]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/platforms/powernv/pci-ioda.c
cxl: Do not create vPHB if there are no AFU configuration records
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / platforms / powernv / pci-ioda.c
1 /*
2 * Support PCI/PCIe on PowerNV platforms
3 *
4 * Copyright 2011 Benjamin Herrenschmidt, IBM Corp.
5 *
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
10 */
11
12 #undef DEBUG
13
14 #include <linux/kernel.h>
15 #include <linux/pci.h>
16 #include <linux/crash_dump.h>
17 #include <linux/debugfs.h>
18 #include <linux/delay.h>
19 #include <linux/string.h>
20 #include <linux/init.h>
21 #include <linux/bootmem.h>
22 #include <linux/irq.h>
23 #include <linux/io.h>
24 #include <linux/msi.h>
25 #include <linux/memblock.h>
26 #include <linux/iommu.h>
27 #include <linux/rculist.h>
28 #include <linux/sizes.h>
29
30 #include <asm/sections.h>
31 #include <asm/io.h>
32 #include <asm/prom.h>
33 #include <asm/pci-bridge.h>
34 #include <asm/machdep.h>
35 #include <asm/msi_bitmap.h>
36 #include <asm/ppc-pci.h>
37 #include <asm/opal.h>
38 #include <asm/iommu.h>
39 #include <asm/tce.h>
40 #include <asm/xics.h>
41 #include <asm/debug.h>
42 #include <asm/firmware.h>
43 #include <asm/pnv-pci.h>
44 #include <asm/mmzone.h>
45
46 #include <misc/cxl-base.h>
47
48 #include "powernv.h"
49 #include "pci.h"
50
51 #define PNV_IODA1_M64_NUM 16 /* Number of M64 BARs */
52 #define PNV_IODA1_M64_SEGS 8 /* Segments per M64 BAR */
53 #define PNV_IODA1_DMA32_SEGSIZE 0x10000000
54
55 #define POWERNV_IOMMU_DEFAULT_LEVELS 1
56 #define POWERNV_IOMMU_MAX_LEVELS 5
57
58 static const char * const pnv_phb_names[] = { "IODA1", "IODA2", "NPU" };
59 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl);
60
61 void pe_level_printk(const struct pnv_ioda_pe *pe, const char *level,
62 const char *fmt, ...)
63 {
64 struct va_format vaf;
65 va_list args;
66 char pfix[32];
67
68 va_start(args, fmt);
69
70 vaf.fmt = fmt;
71 vaf.va = &args;
72
73 if (pe->flags & PNV_IODA_PE_DEV)
74 strlcpy(pfix, dev_name(&pe->pdev->dev), sizeof(pfix));
75 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
76 sprintf(pfix, "%04x:%02x ",
77 pci_domain_nr(pe->pbus), pe->pbus->number);
78 #ifdef CONFIG_PCI_IOV
79 else if (pe->flags & PNV_IODA_PE_VF)
80 sprintf(pfix, "%04x:%02x:%2x.%d",
81 pci_domain_nr(pe->parent_dev->bus),
82 (pe->rid & 0xff00) >> 8,
83 PCI_SLOT(pe->rid), PCI_FUNC(pe->rid));
84 #endif /* CONFIG_PCI_IOV*/
85
86 printk("%spci %s: [PE# %.3d] %pV",
87 level, pfix, pe->pe_number, &vaf);
88
89 va_end(args);
90 }
91
92 static bool pnv_iommu_bypass_disabled __read_mostly;
93
94 static int __init iommu_setup(char *str)
95 {
96 if (!str)
97 return -EINVAL;
98
99 while (*str) {
100 if (!strncmp(str, "nobypass", 8)) {
101 pnv_iommu_bypass_disabled = true;
102 pr_info("PowerNV: IOMMU bypass window disabled.\n");
103 break;
104 }
105 str += strcspn(str, ",");
106 if (*str == ',')
107 str++;
108 }
109
110 return 0;
111 }
112 early_param("iommu", iommu_setup);
113
114 static inline bool pnv_pci_is_mem_pref_64(unsigned long flags)
115 {
116 return ((flags & (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH)) ==
117 (IORESOURCE_MEM_64 | IORESOURCE_PREFETCH));
118 }
119
120 static struct pnv_ioda_pe *pnv_ioda_init_pe(struct pnv_phb *phb, int pe_no)
121 {
122 phb->ioda.pe_array[pe_no].phb = phb;
123 phb->ioda.pe_array[pe_no].pe_number = pe_no;
124
125 return &phb->ioda.pe_array[pe_no];
126 }
127
128 static void pnv_ioda_reserve_pe(struct pnv_phb *phb, int pe_no)
129 {
130 if (!(pe_no >= 0 && pe_no < phb->ioda.total_pe_num)) {
131 pr_warn("%s: Invalid PE %d on PHB#%x\n",
132 __func__, pe_no, phb->hose->global_number);
133 return;
134 }
135
136 if (test_and_set_bit(pe_no, phb->ioda.pe_alloc))
137 pr_debug("%s: PE %d was reserved on PHB#%x\n",
138 __func__, pe_no, phb->hose->global_number);
139
140 pnv_ioda_init_pe(phb, pe_no);
141 }
142
143 static struct pnv_ioda_pe *pnv_ioda_alloc_pe(struct pnv_phb *phb)
