
1670 return -EBUSY;
1671 }
1672 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1673 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1674 }
1675 pdn->num_vfs = num_vfs;
1676
1677 /* Assign M64 window accordingly */
1678 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1679 if (ret) {
1680 dev_info(&pdev->dev, "Not enough M64 window resources\n");
1681 goto m64_failed;
1682 }
1683
1684 /*
1685 * When using one M64 BAR to map one IOV BAR, we need to shift
1686 * the IOV BAR according to the PE# allocated to the VFs.
1687 * Otherwise, the PE# for the VF will conflict with others.
1688 */
1689 if (!pdn->m64_single_mode) {
1690 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1691 if (ret)
1692 goto m64_failed;
1693 }
1694 }
1695
1696 /* Setup VF PEs */
1697 pnv_ioda_setup_vf_PE(pdev, num_vfs);
1698
1699 return 0;
1700
1701 m64_failed:
1702 if (pdn->m64_single_mode) {
1703 for (i = 0; i < num_vfs; i++) {
1704 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1705 continue;
1706
1707 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1708 pnv_ioda_free_pe(pe);
1709 }
1710 } else
1711 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1712
1713 /* Releasing pe_num_map */
1714 kfree(pdn->pe_num_map);
1715
1716 return ret;
1717 }
1718
1719 int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
1720 {
1721 pnv_pci_sriov_disable(pdev);
1722
1723 /* Release PCI data */
1724 remove_dev_pci_data(pdev);
1725 return 0;
1726 }
1727
1728 int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1729 {
1730 /* Allocate PCI data */
1731 add_dev_pci_data(pdev);
1732
1733 return pnv_pci_sriov_enable(pdev, num_vfs);
1734 }
1735 #endif /* CONFIG_PCI_IOV */
1736
1737 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1738 {
1739 struct pci_dn *pdn = pci_get_pdn(pdev);
1740 struct pnv_ioda_pe *pe;
1741
1742 /*
1743 * The function can be called while the PE#
1744 * hasn't been assigned. Do nothing for the
1745 * case.
1746 */
1747 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1748 return;
1749
1750 pe = &phb->ioda.pe_array[pdn->pe_number];
1751 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1752 pdev->dev.archdata.dma_offset = pe->tce_bypass_base;
1753 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1754 /*
1755 * Note: iommu_add_device() will fail here as
1756 * for physical PE: the device is already added by now;
1757 * for virtual PE: sysfs entries are not ready yet and
1758 * tce_iommu_bus_notifier will add the device to a group later.
1759 */
1760 }
1761
1762 /*
1763 * Reconfigure TVE#0 to be usable as 64-bit DMA space.
1764 *
1765 * The first 4GB of virtual memory for a PE is reserved for 32-bit accesses.
1766 * Devices can only access more than that if bit 59 of the PCI address is set
1767 * by hardware, which indicates TVE#1 should be used instead of TVE#0.
1768 * Many PCI devices are not capable of addressing that many bits, and as a
1769 * result are limited to the 4GB of virtual memory made available to 32-bit
1770 * devices in TVE#0.
1771 *
1772 * In order to work around this, reconfigure TVE#0 to be suitable for 64-bit
1773 * devices by configuring the virtual memory past the first 4GB inaccessible
1774 * by 64-bit DMAs. This should only be used by devices that want more than
1775 * 4GB, and only on PEs that have no 32-bit devices.
1776 *
1777 * Currently this will only work on PHB3 (POWER8).
1778 */
1779 static int pnv_pci_ioda_dma_64bit_bypass(struct pnv_ioda_pe *pe)
1780 {
1781 u64 window_size, table_size, tce_count, addr;
1782 struct page *table_pages;
1783 u64 tce_order = 28; /* 256MB TCEs */
1784 __be64 *tces;
1785 s64 rc;
1786
1787 /*
1788 * Window size needs to be a power of two, but needs to account for
1789 * shifting memory by the 4GB offset required to skip 32bit space.
1790 */
1791 window_size = roundup_pow_of_two(memory_hotplug_max() + (1ULL << 32));
1792 tce_count = window_size >> tce_order;
1793 table_size = tce_count << 3;
1794
1795 if (table_size < PAGE_SIZE)
1796 table_size = PAGE_SIZE;
1797
1798 table_pages = alloc_pages_node(pe->phb->hose->node, GFP_KERNEL,
1799 get_order(table_size));
1800 if (!table_pages)
1801 goto err;
1802
1803 tces = page_address(table_pages);
1804 if (!tces)
1805 goto err;
1806
1807 memset(tces, 0, table_size);
1808
1809 for (addr = 0; addr < memory_hotplug_max(); addr += (1 << tce_order)) {
1810 tces[(addr + (1ULL << 32)) >> tce_order] =
1811 cpu_to_be64(addr | TCE_PCI_READ | TCE_PCI_WRITE);
1812 }
1813
1814 rc = opal_pci_map_pe_dma_window(pe->phb->opal_id,
1815 pe->pe_number,
1816 /* reconfigure window 0 */
1817 (pe->pe_number << 1) + 0,
1818 1,
1819 __pa(tces),
1820 table_size,
1821 1 << tce_order);
1822 if (rc == OPAL_SUCCESS) {
1823 pe_info(pe, "Using 64-bit DMA iommu bypass (through TVE#0)\n");
1824 return 0;
1825 }
1826 err:
1827 pe_err(pe, "Error configuring 64-bit DMA bypass\n");
1828 return -EIO;
1829 }
1830
1831 static bool pnv_pci_ioda_iommu_bypass_supported(struct pci_dev *pdev,
1832 u64 dma_mask)
1833 {
1834 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1835 struct pnv_phb *phb = hose->private_data;
1836 struct pci_dn *pdn = pci_get_pdn(pdev);
1837 struct pnv_ioda_pe *pe;
1838
1839 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1840 return false;
1841
1842 pe = &phb->ioda.pe_array[pdn->pe_number];
1843 if (pe->tce_bypass_enabled) {
1844 u64 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1845 if (dma_mask >= top)
1846 return true;
1847 }
1848
1849 /*
1850 * If the device can't set the TCE bypass bit but still wants
1851 * to access 4GB or more, on PHB3 we can reconfigure TVE#0 to
1852 * bypass the 32-bit region and be usable for 64-bit DMAs.
1853 * The device needs to be able to address all of this space.
1854 */
1855 if (dma_mask >> 32 &&
1856 dma_mask > (memory_hotplug_max() + (1ULL << 32)) &&
1857 /* pe->pdev should be set if it's a single device, pe->pbus if not */
1858 (pe->device_count == 1 || !pe->pbus) &&
1859 phb->model == PNV_PHB_MODEL_PHB3) {
1860 /* Configure the bypass mode */
1861 s64 rc = pnv_pci_ioda_dma_64bit_bypass(pe);
1862 if (rc)
1863 return false;
1864 /* 4GB offset bypasses 32-bit space */
1865 pdev->dev.archdata.dma_offset = (1ULL << 32);
1866 return true;
1867 }
1868
1869 return false;
1870 }
1871
1872 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe, struct pci_bus *bus)
1873 {
1874 struct pci_dev *dev;
1875
1876 list_for_each_entry(dev, &bus->devices, bus_list) {
1877 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1878 dev->dev.archdata.dma_offset = pe->tce_bypass_base;
1879
1880 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1881 pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1882 }
1883 }
1884
1885 static inline __be64 __iomem *pnv_ioda_get_inval_reg(struct pnv_phb *phb,
1886 bool real_mode)
1887 {
1888 return real_mode ? (__be64 __iomem *)(phb->regs_phys + 0x210) :
1889 (phb->regs + 0x210);
1890 }
1891
1892 static void pnv_pci_p7ioc_tce_invalidate(struct iommu_table *tbl,
1893 unsigned long index, unsigned long npages, bool rm)
1894 {
1895 struct iommu_table_group_link *tgl = list_first_entry_or_null(
1896 &tbl->it_group_list, struct iommu_table_group_link,
1897 next);
1898 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1899 struct pnv_ioda_pe, table_group);
1900 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
1901 unsigned long start, end, inc;
1902
1903 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1904 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1905 npages - 1);
1906
1907 /* p7ioc-style invalidation, 2 TCEs per write */
1908 start |= (1ull << 63);
1909 end |= (1ull << 63);
1910 inc = 16;
1911 end |= inc - 1; /* round up end to be different than start */
1912
1913 mb(); /* Ensure above stores are visible */
1914 while (start <= end) {
1915 if (rm)
1916 __raw_rm_writeq_be(start, invalidate);
1917 else
1918 __raw_writeq_be(start, invalidate);
1919
1920 start += inc;
1921 }
1922
1923 /*
1924 * The iommu layer will do another mb() for us on build()
1925 * and we don't care on free()
1926 */
1927 }
1928
1929 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1930 long npages, unsigned long uaddr,
1931 enum dma_data_direction direction,
1932 unsigned long attrs)
1933 {
1934 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1935 attrs);
1936
1937 if (!ret)
1938 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1939
1940 return ret;
1941 }
1942
1943 #ifdef CONFIG_IOMMU_API
1944 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1945 unsigned long *hpa, enum dma_data_direction *direction)
1946 {
1947 long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
1948
1949 if (!ret)
1950 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, false);
1951
1952 return ret;
1953 }
1954
1955 static int pnv_ioda1_tce_xchg_rm(struct iommu_table *tbl, long index,
1956 unsigned long *hpa, enum dma_data_direction *direction)
1957 {
1958 long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
1959
1960 if (!ret)
1961 pnv_pci_p7ioc_tce_invalidate(tbl, index, 1, true);
1962
1963 return ret;
1964 }
1965 #endif
1966
1967 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1968 long npages)
1969 {
1970 pnv_tce_free(tbl, index, npages);
1971
1972 pnv_pci_p7ioc_tce_invalidate(tbl, index, npages, false);
1973 }
1974
1975 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1976 .set = pnv_ioda1_tce_build,
1977 #ifdef CONFIG_IOMMU_API
1978 .exchange = pnv_ioda1_tce_xchg,
1979 .exchange_rm = pnv_ioda1_tce_xchg_rm,
1980 .useraddrptr = pnv_tce_useraddrptr,
1981 #endif
1982 .clear = pnv_ioda1_tce_free,
1983 .get = pnv_tce_get,
1984 };
1985
1986 #define PHB3_TCE_KILL_INVAL_ALL PPC_BIT(0)
1987 #define PHB3_TCE_KILL_INVAL_PE PPC_BIT(1)
1988 #define PHB3_TCE_KILL_INVAL_ONE PPC_BIT(2)
1989
1990 static void pnv_pci_phb3_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1991 {
1992 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(phb, rm);
1993 const unsigned long val = PHB3_TCE_KILL_INVAL_ALL;
1994
1995 mb(); /* Ensure previous TCE table stores are visible */
1996 if (rm)
1997 __raw_rm_writeq_be(val, invalidate);
1998 else
1999 __raw_writeq_be(val, invalidate);
2000 }
2001
2002 static inline void pnv_pci_phb3_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2003 {
2004 /* 01xb - invalidate TCEs that match the specified PE# */
2005 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, false);
2006 unsigned long val = PHB3_TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
2007
2008 mb(); /* Ensure above stores are visible */
2009 __raw_writeq_be(val, invalidate);
2010 }
2011
2012 static void pnv_pci_phb3_tce_invalidate(struct pnv_ioda_pe *pe, bool rm,
2013 unsigned shift, unsigned long index,
2014 unsigned long npages)
2015 {
2016 __be64 __iomem *invalidate = pnv_ioda_get_inval_reg(pe->phb, rm);
2017 unsigned long start, end, inc;
2018
2019 /* We'll invalidate DMA address in PE scope */
2020 start = PHB3_TCE_KILL_INVAL_ONE;
2021 start |= (pe->pe_number & 0xFF);
2022 end = start;
2023
2024 /* Figure out the start, end and step */
2025 start |= (index << shift);
2026 end |= ((index + npages - 1) << shift);
2027 inc = (0x1ull << shift);
2028 mb();
2029
2030 while (start <= end) {
2031 if (rm)
2032 __raw_rm_writeq_be(start, invalidate);
2033 else
2034 __raw_writeq_be(start, invalidate);
2035 start += inc;
2036 }
2037 }
2038
2039 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
2040 {
2041 struct pnv_phb *phb = pe->phb;
2042
2043 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2044 pnv_pci_phb3_tce_invalidate_pe(pe);
2045 else
2046 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL_PE,
2047 pe->pe_number, 0, 0, 0);
2048 }
2049
2050 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
2051 unsigned long index, unsigned long npages, bool rm)
2052 {
2053 struct iommu_table_group_link *tgl;
2054
2055 list_for_each_entry_lockless(tgl, &tbl->it_group_list, next) {
2056 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
2057 struct pnv_ioda_pe, table_group);
2058 struct pnv_phb *phb = pe->phb;
2059 unsigned int shift = tbl->it_page_shift;
2060
2061 /*
2062 * NVLink1 can use the TCE kill register directly as
2063 * it's the same as PHB3. NVLink2 is different and
2064 * should go via the OPAL call.
2065 */
2066 if (phb->model == PNV_PHB_MODEL_NPU) {
2067 /*
2068 * The NVLink hardware does not support TCE kill
2069 * per TCE entry so we have to invalidate
2070 * the entire cache for it.
2071 */
2072 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2073 continue;
2074 }
2075 if (phb->model == PNV_PHB_MODEL_PHB3 && phb->regs)
2076 pnv_pci_phb3_tce_invalidate(pe, rm, shift,
2077 index, npages);
2078 else
2079 opal_pci_tce_kill(phb->opal_id,
2080 OPAL_PCI_TCE_KILL_PAGES,
2081 pe->pe_number, 1u << shift,
2082 index << shift, npages);
2083 }
2084 }
2085
2086 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
2087 {
2088 if (phb->model == PNV_PHB_MODEL_NPU || phb->model == PNV_PHB_MODEL_PHB3)
2089 pnv_pci_phb3_tce_invalidate_entire(phb, rm);
2090 else
2091 opal_pci_tce_kill(phb->opal_id, OPAL_PCI_TCE_KILL, 0, 0, 0, 0);
2092 }
2093
2094 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
2095 long npages, unsigned long uaddr,
2096 enum dma_data_direction direction,
2097 unsigned long attrs)
2098 {
2099 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
2100 attrs);
2101
2102 if (!ret)
2103 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2104
2105 return ret;
2106 }
2107
2108 #ifdef CONFIG_IOMMU_API
2109 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
2110 unsigned long *hpa, enum dma_data_direction *direction)
2111 {
2112 long ret = pnv_tce_xchg(tbl, index, hpa, direction, true);
2113
2114 if (!ret)
2115 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
2116
2117 return ret;
2118 }
2119
2120 static int pnv_ioda2_tce_xchg_rm(struct iommu_table *tbl, long index,
2121 unsigned long *hpa, enum dma_data_direction *direction)
2122 {
2123 long ret = pnv_tce_xchg(tbl, index, hpa, direction, false);
2124
2125 if (!ret)
2126 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, true);
2127
2128 return ret;
2129 }
2130 #endif
2131
2132 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
2133 long npages)
2134 {
2135 pnv_tce_free(tbl, index, npages);
2136
2137 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
2138 }
2139
2140 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
2141 .set = pnv_ioda2_tce_build,
2142 #ifdef CONFIG_IOMMU_API
2143 .exchange = pnv_ioda2_tce_xchg,
2144 .exchange_rm = pnv_ioda2_tce_xchg_rm,
2145 .useraddrptr = pnv_tce_useraddrptr,
2146 #endif
2147 .clear = pnv_ioda2_tce_free,
2148 .get = pnv_tce_get,
2149 .free = pnv_pci_ioda2_table_free_pages,
2150 };
2151
2152 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
2153 {
2154 unsigned int *weight = (unsigned int *)data;
2155
2156 /* This is quite simplistic. The "base" weight of a device
2157 * is 10. 0 means no DMA is to be accounted for it.
2158 */
2159 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
2160 return 0;
2161
2162 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
2163 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
2164 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
2165 *weight += 3;
2166 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
2167 *weight += 15;
2168 else
2169 *weight += 10;
2170
2171 return 0;
2172 }
2173
2174 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
2175 {
2176 unsigned int weight = 0;
2177
2178 /* SRIOV VF has same DMA32 weight as its PF */
2179 #ifdef CONFIG_PCI_IOV
2180 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
2181 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
2182 return weight;
2183 }
2184 #endif
2185
2186 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
2187 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
2188 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
2189 struct pci_dev *pdev;
2190
2191 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
2192 pnv_pci_ioda_dev_dma_weight(pdev, &weight);
2193 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2194 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2195 }
2196
2197 return weight;
2198 }
2199
2200 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2201 struct pnv_ioda_pe *pe)
2202 {
2203
2204 struct page *tce_mem = NULL;
2205 struct iommu_table *tbl;
2206 unsigned int weight, total_weight = 0;
2207 unsigned int tce32_segsz, base, segs, avail, i;
2208 int64_t rc;
2209 void *addr;
2210
2211 /* XXX FIXME: Handle 64-bit only DMA devices */
2212 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2213 /* XXX FIXME: Allocate multi-level tables on PHB3 */
2214 weight = pnv_pci_ioda_pe_dma_weight(pe);
2215 if (!weight)
2216 return;
2217
2218 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2219 &total_weight);
2220 segs = (weight * phb->ioda.dma32_count) / total_weight;
2221 if (!segs)
2222 segs = 1;
2223
2224 /*
2225 * Allocate contiguous DMA32 segments. We begin with the expected
2226 * number of segments. With one more attempt, the number of DMA32
2227 * segments to be allocated is decreased by one until one segment
2228 * is allocated successfully.