144 {
145 unsigned long pe = phb->ioda.total_pe_num - 1;
146
147 for (pe = phb->ioda.total_pe_num - 1; pe >= 0; pe--) {
148 if (!test_and_set_bit(pe, phb->ioda.pe_alloc))
149 return pnv_ioda_init_pe(phb, pe);
150 }
151
152 return NULL;
153 }
154
155 static void pnv_ioda_free_pe(struct pnv_ioda_pe *pe)
156 {
157 struct pnv_phb *phb = pe->phb;
158
159 WARN_ON(pe->pdev);
160
161 memset(pe, 0, sizeof(struct pnv_ioda_pe));
162 clear_bit(pe->pe_number, phb->ioda.pe_alloc);
163 }
164
165 /* The default M64 BAR is shared by all PEs */
166 static int pnv_ioda2_init_m64(struct pnv_phb *phb)
167 {
168 const char *desc;
169 struct resource *r;
170 s64 rc;
171
172 /* Configure the default M64 BAR */
173 rc = opal_pci_set_phb_mem_window(phb->opal_id,
174 OPAL_M64_WINDOW_TYPE,
175 phb->ioda.m64_bar_idx,
176 phb->ioda.m64_base,
177 0, /* unused */
178 phb->ioda.m64_size);
179 if (rc != OPAL_SUCCESS) {
180 desc = "configuring";
181 goto fail;
182 }
183
184 /* Enable the default M64 BAR */
185 rc = opal_pci_phb_mmio_enable(phb->opal_id,
186 OPAL_M64_WINDOW_TYPE,
187 phb->ioda.m64_bar_idx,
188 OPAL_ENABLE_M64_SPLIT);
189 if (rc != OPAL_SUCCESS) {
190 desc = "enabling";
191 goto fail;
192 }
193
194 /* Mark the M64 BAR assigned */
195 set_bit(phb->ioda.m64_bar_idx, &phb->ioda.m64_bar_alloc);
196
197 /*
198 * Exclude the segments for reserved and root bus PE, which
199 * are first or last two PEs.
200 */
201 r = &phb->hose->mem_resources[1];
202 if (phb->ioda.reserved_pe_idx == 0)
203 r->start += (2 * phb->ioda.m64_segsize);
204 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
205 r->end -= (2 * phb->ioda.m64_segsize);
206 else
207 pr_warn(" Cannot strip M64 segment for reserved PE#%d\n",
208 phb->ioda.reserved_pe_idx);
209
210 return 0;
211
212 fail:
213 pr_warn(" Failure %lld %s M64 BAR#%d\n",
214 rc, desc, phb->ioda.m64_bar_idx);
215 opal_pci_phb_mmio_enable(phb->opal_id,
216 OPAL_M64_WINDOW_TYPE,
217 phb->ioda.m64_bar_idx,
218 OPAL_DISABLE_M64);
219 return -EIO;
220 }
221
222 static void pnv_ioda_reserve_dev_m64_pe(struct pci_dev *pdev,
223 unsigned long *pe_bitmap)
224 {
225 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
226 struct pnv_phb *phb = hose->private_data;
227 struct resource *r;
228 resource_size_t base, sgsz, start, end;
229 int segno, i;
230
231 base = phb->ioda.m64_base;
232 sgsz = phb->ioda.m64_segsize;
233 for (i = 0; i <= PCI_ROM_RESOURCE; i++) {
234 r = &pdev->resource[i];
235 if (!r->parent || !pnv_pci_is_mem_pref_64(r->flags))
236 continue;
237
238 start = _ALIGN_DOWN(r->start - base, sgsz);
239 end = _ALIGN_UP(r->end - base, sgsz);
240 for (segno = start / sgsz; segno < end / sgsz; segno++) {
241 if (pe_bitmap)
242 set_bit(segno, pe_bitmap);
243 else
244 pnv_ioda_reserve_pe(phb, segno);
245 }
246 }
247 }
248
249 static int pnv_ioda1_init_m64(struct pnv_phb *phb)
250 {
251 struct resource *r;
252 int index;
253
254 /*
255 * There are 16 M64 BARs, each of which has 8 segments. So
256 * there are as many M64 segments as the maximum number of
257 * PEs, which is 128.
258 */
259 for (index = 0; index < PNV_IODA1_M64_NUM; index++) {
260 unsigned long base, segsz = phb->ioda.m64_segsize;
261 int64_t rc;
262
263 base = phb->ioda.m64_base +
264 index * PNV_IODA1_M64_SEGS * segsz;
265 rc = opal_pci_set_phb_mem_window(phb->opal_id,
266 OPAL_M64_WINDOW_TYPE, index, base, 0,
267 PNV_IODA1_M64_SEGS * segsz);
268 if (rc != OPAL_SUCCESS) {
269 pr_warn(" Error %lld setting M64 PHB#%d-BAR#%d\n",
270 rc, phb->hose->global_number, index);
271 goto fail;
272 }
273
274 rc = opal_pci_phb_mmio_enable(phb->opal_id,
275 OPAL_M64_WINDOW_TYPE, index,
276 OPAL_ENABLE_M64_SPLIT);
277 if (rc != OPAL_SUCCESS) {
278 pr_warn(" Error %lld enabling M64 PHB#%d-BAR#%d\n",
279 rc, phb->hose->global_number, index);
280 goto fail;
281 }
282 }
283
284 /*
285 * Exclude the segments for reserved and root bus PE, which
286 * are first or last two PEs.