2229 */
2230 do {
2231 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2232 for (avail = 0, i = base; i < base + segs; i++) {
2233 if (phb->ioda.dma32_segmap[i] ==
2234 IODA_INVALID_PE)
2235 avail++;
2236 }
2237
2238 if (avail == segs)
2239 goto found;
2240 }
2241 } while (--segs);
2242
2243 if (!segs) {
2244 pe_warn(pe, "No available DMA32 segments\n");
2245 return;
2246 }
2247
2248 found:
2249 tbl = pnv_pci_table_alloc(phb->hose->node);
2250 if (WARN_ON(!tbl))
2251 return;
2252
2253 iommu_register_group(&pe->table_group, phb->hose->global_number,
2254 pe->pe_number);
2255 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2256
2257 /* Grab a 32-bit TCE table */
2258 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2259 weight, total_weight, base, segs);
2260 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2261 base * PNV_IODA1_DMA32_SEGSIZE,
2262 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2263
2264 /* XXX Currently, we allocate one big contiguous table for the
2265 * TCEs. We only really need one chunk per 256M of TCE space
2266 * (ie per segment) but that's an optimization for later, it
2267 * requires some added smarts with our get/put_tce implementation
2268 *
2269 * Each TCE page is 4KB in size and each TCE entry occupies 8
2270 * bytes
2271 */
2272 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2273 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2274 get_order(tce32_segsz * segs));
2275 if (!tce_mem) {
2276 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2277 goto fail;
2278 }
2279 addr = page_address(tce_mem);
2280 memset(addr, 0, tce32_segsz * segs);
2281
2282 /* Configure HW */
2283 for (i = 0; i < segs; i++) {
2284 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2285 pe->pe_number,
2286 base + i, 1,
2287 __pa(addr) + tce32_segsz * i,
2288 tce32_segsz, IOMMU_PAGE_SIZE_4K);
2289 if (rc) {
2290 pe_err(pe, " Failed to configure 32-bit TCE table, err %lld\n",
2291 rc);
2292 goto fail;
2293 }
2294 }
2295
2296 /* Setup DMA32 segment mapping */
2297 for (i = base; i < base + segs; i++)
2298 phb->ioda.dma32_segmap[i] = pe->pe_number;
2299
2300 /* Setup linux iommu table */
2301 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2302 base * PNV_IODA1_DMA32_SEGSIZE,
2303 IOMMU_PAGE_SHIFT_4K);
2304
2305 tbl->it_ops = &pnv_ioda1_iommu_ops;
2306 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2307 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2308 iommu_init_table(tbl, phb->hose->node);
2309
2310 if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2311 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2312
2313 return;
2314 fail:
2315 /* XXX Failure: Try to fallback to 64-bit only ? */
2316 if (tce_mem)
2317 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2318 if (tbl) {
2319 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2320 iommu_tce_table_put(tbl);
2321 }
2322 }
2323
2324 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2325 int num, struct iommu_table *tbl)
2326 {
2327 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2328 table_group);
2329 struct pnv_phb *phb = pe->phb;
2330 int64_t rc;
2331 const unsigned long size = tbl->it_indirect_levels ?
2332 tbl->it_level_size : tbl->it_size;
2333 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2334 const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2335
2336 pe_info(pe, "Setting up window#%d %llx..%llx pg=%lx\n",
2337 num, start_addr, start_addr + win_size - 1,
2338 IOMMU_PAGE_SIZE(tbl));
2339
2340 /*
2341 * Map TCE table through TVT. The TVE index is the PE number
2342 * shifted by 1 bit for 32-bits DMA space.
2343 */
2344 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2345 pe->pe_number,
2346 (pe->pe_number << 1) + num,
2347 tbl->it_indirect_levels + 1,
2348 __pa(tbl->it_base),
2349 size << 3,
2350 IOMMU_PAGE_SIZE(tbl));
2351 if (rc) {
2352 pe_err(pe, "Failed to configure TCE table, err %lld\n", rc);
2353 return rc;
2354 }
2355
2356 pnv_pci_link_table_and_group(phb->hose->node, num,
2357 tbl, &pe->table_group);
2358 pnv_pci_ioda2_tce_invalidate_pe(pe);
2359
2360 return 0;
2361 }
2362
2363 void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2364 {
2365 uint16_t window_id = (pe->pe_number << 1 ) + 1;
2366 int64_t rc;
2367
2368 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2369 if (enable) {
2370 phys_addr_t top = memblock_end_of_DRAM();
2371
2372 top = roundup_pow_of_two(top);
2373 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2374 pe->pe_number,
2375 window_id,
2376 pe->tce_bypass_base,
2377 top);
2378 } else {
2379 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2380 pe->pe_number,
2381 window_id,
2382 pe->tce_bypass_base,
2383 0);
2384 }
2385 if (rc)
2386 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2387 else
2388 pe->tce_bypass_enabled = enable;
2389 }
2390
2391 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2392 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2393 bool alloc_userspace_copy, struct iommu_table **ptbl)
2394 {
2395 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2396 table_group);
2397 int nid = pe->phb->hose->node;
2398 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2399 long ret;
2400 struct iommu_table *tbl;
2401
2402 tbl = pnv_pci_table_alloc(nid);
2403 if (!tbl)
2404 return -ENOMEM;
2405
2406 tbl->it_ops = &pnv_ioda2_iommu_ops;
2407
2408 ret = pnv_pci_ioda2_table_alloc_pages(nid,
2409 bus_offset, page_shift, window_size,
2410 levels, alloc_userspace_copy, tbl);
2411 if (ret) {
2412 iommu_tce_table_put(tbl);
2413 return ret;
2414 }
2415
2416 *ptbl = tbl;
2417
2418 return 0;
2419 }
2420
2421 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2422 {
2423 struct iommu_table *tbl = NULL;
2424 long rc;
2425
2426 /*
2427 * crashkernel= specifies the kdump kernel's maximum memory at
2428 * some offset and there is no guaranteed the result is a power
2429 * of 2, which will cause errors later.
2430 */
2431 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2432
2433 /*
2434 * In memory constrained environments, e.g. kdump kernel, the
2435 * DMA window can be larger than available memory, which will
2436 * cause errors later.
2437 */
2438 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2439
2440 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2441 IOMMU_PAGE_SHIFT_4K,
2442 window_size,
2443 POWERNV_IOMMU_DEFAULT_LEVELS, false, &tbl);
2444 if (rc) {
2445 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2446 rc);
2447 return rc;
2448 }
2449
2450 iommu_init_table(tbl, pe->phb->hose->node);
2451
2452 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2453 if (rc) {
2454 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2455 rc);
2456 iommu_tce_table_put(tbl);
2457 return rc;
2458 }
2459
2460 if (!pnv_iommu_bypass_disabled)
2461 pnv_pci_ioda2_set_bypass(pe, true);
2462
2463 return 0;
2464 }
2465
2466 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2467 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2468 int num)
2469 {
2470 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2471 table_group);
2472 struct pnv_phb *phb = pe->phb;
2473 long ret;
2474
2475 pe_info(pe, "Removing DMA window #%d\n", num);
2476
2477 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2478 (pe->pe_number << 1) + num,
2479 0/* levels */, 0/* table address */,
2480 0/* table size */, 0/* page size */);
2481 if (ret)
2482 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2483 else
2484 pnv_pci_ioda2_tce_invalidate_pe(pe);
2485
2486 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2487
2488 return ret;
2489 }
2490 #endif
2491
2492 #ifdef CONFIG_IOMMU_API
2493 unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2494 __u64 window_size, __u32 levels)
2495 {
2496 unsigned long bytes = 0;
2497 const unsigned window_shift = ilog2(window_size);
2498 unsigned entries_shift = window_shift - page_shift;
2499 unsigned table_shift = entries_shift + 3;
2500 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2501 unsigned long direct_table_size;
2502
2503 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2504 !is_power_of_2(window_size))
2505 return 0;
2506
2507 /* Calculate a direct table size from window_size and levels */
2508 entries_shift = (entries_shift + levels - 1) / levels;
2509 table_shift = entries_shift + 3;
2510 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2511 direct_table_size = 1UL << table_shift;
2512
2513 for ( ; levels; --levels) {
2514 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2515
2516 tce_table_size /= direct_table_size;
2517 tce_table_size <<= 3;
2518 tce_table_size = max_t(unsigned long,
2519 tce_table_size, direct_table_size);
2520 }
2521
2522 return bytes + bytes; /* one for HW table, one for userspace copy */
2523 }
2524
2525 static long pnv_pci_ioda2_create_table_userspace(
2526 struct iommu_table_group *table_group,
2527 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2528 struct iommu_table **ptbl)
2529 {
2530 long ret = pnv_pci_ioda2_create_table(table_group,
2531 num, page_shift, window_size, levels, true, ptbl);
2532
2533 if (!ret)
2534 (*ptbl)->it_allocated_size = pnv_pci_ioda2_get_table_size(
2535 page_shift, window_size, levels);
2536 return ret;
2537 }
2538
2539 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2540 {
2541 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2542 table_group);
2543 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2544 struct iommu_table *tbl = pe->table_group.tables[0];
2545
2546 pnv_pci_ioda2_set_bypass(pe, false);
2547 pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2548 if (pe->pbus)
2549 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2550 iommu_tce_table_put(tbl);
2551 }
2552
2553 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2554 {
2555 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2556 table_group);
2557
2558 pnv_pci_ioda2_setup_default_config(pe);
2559 if (pe->pbus)
2560 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2561 }
2562
2563 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2564 .get_table_size = pnv_pci_ioda2_get_table_size,
2565 .create_table = pnv_pci_ioda2_create_table_userspace,
2566 .set_window = pnv_pci_ioda2_set_window,
2567 .unset_window = pnv_pci_ioda2_unset_window,
2568 .take_ownership = pnv_ioda2_take_ownership,
2569 .release_ownership = pnv_ioda2_release_ownership,
2570 };
2571
2572 static void pnv_ioda_setup_bus_iommu_group_add_devices(struct pnv_ioda_pe *pe,
2573 struct iommu_table_group *table_group,
2574 struct pci_bus *bus)
2575 {
2576 struct pci_dev *dev;
2577
2578 list_for_each_entry(dev, &bus->devices, bus_list) {
2579 iommu_add_device(table_group, &dev->dev);
2580
2581 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
2582 pnv_ioda_setup_bus_iommu_group_add_devices(pe,
2583 table_group, dev->subordinate);
2584 }
2585 }
2586
2587 static void pnv_ioda_setup_bus_iommu_group(struct pnv_ioda_pe *pe,
2588 struct iommu_table_group *table_group, struct pci_bus *bus)
2589 {
2590
2591 if (pe->flags & PNV_IODA_PE_DEV)
2592 iommu_add_device(table_group, &pe->pdev->dev);
2593
2594 if ((pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)) || bus)
2595 pnv_ioda_setup_bus_iommu_group_add_devices(pe, table_group,
2596 bus);
2597 }
2598
2599 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb);
2600
2601 static void pnv_pci_ioda_setup_iommu_api(void)
2602 {
2603 struct pci_controller *hose;
2604 struct pnv_phb *phb;
2605 struct pnv_ioda_pe *pe;
2606
2607 /*
2608 * There are 4 types of PEs:
2609 * - PNV_IODA_PE_BUS: a downstream port with an adapter,
2610 * created from pnv_pci_setup_bridge();
2611 * - PNV_IODA_PE_BUS_ALL: a PCI-PCIX bridge with devices behind it,
2612 * created from pnv_pci_setup_bridge();
2613 * - PNV_IODA_PE_VF: a SRIOV virtual function,
2614 * created from pnv_pcibios_sriov_enable();
2615 * - PNV_IODA_PE_DEV: an NPU or OCAPI device,
2616 * created from pnv_pci_ioda_fixup().