287 */
288 r = &phb->hose->mem_resources[1];
289 if (phb->ioda.reserved_pe_idx == 0)
290 r->start += (2 * phb->ioda.m64_segsize);
291 else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1))
292 r->end -= (2 * phb->ioda.m64_segsize);
293 else
294 WARN(1, "Wrong reserved PE#%d on PHB#%d\n",
295 phb->ioda.reserved_pe_idx, phb->hose->global_number);
296
297 return 0;
298
299 fail:
300 for ( ; index >= 0; index--)
301 opal_pci_phb_mmio_enable(phb->opal_id,
302 OPAL_M64_WINDOW_TYPE, index, OPAL_DISABLE_M64);
303
304 return -EIO;
305 }
306
307 static void pnv_ioda_reserve_m64_pe(struct pci_bus *bus,
308 unsigned long *pe_bitmap,
309 bool all)
310 {
311 struct pci_dev *pdev;
312
313 list_for_each_entry(pdev, &bus->devices, bus_list) {
314 pnv_ioda_reserve_dev_m64_pe(pdev, pe_bitmap);
315
316 if (all && pdev->subordinate)
317 pnv_ioda_reserve_m64_pe(pdev->subordinate,
318 pe_bitmap, all);
319 }
320 }
321
322 static struct pnv_ioda_pe *pnv_ioda_pick_m64_pe(struct pci_bus *bus, bool all)
323 {
324 struct pci_controller *hose = pci_bus_to_host(bus);
325 struct pnv_phb *phb = hose->private_data;
326 struct pnv_ioda_pe *master_pe, *pe;
327 unsigned long size, *pe_alloc;
328 int i;
329
330 /* Root bus shouldn't use M64 */
331 if (pci_is_root_bus(bus))
332 return NULL;
333
334 /* Allocate bitmap */
335 size = _ALIGN_UP(phb->ioda.total_pe_num / 8, sizeof(unsigned long));
336 pe_alloc = kzalloc(size, GFP_KERNEL);
337 if (!pe_alloc) {
338 pr_warn("%s: Out of memory !\n",
339 __func__);
340 return NULL;
341 }
342
343 /* Figure out reserved PE numbers by the PE */
344 pnv_ioda_reserve_m64_pe(bus, pe_alloc, all);
345
346 /*
347 * the current bus might not own M64 window and that's all
348 * contributed by its child buses. For the case, we needn't
349 * pick M64 dependent PE#.
350 */
351 if (bitmap_empty(pe_alloc, phb->ioda.total_pe_num)) {
352 kfree(pe_alloc);
353 return NULL;
354 }
355
356 /*
357 * Figure out the master PE and put all slave PEs to master
358 * PE's list to form compound PE.
359 */
360 master_pe = NULL;
361 i = -1;
362 while ((i = find_next_bit(pe_alloc, phb->ioda.total_pe_num, i + 1)) <
363 phb->ioda.total_pe_num) {
364 pe = &phb->ioda.pe_array[i];
365
366 phb->ioda.m64_segmap[pe->pe_number] = pe->pe_number;
367 if (!master_pe) {
368 pe->flags |= PNV_IODA_PE_MASTER;
369 INIT_LIST_HEAD(&pe->slaves);
370 master_pe = pe;
371 } else {
372 pe->flags |= PNV_IODA_PE_SLAVE;
373 pe->master = master_pe;
374 list_add_tail(&pe->list, &master_pe->slaves);
375 }
376
377 /*
378 * P7IOC supports M64DT, which helps mapping M64 segment
379 * to one particular PE#. However, PHB3 has fixed mapping
380 * between M64 segment and PE#. In order to have same logic
381 * for P7IOC and PHB3, we enforce fixed mapping between M64
382 * segment and PE# on P7IOC.
383 */
384 if (phb->type == PNV_PHB_IODA1) {
385 int64_t rc;
386
387 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
388 pe->pe_number, OPAL_M64_WINDOW_TYPE,
389 pe->pe_number / PNV_IODA1_M64_SEGS,
390 pe->pe_number % PNV_IODA1_M64_SEGS);
391 if (rc != OPAL_SUCCESS)
392 pr_warn("%s: Error %lld mapping M64 for PHB#%d-PE#%d\n",
393 __func__, rc, phb->hose->global_number,
394 pe->pe_number);
395 }
396 }
397
398 kfree(pe_alloc);
399 return master_pe;
400 }
401
402 static void __init pnv_ioda_parse_m64_window(struct pnv_phb *phb)
403 {
404 struct pci_controller *hose = phb->hose;
405 struct device_node *dn = hose->dn;
406 struct resource *res;
407 const u32 *r;
408 u64 pci_addr;
409
410 if (phb->type != PNV_PHB_IODA1 && phb->type != PNV_PHB_IODA2) {
411 pr_info(" Not support M64 window\n");
412 return;
413 }
414
415 if (!firmware_has_feature(FW_FEATURE_OPAL)) {
416 pr_info(" Firmware too old to support M64 window\n");
417 return;
418 }
419
420 r = of_get_property(dn, "ibm,opal-m64-window", NULL);
421 if (!r) {
422 pr_info(" No <ibm,opal-m64-window> on %s\n",
423 dn->full_name);
424 return;
425 }
426
427 res = &hose->mem_resources[1];
428 res->name = dn->full_name;
429 res->start = of_translate_address(dn, r + 2);
430 res->end = res->start + of_read_number(r + 4, 2) - 1;
431 res->flags = (IORESOURCE_MEM | IORESOURCE_MEM_64 | IORESOURCE_PREFETCH);
432 pci_addr = of_read_number(r, 2);
433 hose->mem_offset[1] = res->start - pci_addr;
434
435 phb->ioda.m64_size = resource_size(res);
436 phb->ioda.m64_segsize = phb->ioda.m64_size / phb->ioda.total_pe_num;
437 phb->ioda.m64_base = pci_addr;
438
439 pr_info(" MEM64 0x%016llx..0x%016llx -> 0x%016llx\n",
440 res->start, res->end, pci_addr);
441
442 /* Use last M64 BAR to cover M64 window */
443 phb->ioda.m64_bar_idx = 15;
444 if (phb->type == PNV_PHB_IODA1)
445 phb->init_m64 = pnv_ioda1_init_m64;
446 else
447 phb->init_m64 = pnv_ioda2_init_m64;
448 phb->reserve_m64_pe = pnv_ioda_reserve_m64_pe;
449 phb->pick_m64_pe = pnv_ioda_pick_m64_pe;
450 }
451
452 static void pnv_ioda_freeze_pe(struct pnv_phb *phb, int pe_no)
453 {
454 struct pnv_ioda_pe *pe = &phb->ioda.pe_array[pe_no];
455 struct pnv_ioda_pe *slave;
456 s64 rc;
457
458 /* Fetch master PE */
459 if (pe->flags & PNV_IODA_PE_SLAVE) {
460 pe = pe->master;
461 if (WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER)))
462 return;
463
464 pe_no = pe->pe_number;
465 }
466
467 /* Freeze master PE */
468 rc = opal_pci_eeh_freeze_set(phb->opal_id,
469 pe_no,
470 OPAL_EEH_ACTION_SET_FREEZE_ALL);
471 if (rc != OPAL_SUCCESS) {
472 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
473 __func__, rc, phb->hose->global_number, pe_no);
474 return;
475 }
476
477 /* Freeze slave PEs */
478 if (!(pe->flags & PNV_IODA_PE_MASTER))
479 return;
480
481 list_for_each_entry(slave, &pe->slaves, list) {
482 rc = opal_pci_eeh_freeze_set(phb->opal_id,
483 slave->pe_number,
484 OPAL_EEH_ACTION_SET_FREEZE_ALL);
485 if (rc != OPAL_SUCCESS)
486 pr_warn("%s: Failure %lld freezing PHB#%x-PE#%x\n",
487 __func__, rc, phb->hose->global_number,
488 slave->pe_number);
489 }
490 }
491
492 static int pnv_ioda_unfreeze_pe(struct pnv_phb *phb, int pe_no, int opt)
493 {
494 struct pnv_ioda_pe *pe, *slave;
495 s64 rc;
496
497 /* Find master PE */
498 pe = &phb->ioda.pe_array[pe_no];
499 if (pe->flags & PNV_IODA_PE_SLAVE) {
500 pe = pe->master;
501 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
502 pe_no = pe->pe_number;
503 }
504
505 /* Clear frozen state for master PE */
506 rc = opal_pci_eeh_freeze_clear(phb->opal_id, pe_no, opt);
507 if (rc != OPAL_SUCCESS) {
508 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
509 __func__, rc, opt, phb->hose->global_number, pe_no);
510 return -EIO;
511 }
512
513 if (!(pe->flags & PNV_IODA_PE_MASTER))
514 return 0;
515
516 /* Clear frozen state for slave PEs */
517 list_for_each_entry(slave, &pe->slaves, list) {
518 rc = opal_pci_eeh_freeze_clear(phb->opal_id,
519 slave->pe_number,
520 opt);
521 if (rc != OPAL_SUCCESS) {
522 pr_warn("%s: Failure %lld clear %d on PHB#%x-PE#%x\n",
523 __func__, rc, opt, phb->hose->global_number,
524 slave->pe_number);
525 return -EIO;
526 }
527 }
528
529 return 0;
530 }
531
532 static int pnv_ioda_get_pe_state(struct pnv_phb *phb, int pe_no)
533 {
534 struct pnv_ioda_pe *slave, *pe;
535 u8 fstate, state;
536 __be16 pcierr;
537 s64 rc;
538
539 /* Sanity check on PE number */
540 if (pe_no < 0 || pe_no >= phb->ioda.total_pe_num)
541 return OPAL_EEH_STOPPED_PERM_UNAVAIL;
542
543 /*
544 * Fetch the master PE and the PE instance might be
545 * not initialized yet.
546 */
547 pe = &phb->ioda.pe_array[pe_no];
548 if (pe->flags & PNV_IODA_PE_SLAVE) {
549 pe = pe->master;
550 WARN_ON(!pe || !(pe->flags & PNV_IODA_PE_MASTER));
551 pe_no = pe->pe_number;
552 }
553
554 /* Check the master PE */
555 rc = opal_pci_eeh_freeze_status(phb->opal_id, pe_no,
556 &state, &pcierr, NULL);
557 if (rc != OPAL_SUCCESS) {
558 pr_warn("%s: Failure %lld getting "
559 "PHB#%x-PE#%x state\n",
560 __func__, rc,
561 phb->hose->global_number, pe_no);
562 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
563 }
564
565 /* Check the slave PE */
566 if (!(pe->flags & PNV_IODA_PE_MASTER))
567 return state;
568
569 list_for_each_entry(slave, &pe->slaves, list) {
570 rc = opal_pci_eeh_freeze_status(phb->opal_id,
571 slave->pe_number,
572 &fstate,
573 &pcierr,
574 NULL);
575 if (rc != OPAL_SUCCESS) {
576 pr_warn("%s: Failure %lld getting "
577 "PHB#%x-PE#%x state\n",
578 __func__, rc,
579 phb->hose->global_number, slave->pe_number);
580 return OPAL_EEH_STOPPED_TEMP_UNAVAIL;
581 }
582
583 /*
584 * Override the result based on the ascending
585 * priority.