2617 *
2618 * Normally a PE is represented by an IOMMU group, however for
2619 * devices with side channels the groups need to be more strict.
2620 */
2621 list_for_each_entry(hose, &hose_list, list_node) {
2622 phb = hose->private_data;
2623
2624 if (phb->type == PNV_PHB_NPU_NVLINK ||
2625 phb->type == PNV_PHB_NPU_OCAPI)
2626 continue;
2627
2628 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2629 struct iommu_table_group *table_group;
2630
2631 table_group = pnv_try_setup_npu_table_group(pe);
2632 if (!table_group) {
2633 if (!pnv_pci_ioda_pe_dma_weight(pe))
2634 continue;
2635
2636 table_group = &pe->table_group;
2637 iommu_register_group(&pe->table_group,
2638 pe->phb->hose->global_number,
2639 pe->pe_number);
2640 }
2641 pnv_ioda_setup_bus_iommu_group(pe, table_group,
2642 pe->pbus);
2643 }
2644 }
2645
2646 /*
2647 * Now we have all PHBs discovered, time to add NPU devices to
2648 * the corresponding IOMMU groups.
2649 */
2650 list_for_each_entry(hose, &hose_list, list_node) {
2651 unsigned long pgsizes;
2652
2653 phb = hose->private_data;
2654
2655 if (phb->type != PNV_PHB_NPU_NVLINK)
2656 continue;
2657
2658 pgsizes = pnv_ioda_parse_tce_sizes(phb);
2659 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2660 /*
2661 * IODA2 bridges get this set up from
2662 * pci_controller_ops::setup_bridge but NPU bridges
2663 * do not have this hook defined so we do it here.
2664 */
2665 pe->table_group.pgsizes = pgsizes;
2666 pnv_npu_compound_attach(pe);
2667 }
2668 }
2669 }
2670 #else /* !CONFIG_IOMMU_API */
2671 static void pnv_pci_ioda_setup_iommu_api(void) { };
2672 #endif
2673
2674 static unsigned long pnv_ioda_parse_tce_sizes(struct pnv_phb *phb)
2675 {
2676 struct pci_controller *hose = phb->hose;
2677 struct device_node *dn = hose->dn;
2678 unsigned long mask = 0;
2679 int i, rc, count;
2680 u32 val;
2681
2682 count = of_property_count_u32_elems(dn, "ibm,supported-tce-sizes");
2683 if (count <= 0) {
2684 mask = SZ_4K | SZ_64K;
2685 /* Add 16M for POWER8 by default */
2686 if (cpu_has_feature(CPU_FTR_ARCH_207S) &&
2687 !cpu_has_feature(CPU_FTR_ARCH_300))
2688 mask |= SZ_16M | SZ_256M;
2689 return mask;
2690 }
2691
2692 for (i = 0; i < count; i++) {
2693 rc = of_property_read_u32_index(dn, "ibm,supported-tce-sizes",
2694 i, &val);
2695 if (rc == 0)
2696 mask |= 1ULL << val;
2697 }
2698
2699 return mask;
2700 }
2701
2702 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2703 struct pnv_ioda_pe *pe)
2704 {
2705 int64_t rc;
2706
2707 if (!pnv_pci_ioda_pe_dma_weight(pe))
2708 return;
2709
2710 /* TVE #1 is selected by PCI address bit 59 */
2711 pe->tce_bypass_base = 1ull << 59;
2712
2713 /* The PE will reserve all possible 32-bits space */
2714 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2715 phb->ioda.m32_pci_base);
2716
2717 /* Setup linux iommu table */
2718 pe->table_group.tce32_start = 0;
2719 pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2720 pe->table_group.max_dynamic_windows_supported =
2721 IOMMU_TABLE_GROUP_MAX_TABLES;
2722 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2723 pe->table_group.pgsizes = pnv_ioda_parse_tce_sizes(phb);
2724 #ifdef CONFIG_IOMMU_API
2725 pe->table_group.ops = &pnv_pci_ioda2_ops;
2726 #endif
2727
2728 rc = pnv_pci_ioda2_setup_default_config(pe);
2729 if (rc)
2730 return;
2731
2732 if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2733 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2734 }
2735
2736 int64_t pnv_opal_pci_msi_eoi(struct irq_chip *chip, unsigned int hw_irq)
2737 {
2738 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2739 ioda.irq_chip);
2740
2741 return opal_pci_msi_eoi(phb->opal_id, hw_irq);
2742 }
2743
2744 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2745 {
2746 int64_t rc;
2747 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2748 struct irq_chip *chip = irq_data_get_irq_chip(d);
2749
2750 rc = pnv_opal_pci_msi_eoi(chip, hw_irq);
2751 WARN_ON_ONCE(rc);
2752
2753 icp_native_eoi(d);
2754 }
2755
2756
2757 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2758 {
2759 struct irq_data *idata;
2760 struct irq_chip *ichip;
2761
2762 /* The MSI EOI OPAL call is only needed on PHB3 */
2763 if (phb->model != PNV_PHB_MODEL_PHB3)
2764 return;
2765
2766 if (!phb->ioda.irq_chip_init) {
2767 /*
2768 * First time we setup an MSI IRQ, we need to setup the
2769 * corresponding IRQ chip to route correctly.
2770 */
2771 idata = irq_get_irq_data(virq);
2772 ichip = irq_data_get_irq_chip(idata);
2773 phb->ioda.irq_chip_init = 1;
2774 phb->ioda.irq_chip = *ichip;
2775 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2776 }
2777 irq_set_chip(virq, &phb->ioda.irq_chip);
2778 }
2779
2780 /*
2781 * Returns true iff chip is something that we could call
2782 * pnv_opal_pci_msi_eoi for.