586 */
587 if (fstate > state)
588 state = fstate;
589 }
590
591 return state;
592 }
593
594 /* Currently those 2 are only used when MSIs are enabled, this will change
595 * but in the meantime, we need to protect them to avoid warnings
596 */
597 #ifdef CONFIG_PCI_MSI
598 struct pnv_ioda_pe *pnv_ioda_get_pe(struct pci_dev *dev)
599 {
600 struct pci_controller *hose = pci_bus_to_host(dev->bus);
601 struct pnv_phb *phb = hose->private_data;
602 struct pci_dn *pdn = pci_get_pdn(dev);
603
604 if (!pdn)
605 return NULL;
606 if (pdn->pe_number == IODA_INVALID_PE)
607 return NULL;
608 return &phb->ioda.pe_array[pdn->pe_number];
609 }
610 #endif /* CONFIG_PCI_MSI */
611
612 static int pnv_ioda_set_one_peltv(struct pnv_phb *phb,
613 struct pnv_ioda_pe *parent,
614 struct pnv_ioda_pe *child,
615 bool is_add)
616 {
617 const char *desc = is_add ? "adding" : "removing";
618 uint8_t op = is_add ? OPAL_ADD_PE_TO_DOMAIN :
619 OPAL_REMOVE_PE_FROM_DOMAIN;
620 struct pnv_ioda_pe *slave;
621 long rc;
622
623 /* Parent PE affects child PE */
624 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
625 child->pe_number, op);
626 if (rc != OPAL_SUCCESS) {
627 pe_warn(child, "OPAL error %ld %s to parent PELTV\n",
628 rc, desc);
629 return -ENXIO;
630 }
631
632 if (!(child->flags & PNV_IODA_PE_MASTER))
633 return 0;
634
635 /* Compound case: parent PE affects slave PEs */
636 list_for_each_entry(slave, &child->slaves, list) {
637 rc = opal_pci_set_peltv(phb->opal_id, parent->pe_number,
638 slave->pe_number, op);
639 if (rc != OPAL_SUCCESS) {
640 pe_warn(slave, "OPAL error %ld %s to parent PELTV\n",
641 rc, desc);
642 return -ENXIO;
643 }
644 }
645
646 return 0;
647 }
648
649 static int pnv_ioda_set_peltv(struct pnv_phb *phb,
650 struct pnv_ioda_pe *pe,
651 bool is_add)
652 {
653 struct pnv_ioda_pe *slave;
654 struct pci_dev *pdev = NULL;
655 int ret;
656
657 /*
658 * Clear PE frozen state. If it's master PE, we need
659 * clear slave PE frozen state as well.
660 */
661 if (is_add) {
662 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
663 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
664 if (pe->flags & PNV_IODA_PE_MASTER) {
665 list_for_each_entry(slave, &pe->slaves, list)
666 opal_pci_eeh_freeze_clear(phb->opal_id,
667 slave->pe_number,
668 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
669 }
670 }
671
672 /*
673 * Associate PE in PELT. We need add the PE into the
674 * corresponding PELT-V as well. Otherwise, the error
675 * originated from the PE might contribute to other
676 * PEs.
677 */
678 ret = pnv_ioda_set_one_peltv(phb, pe, pe, is_add);
679 if (ret)
680 return ret;
681
682 /* For compound PEs, any one affects all of them */
683 if (pe->flags & PNV_IODA_PE_MASTER) {
684 list_for_each_entry(slave, &pe->slaves, list) {
685 ret = pnv_ioda_set_one_peltv(phb, slave, pe, is_add);
686 if (ret)
687 return ret;
688 }
689 }
690
691 if (pe->flags & (PNV_IODA_PE_BUS_ALL | PNV_IODA_PE_BUS))
692 pdev = pe->pbus->self;
693 else if (pe->flags & PNV_IODA_PE_DEV)
694 pdev = pe->pdev->bus->self;
695 #ifdef CONFIG_PCI_IOV
696 else if (pe->flags & PNV_IODA_PE_VF)
697 pdev = pe->parent_dev;
698 #endif /* CONFIG_PCI_IOV */
699 while (pdev) {
700 struct pci_dn *pdn = pci_get_pdn(pdev);
701 struct pnv_ioda_pe *parent;
702
703 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
704 parent = &phb->ioda.pe_array[pdn->pe_number];
705 ret = pnv_ioda_set_one_peltv(phb, parent, pe, is_add);
706 if (ret)
707 return ret;
708 }
709
710 pdev = pdev->bus->self;
711 }
712
713 return 0;
714 }
715
716 static int pnv_ioda_deconfigure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
717 {
718 struct pci_dev *parent;
719 uint8_t bcomp, dcomp, fcomp;
720 int64_t rc;
721 long rid_end, rid;
722
723 /* Currently, we just deconfigure VF PE. Bus PE will always there.*/
724 if (pe->pbus) {
725 int count;
726
727 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
728 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
729 parent = pe->pbus->self;
730 if (pe->flags & PNV_IODA_PE_BUS_ALL)
731 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
732 else
733 count = 1;
734
735 switch(count) {
736 case 1: bcomp = OpalPciBusAll; break;
737 case 2: bcomp = OpalPciBus7Bits; break;
738 case 4: bcomp = OpalPciBus6Bits; break;
739 case 8: bcomp = OpalPciBus5Bits; break;
740 case 16: bcomp = OpalPciBus4Bits; break;
741 case 32: bcomp = OpalPciBus3Bits; break;
742 default:
743 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
744 count);
745 /* Do an exact match only */
746 bcomp = OpalPciBusAll;
747 }
748 rid_end = pe->rid + (count << 8);
749 } else {
750 #ifdef CONFIG_PCI_IOV
751 if (pe->flags & PNV_IODA_PE_VF)
752 parent = pe->parent_dev;
753 else
754 #endif
755 parent = pe->pdev->bus->self;
756 bcomp = OpalPciBusAll;
757 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
758 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
759 rid_end = pe->rid + 1;
760 }
761
762 /* Clear the reverse map */
763 for (rid = pe->rid; rid < rid_end; rid++)
764 phb->ioda.pe_rmap[rid] = IODA_INVALID_PE;
765
766 /* Release from all parents PELT-V */
767 while (parent) {
768 struct pci_dn *pdn = pci_get_pdn(parent);
769 if (pdn && pdn->pe_number != IODA_INVALID_PE) {
770 rc = opal_pci_set_peltv(phb->opal_id, pdn->pe_number,
771 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
772 /* XXX What to do in case of error ? */
773 }
774 parent = parent->bus->self;
775 }
776
777 opal_pci_eeh_freeze_clear(phb->opal_id, pe->pe_number,
778 OPAL_EEH_ACTION_CLEAR_FREEZE_ALL);
779
780 /* Disassociate PE in PELT */
781 rc = opal_pci_set_peltv(phb->opal_id, pe->pe_number,
782 pe->pe_number, OPAL_REMOVE_PE_FROM_DOMAIN);
783 if (rc)
784 pe_warn(pe, "OPAL error %ld remove self from PELTV\n", rc);
785 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
786 bcomp, dcomp, fcomp, OPAL_UNMAP_PE);
787 if (rc)
788 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
789
790 pe->pbus = NULL;
791 pe->pdev = NULL;
792 #ifdef CONFIG_PCI_IOV
793 pe->parent_dev = NULL;
794 #endif
795
796 return 0;
797 }
798
799 static int pnv_ioda_configure_pe(struct pnv_phb *phb, struct pnv_ioda_pe *pe)
800 {
801 struct pci_dev *parent;
802 uint8_t bcomp, dcomp, fcomp;
803 long rc, rid_end, rid;
804
805 /* Bus validation ? */
806 if (pe->pbus) {
807 int count;
808
809 dcomp = OPAL_IGNORE_RID_DEVICE_NUMBER;
810 fcomp = OPAL_IGNORE_RID_FUNCTION_NUMBER;
811 parent = pe->pbus->self;
812 if (pe->flags & PNV_IODA_PE_BUS_ALL)
813 count = pe->pbus->busn_res.end - pe->pbus->busn_res.start + 1;
814 else
815 count = 1;
816
817 switch(count) {
818 case 1: bcomp = OpalPciBusAll; break;
819 case 2: bcomp = OpalPciBus7Bits; break;
820 case 4: bcomp = OpalPciBus6Bits; break;
821 case 8: bcomp = OpalPciBus5Bits; break;
822 case 16: bcomp = OpalPciBus4Bits; break;
823 case 32: bcomp = OpalPciBus3Bits; break;
824 default:
825 dev_err(&pe->pbus->dev, "Number of subordinate buses %d unsupported\n",
826 count);
827 /* Do an exact match only */
828 bcomp = OpalPciBusAll;
829 }
830 rid_end = pe->rid + (count << 8);
831 } else {
832 #ifdef CONFIG_PCI_IOV
833 if (pe->flags & PNV_IODA_PE_VF)
834 parent = pe->parent_dev;
835 else
836 #endif /* CONFIG_PCI_IOV */
837 parent = pe->pdev->bus->self;
838 bcomp = OpalPciBusAll;
839 dcomp = OPAL_COMPARE_RID_DEVICE_NUMBER;
840 fcomp = OPAL_COMPARE_RID_FUNCTION_NUMBER;
841 rid_end = pe->rid + 1;
842 }
843
844 /*
845 * Associate PE in PELT. We need add the PE into the
846 * corresponding PELT-V as well. Otherwise, the error
847 * originated from the PE might contribute to other
848 * PEs.
849 */
850 rc = opal_pci_set_pe(phb->opal_id, pe->pe_number, pe->rid,
851 bcomp, dcomp, fcomp, OPAL_MAP_PE);
852 if (rc) {
853 pe_err(pe, "OPAL error %ld trying to setup PELT table\n", rc);
854 return -ENXIO;
855 }
856
857 /*
858 * Configure PELTV. NPUs don't have a PELTV table so skip
859 * configuration on them.
860 */
861 if (phb->type != PNV_PHB_NPU)
862 pnv_ioda_set_peltv(phb, pe, true);
863
864 /* Setup reverse map */
865 for (rid = pe->rid; rid < rid_end; rid++)
866 phb->ioda.pe_rmap[rid] = pe->pe_number;
867
868 /* Setup one MVTs on IODA1 */
869 if (phb->type != PNV_PHB_IODA1) {
870 pe->mve_number = 0;
871 goto out;
872 }
873
874 pe->mve_number = pe->pe_number;
875 rc = opal_pci_set_mve(phb->opal_id, pe->mve_number, pe->pe_number);
876 if (rc != OPAL_SUCCESS) {
877 pe_err(pe, "OPAL error %ld setting up MVE %d\n",
878 rc, pe->mve_number);
879 pe->mve_number = -1;
880 } else {
881 rc = opal_pci_set_mve_enable(phb->opal_id,
882 pe->mve_number, OPAL_ENABLE_MVE);
883 if (rc) {
884 pe_err(pe, "OPAL error %ld enabling MVE %d\n",
885 rc, pe->mve_number);
886 pe->mve_number = -1;
887 }
888 }
889
890 out:
891 return 0;
892 }
893
894 #ifdef CONFIG_PCI_IOV
895 static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
896 {
897 struct pci_dn *pdn = pci_get_pdn(dev);
898 int i;
899 struct resource *res, res2;
900 resource_size_t size;
901 u16 num_vfs;
902
903 if (!dev->is_physfn)
904 return -EINVAL;
905
906 /*
907 * "offset" is in VFs. The M64 windows are sized so that when they
908 * are segmented, each segment is the same size as the IOV BAR.