2783 */
2784 bool is_pnv_opal_msi(struct irq_chip *chip)
2785 {
2786 return chip->irq_eoi == pnv_ioda2_msi_eoi;
2787 }
2788 EXPORT_SYMBOL_GPL(is_pnv_opal_msi);
2789
2790 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2791 unsigned int hwirq, unsigned int virq,
2792 unsigned int is_64, struct msi_msg *msg)
2793 {
2794 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2795 unsigned int xive_num = hwirq - phb->msi_base;
2796 __be32 data;
2797 int rc;
2798
2799 /* No PE assigned ? bail out ... no MSI for you ! */
2800 if (pe == NULL)
2801 return -ENXIO;
2802
2803 /* Check if we have an MVE */
2804 if (pe->mve_number < 0)
2805 return -ENXIO;
2806
2807 /* Force 32-bit MSI on some broken devices */
2808 if (dev->no_64bit_msi)
2809 is_64 = 0;
2810
2811 /* Assign XIVE to PE */
2812 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2813 if (rc) {
2814 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2815 pci_name(dev), rc, xive_num);
2816 return -EIO;
2817 }
2818
2819 if (is_64) {
2820 __be64 addr64;
2821
2822 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2823 &addr64, &data);
2824 if (rc) {
2825 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2826 pci_name(dev), rc);
2827 return -EIO;
2828 }
2829 msg->address_hi = be64_to_cpu(addr64) >> 32;
2830 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2831 } else {
2832 __be32 addr32;
2833
2834 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2835 &addr32, &data);
2836 if (rc) {
2837 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2838 pci_name(dev), rc);
2839 return -EIO;
2840 }
2841 msg->address_hi = 0;
2842 msg->address_lo = be32_to_cpu(addr32);
2843 }
2844 msg->data = be32_to_cpu(data);
2845
2846 pnv_set_msi_irq_chip(phb, virq);
2847
2848 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2849 " address=%x_%08x data=%x PE# %x\n",
2850 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2851 msg->address_hi, msg->address_lo, data, pe->pe_number);
2852
2853 return 0;
2854 }
2855
2856 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2857 {
2858 unsigned int count;
2859 const __be32 *prop = of_get_property(phb->hose->dn,
2860 "ibm,opal-msi-ranges", NULL);
2861 if (!prop) {
2862 /* BML Fallback */
2863 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2864 }
2865 if (!prop)
2866 return;
2867
2868 phb->msi_base = be32_to_cpup(prop);
2869 count = be32_to_cpup(prop + 1);
2870 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2871 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2872 phb->hose->global_number);
2873 return;
2874 }
2875
2876 phb->msi_setup = pnv_pci_ioda_msi_setup;
2877 phb->msi32_support = 1;
2878 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2879 count, phb->msi_base);
2880 }
2881
2882 #ifdef CONFIG_PCI_IOV
2883 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2884 {
2885 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2886 struct pnv_phb *phb = hose->private_data;
2887 const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2888 struct resource *res;
2889 int i;
2890 resource_size_t size, total_vf_bar_sz;
2891 struct pci_dn *pdn;
2892 int mul, total_vfs;
2893
2894 if (!pdev->is_physfn || pci_dev_is_added(pdev))
2895 return;
2896
2897 pdn = pci_get_pdn(pdev);
2898 pdn->vfs_expanded = 0;
2899 pdn->m64_single_mode = false;
2900
2901 total_vfs = pci_sriov_get_totalvfs(pdev);
2902 mul = phb->ioda.total_pe_num;
2903 total_vf_bar_sz = 0;
2904
2905 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2906 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2907 if (!res->flags || res->parent)
2908 continue;
2909 if (!pnv_pci_is_m64_flags(res->flags)) {
2910 dev_warn(&pdev->dev, "Don't support SR-IOV with"
2911 " non M64 VF BAR%d: %pR. \n",
2912 i, res);
2913 goto truncate_iov;
2914 }
2915
2916 total_vf_bar_sz += pci_iov_resource_size(pdev,
2917 i + PCI_IOV_RESOURCES);
2918
2919 /*
2920 * If bigger than quarter of M64 segment size, just round up
2921 * power of two.
2922 *
2923 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2924 * with other devices, IOV BAR size is expanded to be
2925 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64
2926 * segment size , the expanded size would equal to half of the
2927 * whole M64 space size, which will exhaust the M64 Space and
2928 * limit the system flexibility. This is a design decision to
2929 * set the boundary to quarter of the M64 segment size.
2930 */
2931 if (total_vf_bar_sz > gate) {
2932 mul = roundup_pow_of_two(total_vfs);
2933 dev_info(&pdev->dev,
2934 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2935 total_vf_bar_sz, gate, mul);
2936 pdn->m64_single_mode = true;
2937 break;
2938 }
2939 }
2940
2941 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2942 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2943 if (!res->flags || res->parent)
2944 continue;
2945
2946 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2947 /*
2948 * On PHB3, the minimum size alignment of M64 BAR in single
2949 * mode is 32MB.
2950 */
2951 if (pdn->m64_single_mode && (size < SZ_32M))
2952 goto truncate_iov;
2953 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2954 res->end = res->start + size * mul - 1;
2955 dev_dbg(&pdev->dev, " %pR\n", res);
2956 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2957 i, res, mul);
2958 }
2959 pdn->vfs_expanded = mul;
2960
2961 return;
2962
2963 truncate_iov:
2964 /* To save MMIO space, IOV BAR is truncated. */
2965 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2966 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2967 res->flags = 0;
2968 res->end = res->start - 1;
2969 }
2970 }
2971 #endif /* CONFIG_PCI_IOV */
2972
2973 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2974 struct resource *res)
2975 {
2976 struct pnv_phb *phb = pe->phb;
2977 struct pci_bus_region region;
2978 int index;
2979 int64_t rc;
2980
2981 if (!res || !res->flags || res->start > res->end)
2982 return;
2983
2984 if (res->flags & IORESOURCE_IO) {
2985 region.start = res->start - phb->ioda.io_pci_base;
2986 region.end = res->end - phb->ioda.io_pci_base;
2987 index = region.start / phb->ioda.io_segsize;
2988
2989 while (index < phb->ioda.total_pe_num &&
2990 region.start <= region.end) {
2991 phb->ioda.io_segmap[index] = pe->pe_number;
2992 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2993 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2994 if (rc != OPAL_SUCCESS) {
2995 pr_err("%s: Error %lld mapping IO segment#%d to PE#%x\n",
2996 __func__, rc, index, pe->pe_number);
2997 break;
2998 }
2999
3000 region.start += phb->ioda.io_segsize;
3001 index++;
3002 }
3003 } else if ((res->flags & IORESOURCE_MEM) &&
3004 !pnv_pci_is_m64(phb, res)) {
3005 region.start = res->start -
3006 phb->hose->mem_offset[0] -
3007 phb->ioda.m32_pci_base;
3008 region.end = res->end -
3009 phb->hose->mem_offset[0] -
3010 phb->ioda.m32_pci_base;
3011 index = region.start / phb->ioda.m32_segsize;
3012
3013 while (index < phb->ioda.total_pe_num &&
3014 region.start <= region.end) {
3015 phb->ioda.m32_segmap[index] = pe->pe_number;
3016 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3017 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
3018 if (rc != OPAL_SUCCESS) {
3019 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%x",
3020 __func__, rc, index, pe->pe_number);
3021 break;
3022 }
3023
3024 region.start += phb->ioda.m32_segsize;
3025 index++;
3026 }
3027 }
3028 }
3029
3030 /*
3031 * This function is supposed to be called on basis of PE from top
3032 * to bottom style. So the the I/O or MMIO segment assigned to
3033 * parent PE could be overridden by its child PEs if necessary.
3034 */
3035 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
3036 {
3037 struct pci_dev *pdev;
3038 int i;
3039
3040 /*
3041 * NOTE: We only care PCI bus based PE for now. For PCI
3042 * device based PE, for example SRIOV sensitive VF should
3043 * be figured out later.
3044 */
3045 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
3046
3047 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
3048 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
3049 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
3050
3051 /*
3052 * If the PE contains all subordinate PCI buses, the
3053 * windows of the child bridges should be mapped to
3054 * the PE as well.
3055 */
3056 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
3057 continue;
3058 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
3059 pnv_ioda_setup_pe_res(pe,
3060 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
3061 }
3062 }
3063
3064 #ifdef CONFIG_DEBUG_FS
3065 static int pnv_pci_diag_data_set(void *data, u64 val)
3066 {
3067 struct pci_controller *hose;
3068 struct pnv_phb *phb;
3069 s64 ret;
3070
3071 if (val != 1ULL)
3072 return -EINVAL;
3073
3074 hose = (struct pci_controller *)data;
3075 if (!hose || !hose->private_data)
3076 return -ENODEV;
3077
3078 phb = hose->private_data;
3079
3080 /* Retrieve the diag data from firmware */
3081 ret = opal_pci_get_phb_diag_data2(phb->opal_id, phb->diag_data,
3082 phb->diag_data_size);
3083 if (ret != OPAL_SUCCESS)
3084 return -EIO;
3085
3086 /* Print the diag data to the kernel log */
3087 pnv_pci_dump_phb_diag_data(phb->hose, phb->diag_data);
3088 return 0;
3089 }
3090
3091 DEFINE_SIMPLE_ATTRIBUTE(pnv_pci_diag_data_fops, NULL,
3092 pnv_pci_diag_data_set, "%llu\n");
3093
3094 #endif /* CONFIG_DEBUG_FS */
3095
3096 static void pnv_pci_ioda_create_dbgfs(void)
3097 {
3098 #ifdef CONFIG_DEBUG_FS
3099 struct pci_controller *hose, *tmp;
3100 struct pnv_phb *phb;
3101 char name[16];
3102
3103 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3104 phb = hose->private_data;
3105
3106 /* Notify initialization of PHB done */
3107 phb->initialized = 1;
3108
3109 sprintf(name, "PCI%04x", hose->global_number);
3110 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3111 if (!phb->dbgfs) {
3112 pr_warn("%s: Error on creating debugfs on PHB#%x\n",
3113 __func__, hose->global_number);
3114 continue;
3115 }
3116
3117 debugfs_create_file("dump_diag_regs", 0200, phb->dbgfs, hose,
3118 &pnv_pci_diag_data_fops);
3119 }
3120 #endif /* CONFIG_DEBUG_FS */
3121 }
3122
3123 static void pnv_pci_enable_bridge(struct pci_bus *bus)
3124 {
3125 struct pci_dev *dev = bus->self;
3126 struct pci_bus *child;
3127
3128 /* Empty bus ? bail */
3129 if (list_empty(&bus->devices))
3130 return;
3131
3132 /*
3133 * If there's a bridge associated with that bus enable it. This works
3134 * around races in the generic code if the enabling is done during
3135 * parallel probing. This can be removed once those races have been
3136 * fixed.
3137 */
3138 if (dev) {
3139 int rc = pci_enable_device(dev);
3140 if (rc)
3141 pci_err(dev, "Error enabling bridge (%d)\n", rc);
3142 pci_set_master(dev);
3143 }
3144
3145 /* Perform the same to child busses */
3146 list_for_each_entry(child, &bus->children, node)
3147 pnv_pci_enable_bridge(child);
3148 }
3149
3150 static void pnv_pci_enable_bridges(void)
3151 {
3152 struct pci_controller *hose;
3153
3154 list_for_each_entry(hose, &hose_list, list_node)
3155 pnv_pci_enable_bridge(hose->bus);
3156 }
3157
3158 static void pnv_pci_ioda_fixup(void)
3159 {
3160 pnv_pci_ioda_setup_PEs();
3161 pnv_pci_ioda_setup_iommu_api();
3162 pnv_pci_ioda_create_dbgfs();
3163
3164 pnv_pci_enable_bridges();
3165
3166 #ifdef CONFIG_EEH
3167 pnv_eeh_post_init();
3168 #endif
3169 }
3170
3171 /*
3172 * Returns the alignment for I/O or memory windows for P2P
3173 * bridges. That actually depends on how PEs are segmented.
3174 * For now, we return I/O or M32 segment size for PE sensitive
3175 * P2P bridges. Otherwise, the default values (4KiB for I/O,
3176 * 1MiB for memory) will be returned.
3177 *
3178 * The current PCI bus might be put into one PE, which was
3179 * create against the parent PCI bridge. For that case, we
3180 * needn't enlarge the alignment so that we can save some
3181 * resources.
3182 */
3183 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3184 unsigned long type)
3185 {
3186 struct pci_dev *bridge;
3187 struct pci_controller *hose = pci_bus_to_host(bus);
3188 struct pnv_phb *phb = hose->private_data;
3189 int num_pci_bridges = 0;
3190
3191 bridge = bus->self;
3192 while (bridge) {
3193 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3194 num_pci_bridges++;
3195 if (num_pci_bridges >= 2)
3196 return 1;
3197 }
3198
3199 bridge = bridge->bus->self;
3200 }
3201
3202 /*
3203 * We fall back to M32 if M64 isn't supported. We enforce the M64
3204 * alignment for any 64-bit resource, PCIe doesn't care and
3205 * bridges only do 64-bit prefetchable anyway.
3206 */
3207 if (phb->ioda.m64_segsize && pnv_pci_is_m64_flags(type))
3208 return phb->ioda.m64_segsize;
3209 if (type & IORESOURCE_MEM)
3210 return phb->ioda.m32_segsize;
3211
3212 return phb->ioda.io_segsize;
3213 }
3214
3215 /*
3216 * We are updating root port or the upstream port of the
3217 * bridge behind the root port with PHB's windows in order
3218 * to accommodate the changes on required resources during
3219 * PCI (slot) hotplug, which is connected to either root
3220 * port or the downstream ports of PCIe switch behind the
3221 * root port.
3222 */
3223 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3224 unsigned long type)
3225 {
3226 struct pci_controller *hose = pci_bus_to_host(bus);
3227 struct pnv_phb *phb = hose->private_data;
3228 struct pci_dev *bridge = bus->self;
3229 struct resource *r, *w;
3230 bool msi_region = false;
3231 int i;
3232
3233 /* Check if we need apply fixup to the bridge's windows */
3234 if (!pci_is_root_bus(bridge->bus) &&
3235 !pci_is_root_bus(bridge->bus->self->bus))
3236 return;
3237
3238 /* Fixup the resources */
3239 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3240 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3241 if (!r->flags || !r->parent)
3242 continue;
3243
3244 w = NULL;
3245 if (r->flags & type & IORESOURCE_IO)
3246 w = &hose->io_resource;
3247 else if (pnv_pci_is_m64(phb, r) &&
3248 (type & IORESOURCE_PREFETCH) &&
3249 phb->ioda.m64_segsize)
3250 w = &hose->mem_resources[1];
3251 else if (r->flags & type & IORESOURCE_MEM) {
3252 w = &hose->mem_resources[0];
3253 msi_region = true;
3254 }
3255
3256 r->start = w->start;
3257 r->end = w->end;
3258
3259 /* The 64KB 32-bits MSI region shouldn't be included in
3260 * the 32-bits bridge window. Otherwise, we can see strange
3261 * issues. One of them is EEH error observed on Garrison.
3262 *
3263 * Exclude top 1MB region which is the minimal alignment of
3264 * 32-bits bridge window.
3265 */
3266 if (msi_region) {
3267 r->end += 0x10000;
3268 r->end -= 0x100000;
3269 }
3270 }
3271 }
3272
3273 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3274 {
3275 struct pci_controller *hose = pci_bus_to_host(bus);
3276 struct pnv_phb *phb = hose->private_data;
3277 struct pci_dev *bridge = bus->self;
3278 struct pnv_ioda_pe *pe;
3279 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3280
3281 /* Extend bridge's windows if necessary */
3282 pnv_pci_fixup_bridge_resources(bus, type);
3283
3284 /* The PE for root bus should be realized before any one else */
3285 if (!phb->ioda.root_pe_populated) {
3286 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3287 if (pe) {
3288 phb->ioda.root_pe_idx = pe->pe_number;
3289 phb->ioda.root_pe_populated = true;
3290 }
3291 }
3292
3293 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3294 if (list_empty(&bus->devices))
3295 return;
3296
3297 /* Reserve PEs according to used M64 resources */
3298 pnv_ioda_reserve_m64_pe(bus, NULL, all);
3299
3300 /*
3301 * Assign PE. We might run here because of partial hotplug.
3302 * For the case, we just pick up the existing PE and should
3303 * not allocate resources again.
3304 */
3305 pe = pnv_ioda_setup_bus_PE(bus, all);
3306 if (!pe)
3307 return;
3308
3309 pnv_ioda_setup_pe_seg(pe);
3310 switch (phb->type) {
3311 case PNV_PHB_IODA1:
3312 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3313 break;
3314 case PNV_PHB_IODA2:
3315 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3316 break;
3317 default:
3318 pr_warn("%s: No DMA for PHB#%x (type %d)\n",
3319 __func__, phb->hose->global_number, phb->type);
3320 }
3321 }
3322
3323 static resource_size_t pnv_pci_default_alignment(void)
3324 {
3325 return PAGE_SIZE;
3326 }
3327
3328 #ifdef CONFIG_PCI_IOV
3329 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3330 int resno)
3331 {
3332 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3333 struct pnv_phb *phb = hose->private_data;
3334 struct pci_dn *pdn = pci_get_pdn(pdev);
3335 resource_size_t align;
3336
3337 /*
3338 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3339 * SR-IOV. While from hardware perspective, the range mapped by M64
3340 * BAR should be size aligned.
3341 *
3342 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3343 * powernv-specific hardware restriction is gone. But if just use the
3344 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3345 * in one segment of M64 #15, which introduces the PE conflict between
3346 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3347 * m64_segsize.
3348 *
3349 * This function returns the total IOV BAR size if M64 BAR is in
3350 * Shared PE mode or just VF BAR size if not.
3351 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3352 * M64 segment size if IOV BAR size is less.
3353 */
3354 align = pci_iov_resource_size(pdev, resno);
3355 if (!pdn->vfs_expanded)
3356 return align;
3357 if (pdn->m64_single_mode)
3358 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3359
3360 return pdn->vfs_expanded * align;
3361 }
3362 #endif /* CONFIG_PCI_IOV */
3363
3364 /* Prevent enabling devices for which we couldn't properly
3365 * assign a PE
3366 */
3367 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3368 {
3369 struct pci_controller *hose = pci_bus_to_host(dev->bus);
3370 struct pnv_phb *phb = hose->private_data;
3371 struct pci_dn *pdn;
3372
3373 /* The function is probably called while the PEs have
3374 * not be created yet. For example, resource reassignment
3375 * during PCI probe period. We just skip the check if
3376 * PEs isn't ready.