909 * Each segment is in a separate PE, and the high order bits of the
910 * address are the PE number. Therefore, each VF's BAR is in a
911 * separate PE, and changing the IOV BAR start address changes the
912 * range of PEs the VFs are in.
913 */
914 num_vfs = pdn->num_vfs;
915 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
916 res = &dev->resource[i + PCI_IOV_RESOURCES];
917 if (!res->flags || !res->parent)
918 continue;
919
920 /*
921 * The actual IOV BAR range is determined by the start address
922 * and the actual size for num_vfs VFs BAR. This check is to
923 * make sure that after shifting, the range will not overlap
924 * with another device.
925 */
926 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
927 res2.flags = res->flags;
928 res2.start = res->start + (size * offset);
929 res2.end = res2.start + (size * num_vfs) - 1;
930
931 if (res2.end > res->end) {
932 dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
933 i, &res2, res, num_vfs, offset);
934 return -EBUSY;
935 }
936 }
937
938 /*
939 * After doing so, there would be a "hole" in the /proc/iomem when
940 * offset is a positive value. It looks like the device return some
941 * mmio back to the system, which actually no one could use it.
942 */
943 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
944 res = &dev->resource[i + PCI_IOV_RESOURCES];
945 if (!res->flags || !res->parent)
946 continue;
947
948 size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
949 res2 = *res;
950 res->start += size * offset;
951
952 dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
953 i, &res2, res, (offset > 0) ? "En" : "Dis",
954 num_vfs, offset);
955 pci_update_resource(dev, i + PCI_IOV_RESOURCES);
956 }
957 return 0;
958 }
959 #endif /* CONFIG_PCI_IOV */
960
961 static struct pnv_ioda_pe *pnv_ioda_setup_dev_PE(struct pci_dev *dev)
962 {
963 struct pci_controller *hose = pci_bus_to_host(dev->bus);
964 struct pnv_phb *phb = hose->private_data;
965 struct pci_dn *pdn = pci_get_pdn(dev);
966 struct pnv_ioda_pe *pe;
967
968 if (!pdn) {
969 pr_err("%s: Device tree node not associated properly\n",
970 pci_name(dev));
971 return NULL;
972 }
973 if (pdn->pe_number != IODA_INVALID_PE)
974 return NULL;
975
976 pe = pnv_ioda_alloc_pe(phb);
977 if (!pe) {
978 pr_warning("%s: Not enough PE# available, disabling device\n",
979 pci_name(dev));
980 return NULL;
981 }
982
983 /* NOTE: We get only one ref to the pci_dev for the pdn, not for the
984 * pointer in the PE data structure, both should be destroyed at the
985 * same time. However, this needs to be looked at more closely again
986 * once we actually start removing things (Hotplug, SR-IOV, ...)
987 *
988 * At some point we want to remove the PDN completely anyways
989 */
990 pci_dev_get(dev);
991 pdn->pcidev = dev;
992 pdn->pe_number = pe->pe_number;
993 pe->flags = PNV_IODA_PE_DEV;
994 pe->pdev = dev;
995 pe->pbus = NULL;
996 pe->mve_number = -1;
997 pe->rid = dev->bus->number << 8 | pdn->devfn;
998
999 pe_info(pe, "Associated device to PE\n");
1000
1001 if (pnv_ioda_configure_pe(phb, pe)) {
1002 /* XXX What do we do here ? */
1003 pnv_ioda_free_pe(pe);
1004 pdn->pe_number = IODA_INVALID_PE;
1005 pe->pdev = NULL;
1006 pci_dev_put(dev);
1007 return NULL;
1008 }
1009
1010 /* Put PE to the list */
1011 list_add_tail(&pe->list, &phb->ioda.pe_list);
1012
1013 return pe;
1014 }
1015
1016 static void pnv_ioda_setup_same_PE(struct pci_bus *bus, struct pnv_ioda_pe *pe)
1017 {
1018 struct pci_dev *dev;
1019
1020 list_for_each_entry(dev, &bus->devices, bus_list) {
1021 struct pci_dn *pdn = pci_get_pdn(dev);
1022
1023 if (pdn == NULL) {
1024 pr_warn("%s: No device node associated with device !\n",
1025 pci_name(dev));
1026 continue;
1027 }
1028
1029 /*
1030 * In partial hotplug case, the PCI device might be still
1031 * associated with the PE and needn't attach it to the PE
1032 * again.
1033 */
1034 if (pdn->pe_number != IODA_INVALID_PE)
1035 continue;
1036
1037 pe->device_count++;
1038 pdn->pcidev = dev;
1039 pdn->pe_number = pe->pe_number;
1040 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1041 pnv_ioda_setup_same_PE(dev->subordinate, pe);
1042 }
1043 }
1044
1045 /*
1046 * There're 2 types of PCI bus sensitive PEs: One that is compromised of
1047 * single PCI bus. Another one that contains the primary PCI bus and its
1048 * subordinate PCI devices and buses. The second type of PE is normally
1049 * orgiriated by PCIe-to-PCI bridge or PLX switch downstream ports.