3377 */
3378 if (!phb->initialized)
3379 return true;
3380
3381 pdn = pci_get_pdn(dev);
3382 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3383 return false;
3384
3385 return true;
3386 }
3387
3388 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3389 int num)
3390 {
3391 struct pnv_ioda_pe *pe = container_of(table_group,
3392 struct pnv_ioda_pe, table_group);
3393 struct pnv_phb *phb = pe->phb;
3394 unsigned int idx;
3395 long rc;
3396
3397 pe_info(pe, "Removing DMA window #%d\n", num);
3398 for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3399 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3400 continue;
3401
3402 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3403 idx, 0, 0ul, 0ul, 0ul);
3404 if (rc != OPAL_SUCCESS) {
3405 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3406 rc, idx);
3407 return rc;
3408 }
3409
3410 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3411 }
3412
3413 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3414 return OPAL_SUCCESS;
3415 }
3416
3417 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3418 {
3419 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3420 struct iommu_table *tbl = pe->table_group.tables[0];
3421 int64_t rc;
3422
3423 if (!weight)
3424 return;
3425
3426 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3427 if (rc != OPAL_SUCCESS)
3428 return;
3429
3430 pnv_pci_p7ioc_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3431 if (pe->table_group.group) {
3432 iommu_group_put(pe->table_group.group);
3433 WARN_ON(pe->table_group.group);
3434 }
3435
3436 free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3437 iommu_tce_table_put(tbl);
3438 }
3439
3440 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3441 {
3442 struct iommu_table *tbl = pe->table_group.tables[0];
3443 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3444 #ifdef CONFIG_IOMMU_API
3445 int64_t rc;
3446 #endif
3447
3448 if (!weight)
3449 return;
3450
3451 #ifdef CONFIG_IOMMU_API
3452 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3453 if (rc)
3454 pe_warn(pe, "OPAL error %lld release DMA window\n", rc);
3455 #endif
3456
3457 pnv_pci_ioda2_set_bypass(pe, false);
3458 if (pe->table_group.group) {
3459 iommu_group_put(pe->table_group.group);
3460 WARN_ON(pe->table_group.group);
3461 }
3462
3463 iommu_tce_table_put(tbl);
3464 }
3465
3466 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3467 unsigned short win,
3468 unsigned int *map)
3469 {
3470 struct pnv_phb *phb = pe->phb;
3471 int idx;
3472 int64_t rc;
3473
3474 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3475 if (map[idx] != pe->pe_number)
3476 continue;
3477
3478 if (win == OPAL_M64_WINDOW_TYPE)
3479 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3480 phb->ioda.reserved_pe_idx, win,
3481 idx / PNV_IODA1_M64_SEGS,
3482 idx % PNV_IODA1_M64_SEGS);
3483 else
3484 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3485 phb->ioda.reserved_pe_idx, win, 0, idx);
3486
3487 if (rc != OPAL_SUCCESS)
3488 pe_warn(pe, "Error %lld unmapping (%d) segment#%d\n",
3489 rc, win, idx);
3490
3491 map[idx] = IODA_INVALID_PE;
3492 }
3493 }
3494
3495 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3496 {
3497 struct pnv_phb *phb = pe->phb;
3498
3499 if (phb->type == PNV_PHB_IODA1) {
3500 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3501 phb->ioda.io_segmap);
3502 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3503 phb->ioda.m32_segmap);
3504 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3505 phb->ioda.m64_segmap);
3506 } else if (phb->type == PNV_PHB_IODA2) {
3507 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3508 phb->ioda.m32_segmap);
3509 }
3510 }
3511
3512 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3513 {
3514 struct pnv_phb *phb = pe->phb;
3515 struct pnv_ioda_pe *slave, *tmp;
3516
3517 list_del(&pe->list);
3518 switch (phb->type) {
3519 case PNV_PHB_IODA1:
3520 pnv_pci_ioda1_release_pe_dma(pe);
3521 break;
3522 case PNV_PHB_IODA2:
3523 pnv_pci_ioda2_release_pe_dma(pe);
3524 break;
3525 default:
3526 WARN_ON(1);
3527 }
3528
3529 pnv_ioda_release_pe_seg(pe);
3530 pnv_ioda_deconfigure_pe(pe->phb, pe);
3531
3532 /* Release slave PEs in the compound PE */
3533 if (pe->flags & PNV_IODA_PE_MASTER) {
3534 list_for_each_entry_safe(slave, tmp, &pe->slaves, list) {
3535 list_del(&slave->list);
3536 pnv_ioda_free_pe(slave);
3537 }
3538 }
3539
3540 /*
3541 * The PE for root bus can be removed because of hotplug in EEH
3542 * recovery for fenced PHB error. We need to mark the PE dead so
3543 * that it can be populated again in PCI hot add path. The PE
3544 * shouldn't be destroyed as it's the global reserved resource.
3545 */
3546 if (phb->ioda.root_pe_populated &&
3547 phb->ioda.root_pe_idx == pe->pe_number)
3548 phb->ioda.root_pe_populated = false;
3549 else
3550 pnv_ioda_free_pe(pe);
3551 }
3552
3553 static void pnv_pci_release_device(struct pci_dev *pdev)
3554 {
3555 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3556 struct pnv_phb *phb = hose->private_data;
3557 struct pci_dn *pdn = pci_get_pdn(pdev);
3558 struct pnv_ioda_pe *pe;
3559
3560 if (pdev->is_virtfn)
3561 return;
3562
3563 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3564 return;
3565
3566 /*
3567 * PCI hotplug can happen as part of EEH error recovery. The @pdn
3568 * isn't removed and added afterwards in this scenario. We should
3569 * set the PE number in @pdn to an invalid one. Otherwise, the PE's
3570 * device count is decreased on removing devices while failing to
3571 * be increased on adding devices. It leads to unbalanced PE's device
3572 * count and eventually make normal PCI hotplug path broken.
3573 */
3574 pe = &phb->ioda.pe_array[pdn->pe_number];
3575 pdn->pe_number = IODA_INVALID_PE;
3576
3577 WARN_ON(--pe->device_count < 0);
3578 if (pe->device_count == 0)
3579 pnv_ioda_release_pe(pe);
3580 }
3581
3582 static void pnv_npu_disable_device(struct pci_dev *pdev)
3583 {
3584 struct eeh_dev *edev = pci_dev_to_eeh_dev(pdev);
3585 struct eeh_pe *eehpe = edev ? edev->pe : NULL;
3586
3587 if (eehpe && eeh_ops && eeh_ops->reset)
3588 eeh_ops->reset(eehpe, EEH_RESET_HOT);
3589 }
3590
3591 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3592 {
3593 struct pnv_phb *phb = hose->private_data;
3594
3595 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3596 OPAL_ASSERT_RESET);
3597 }
3598
3599 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3600 .dma_dev_setup = pnv_pci_dma_dev_setup,
3601 .dma_bus_setup = pnv_pci_dma_bus_setup,
3602 .iommu_bypass_supported = pnv_pci_ioda_iommu_bypass_supported,
3603 .setup_msi_irqs = pnv_setup_msi_irqs,
3604 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3605 .enable_device_hook = pnv_pci_enable_device_hook,
3606 .release_device = pnv_pci_release_device,
3607 .window_alignment = pnv_pci_window_alignment,
3608 .setup_bridge = pnv_pci_setup_bridge,
3609 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3610 .shutdown = pnv_pci_ioda_shutdown,
3611 };
3612
3613 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3614 .dma_dev_setup = pnv_pci_dma_dev_setup,
3615 .setup_msi_irqs = pnv_setup_msi_irqs,
3616 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3617 .enable_device_hook = pnv_pci_enable_device_hook,
3618 .window_alignment = pnv_pci_window_alignment,
3619 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3620 .shutdown = pnv_pci_ioda_shutdown,
3621 .disable_device = pnv_npu_disable_device,
3622 };
3623
3624 static const struct pci_controller_ops pnv_npu_ocapi_ioda_controller_ops = {
3625 .enable_device_hook = pnv_pci_enable_device_hook,
3626 .window_alignment = pnv_pci_window_alignment,
3627 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3628 .shutdown = pnv_pci_ioda_shutdown,
3629 };
3630
3631 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3632 u64 hub_id, int ioda_type)
3633 {
3634 struct pci_controller *hose;
3635 struct pnv_phb *phb;
3636 unsigned long size, m64map_off, m32map_off, pemap_off;
3637 unsigned long iomap_off = 0, dma32map_off = 0;
3638 struct resource r;
3639 const __be64 *prop64;
3640 const __be32 *prop32;
3641 int len;
3642 unsigned int segno;
3643 u64 phb_id;
3644 void *aux;
3645 long rc;
3646
3647 if (!of_device_is_available(np))
3648 return;
3649
3650 pr_info("Initializing %s PHB (%pOF)\n", pnv_phb_names[ioda_type], np);
3651
3652 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3653 if (!prop64) {
3654 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
3655 return;
3656 }
3657 phb_id = be64_to_cpup(prop64);
3658 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
3659
3660 phb = memblock_alloc(sizeof(*phb), SMP_CACHE_BYTES);
3661 if (!phb)
3662 panic("%s: Failed to allocate %zu bytes\n", __func__,
3663 sizeof(*phb));
3664
3665 /* Allocate PCI controller */
3666 phb->hose = hose = pcibios_alloc_controller(np);
3667 if (!phb->hose) {
3668 pr_err(" Can't allocate PCI controller for %pOF\n",
3669 np);
3670 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3671 return;
3672 }
3673
3674 spin_lock_init(&phb->lock);
3675 prop32 = of_get_property(np, "bus-range", &len);
3676 if (prop32 && len == 8) {
3677 hose->first_busno = be32_to_cpu(prop32[0]);
3678 hose->last_busno = be32_to_cpu(prop32[1]);
3679 } else {
3680 pr_warn(" Broken <bus-range> on %pOF\n", np);
3681 hose->first_busno = 0;
3682 hose->last_busno = 0xff;
3683 }
3684 hose->private_data = phb;
3685 phb->hub_id = hub_id;
3686 phb->opal_id = phb_id;
3687 phb->type = ioda_type;
3688 mutex_init(&phb->ioda.pe_alloc_mutex);
3689
3690 /* Detect specific models for error handling */
3691 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3692 phb->model = PNV_PHB_MODEL_P7IOC;
3693 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3694 phb->model = PNV_PHB_MODEL_PHB3;
3695 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3696 phb->model = PNV_PHB_MODEL_NPU;
3697 else if (of_device_is_compatible(np, "ibm,power9-npu-pciex"))
3698 phb->model = PNV_PHB_MODEL_NPU2;
3699 else
3700 phb->model = PNV_PHB_MODEL_UNKNOWN;
3701
3702 /* Initialize diagnostic data buffer */
3703 prop32 = of_get_property(np, "ibm,phb-diag-data-size", NULL);
3704 if (prop32)
3705 phb->diag_data_size = be32_to_cpup(prop32);
3706 else
3707 phb->diag_data_size = PNV_PCI_DIAG_BUF_SIZE;
3708
3709 phb->diag_data = memblock_alloc(phb->diag_data_size, SMP_CACHE_BYTES);
3710 if (!phb->diag_data)
3711 panic("%s: Failed to allocate %u bytes\n", __func__,
3712 phb->diag_data_size);
3713
3714 /* Parse 32-bit and IO ranges (if any) */
3715 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3716
3717 /* Get registers */
3718 if (!of_address_to_resource(np, 0, &r)) {
3719 phb->regs_phys = r.start;
3720 phb->regs = ioremap(r.start, resource_size(&r));
3721 if (phb->regs == NULL)
3722 pr_err(" Failed to map registers !\n");
3723 }
3724
3725 /* Initialize more IODA stuff */
3726 phb->ioda.total_pe_num = 1;
3727 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3728 if (prop32)
3729 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3730 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3731 if (prop32)
3732 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3733
3734 /* Invalidate RID to PE# mapping */
3735 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3736 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3737
3738 /* Parse 64-bit MMIO range */
3739 pnv_ioda_parse_m64_window(phb);
3740
3741 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3742 /* FW Has already off top 64k of M32 space (MSI space) */
3743 phb->ioda.m32_size += 0x10000;
3744
3745 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3746 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3747 phb->ioda.io_size = hose->pci_io_size;
3748 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3749 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3750
3751 /* Calculate how many 32-bit TCE segments we have */
3752 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3753 PNV_IODA1_DMA32_SEGSIZE;
3754
3755 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3756 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3757 sizeof(unsigned long));
3758 m64map_off = size;
3759 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3760 m32map_off = size;
3761 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3762 if (phb->type == PNV_PHB_IODA1) {
3763 iomap_off = size;
3764 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3765 dma32map_off = size;
3766 size += phb->ioda.dma32_count *
3767 sizeof(phb->ioda.dma32_segmap[0]);
3768 }
3769 pemap_off = size;
3770 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3771 aux = memblock_alloc(size, SMP_CACHE_BYTES);
3772 if (!aux)
3773 panic("%s: Failed to allocate %lu bytes\n", __func__, size);
3774 phb->ioda.pe_alloc = aux;
3775 phb->ioda.m64_segmap = aux + m64map_off;
3776 phb->ioda.m32_segmap = aux + m32map_off;
3777 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3778 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3779 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3780 }
3781 if (phb->type == PNV_PHB_IODA1) {
3782 phb->ioda.io_segmap = aux + iomap_off;
3783 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3784 phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3785
3786 phb->ioda.dma32_segmap = aux + dma32map_off;
3787 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3788 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3789 }
3790 phb->ioda.pe_array = aux + pemap_off;
3791
3792 /*
3793 * Choose PE number for root bus, which shouldn't have
3794 * M64 resources consumed by its child devices. To pick
3795 * the PE number adjacent to the reserved one if possible.
3796 */
3797 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3798 if (phb->ioda.reserved_pe_idx == 0) {
3799 phb->ioda.root_pe_idx = 1;
3800 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3801 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3802 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3803 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3804 } else {
3805 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3806 }
3807
3808 INIT_LIST_HEAD(&phb->ioda.pe_list);
3809 mutex_init(&phb->ioda.pe_list_mutex);
3810
3811 /* Calculate how many 32-bit TCE segments we have */
3812 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3813 PNV_IODA1_DMA32_SEGSIZE;
3814
3815 #if 0 /* We should really do that ... */
3816 rc = opal_pci_set_phb_mem_window(opal->phb_id,
3817 window_type,
3818 window_num,
3819 starting_real_address,
3820 starting_pci_address,
3821 segment_size);
3822 #endif
3823
3824 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3825 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3826 phb->ioda.m32_size, phb->ioda.m32_segsize);
3827 if (phb->ioda.m64_size)
3828 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
3829 phb->ioda.m64_size, phb->ioda.m64_segsize);
3830 if (phb->ioda.io_size)
3831 pr_info(" IO: 0x%x [segment=0x%x]\n",
3832 phb->ioda.io_size, phb->ioda.io_segsize);
3833
3834
3835 phb->hose->ops = &pnv_pci_ops;
3836 phb->get_pe_state = pnv_ioda_get_pe_state;
3837 phb->freeze_pe = pnv_ioda_freeze_pe;
3838 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3839
3840 /* Setup MSI support */
3841 pnv_pci_init_ioda_msis(phb);
3842
3843 /*
3844 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3845 * to let the PCI core do resource assignment. It's supposed
3846 * that the PCI core will do correct I/O and MMIO alignment
3847 * for the P2P bridge bars so that each PCI bus (excluding
3848 * the child P2P bridges) can form individual PE.
3849 */
3850 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3851
3852 switch (phb->type) {
3853 case PNV_PHB_NPU_NVLINK:
3854 hose->controller_ops = pnv_npu_ioda_controller_ops;
3855 break;
3856 case PNV_PHB_NPU_OCAPI:
3857 hose->controller_ops = pnv_npu_ocapi_ioda_controller_ops;
3858 break;
3859 default:
3860 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3861 hose->controller_ops = pnv_pci_ioda_controller_ops;
3862 }
3863
3864 ppc_md.pcibios_default_alignment = pnv_pci_default_alignment;
3865
3866 #ifdef CONFIG_PCI_IOV
3867 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3868 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3869 ppc_md.pcibios_sriov_enable = pnv_pcibios_sriov_enable;
3870 ppc_md.pcibios_sriov_disable = pnv_pcibios_sriov_disable;
3871 #endif
3872
3873 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3874
3875 /* Reset IODA tables to a clean state */
3876 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3877 if (rc)
3878 pr_warn(" OPAL Error %ld performing IODA table reset !\n", rc);
3879
3880 /*
3881 * If we're running in kdump kernel, the previous kernel never
3882 * shutdown PCI devices correctly. We already got IODA table
3883 * cleaned out. So we have to issue PHB reset to stop all PCI
3884 * transactions from previous kernel. The ppc_pci_reset_phbs
3885 * kernel parameter will force this reset too. Additionally,
3886 * if the IODA reset above failed then use a bigger hammer.
3887 * This can happen if we get a PHB fatal error in very early
3888 * boot.
3889 */
3890 if (is_kdump_kernel() || pci_reset_phbs || rc) {
3891 pr_info(" Issue PHB reset ...\n");
3892 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3893 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3894 }
3895
3896 /* Remove M64 resource if we can't configure it successfully */
3897 if (!phb->init_m64 || phb->init_m64(phb))
3898 hose->mem_resources[1].flags = 0;
3899 }
3900
3901 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3902 {
3903 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3904 }
3905
3906 void __init pnv_pci_init_npu_phb(struct device_node *np)
3907 {
3908 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_NVLINK);
3909 }
3910
3911 void __init pnv_pci_init_npu2_opencapi_phb(struct device_node *np)
3912 {
3913 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU_OCAPI);
3914 }
3915
3916 static void pnv_npu2_opencapi_cfg_size_fixup(struct pci_dev *dev)
3917 {
3918 struct pci_controller *hose = pci_bus_to_host(dev->bus);
3919 struct pnv_phb *phb = hose->private_data;
3920
3921 if (!machine_is(powernv))
3922 return;
3923
3924 if (phb->type == PNV_PHB_NPU_OCAPI)
3925 dev->cfg_size = PCI_CFG_SPACE_EXP_SIZE;
3926 }
3927 DECLARE_PCI_FIXUP_EARLY(PCI_ANY_ID, PCI_ANY_ID, pnv_npu2_opencapi_cfg_size_fixup);
3928
3929 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3930 {
3931 struct device_node *phbn;
3932 const __be64 *prop64;
3933 u64 hub_id;
3934
3935 pr_info("Probing IODA IO-Hub %pOF\n", np);
3936
3937 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3938 if (!prop64) {
3939 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3940 return;
3941 }
3942 hub_id = be64_to_cpup(prop64);
3943 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3944
3945 /* Count child PHBs */
3946 for_each_child_of_node(np, phbn) {
3947 /* Look for IODA1 PHBs */
3948 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3949 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3950 }
3951 }