1050 */
1051 static struct pnv_ioda_pe *pnv_ioda_setup_bus_PE(struct pci_bus *bus, bool all)
1052 {
1053 struct pci_controller *hose = pci_bus_to_host(bus);
1054 struct pnv_phb *phb = hose->private_data;
1055 struct pnv_ioda_pe *pe = NULL;
1056 unsigned int pe_num;
1057
1058 /*
1059 * In partial hotplug case, the PE instance might be still alive.
1060 * We should reuse it instead of allocating a new one.
1061 */
1062 pe_num = phb->ioda.pe_rmap[bus->number << 8];
1063 if (pe_num != IODA_INVALID_PE) {
1064 pe = &phb->ioda.pe_array[pe_num];
1065 pnv_ioda_setup_same_PE(bus, pe);
1066 return NULL;
1067 }
1068
1069 /* PE number for root bus should have been reserved */
1070 if (pci_is_root_bus(bus) &&
1071 phb->ioda.root_pe_idx != IODA_INVALID_PE)
1072 pe = &phb->ioda.pe_array[phb->ioda.root_pe_idx];
1073
1074 /* Check if PE is determined by M64 */
1075 if (!pe && phb->pick_m64_pe)
1076 pe = phb->pick_m64_pe(bus, all);
1077
1078 /* The PE number isn't pinned by M64 */
1079 if (!pe)
1080 pe = pnv_ioda_alloc_pe(phb);
1081
1082 if (!pe) {
1083 pr_warning("%s: Not enough PE# available for PCI bus %04x:%02x\n",
1084 __func__, pci_domain_nr(bus), bus->number);
1085 return NULL;
1086 }
1087
1088 pe->flags |= (all ? PNV_IODA_PE_BUS_ALL : PNV_IODA_PE_BUS);
1089 pe->pbus = bus;
1090 pe->pdev = NULL;
1091 pe->mve_number = -1;
1092 pe->rid = bus->busn_res.start << 8;
1093
1094 if (all)
1095 pe_info(pe, "Secondary bus %d..%d associated with PE#%d\n",
1096 bus->busn_res.start, bus->busn_res.end, pe->pe_number);
1097 else
1098 pe_info(pe, "Secondary bus %d associated with PE#%d\n",
1099 bus->busn_res.start, pe->pe_number);
1100
1101 if (pnv_ioda_configure_pe(phb, pe)) {
1102 /* XXX What do we do here ? */
1103 pnv_ioda_free_pe(pe);
1104 pe->pbus = NULL;
1105 return NULL;
1106 }
1107
1108 /* Associate it with all child devices */
1109 pnv_ioda_setup_same_PE(bus, pe);
1110
1111 /* Put PE to the list */
1112 list_add_tail(&pe->list, &phb->ioda.pe_list);
1113
1114 return pe;
1115 }
1116
1117 static struct pnv_ioda_pe *pnv_ioda_setup_npu_PE(struct pci_dev *npu_pdev)
1118 {
1119 int pe_num, found_pe = false, rc;
1120 long rid;
1121 struct pnv_ioda_pe *pe;
1122 struct pci_dev *gpu_pdev;
1123 struct pci_dn *npu_pdn;
1124 struct pci_controller *hose = pci_bus_to_host(npu_pdev->bus);
1125 struct pnv_phb *phb = hose->private_data;
1126
1127 /*
1128 * Due to a hardware errata PE#0 on the NPU is reserved for
1129 * error handling. This means we only have three PEs remaining
1130 * which need to be assigned to four links, implying some
1131 * links must share PEs.
1132 *
1133 * To achieve this we assign PEs such that NPUs linking the
1134 * same GPU get assigned the same PE.
1135 */
1136 gpu_pdev = pnv_pci_get_gpu_dev(npu_pdev);
1137 for (pe_num = 0; pe_num < phb->ioda.total_pe_num; pe_num++) {
1138 pe = &phb->ioda.pe_array[pe_num];
1139 if (!pe->pdev)
1140 continue;
1141
1142 if (pnv_pci_get_gpu_dev(pe->pdev) == gpu_pdev) {
1143 /*
1144 * This device has the same peer GPU so should
1145 * be assigned the same PE as the existing
1146 * peer NPU.
1147 */
1148 dev_info(&npu_pdev->dev,
1149 "Associating to existing PE %d\n", pe_num);
1150 pci_dev_get(npu_pdev);
1151 npu_pdn = pci_get_pdn(npu_pdev);
1152 rid = npu_pdev->bus->number << 8 | npu_pdn->devfn;
1153 npu_pdn->pcidev = npu_pdev;
1154 npu_pdn->pe_number = pe_num;
1155 phb->ioda.pe_rmap[rid] = pe->pe_number;
1156
1157 /* Map the PE to this link */
1158 rc = opal_pci_set_pe(phb->opal_id, pe_num, rid,
1159 OpalPciBusAll,
1160 OPAL_COMPARE_RID_DEVICE_NUMBER,
1161 OPAL_COMPARE_RID_FUNCTION_NUMBER,
1162 OPAL_MAP_PE);
1163 WARN_ON(rc != OPAL_SUCCESS);
1164 found_pe = true;
1165 break;
1166 }
1167 }
1168
1169 if (!found_pe)
1170 /*
1171 * Could not find an existing PE so allocate a new
1172 * one.
1173 */
1174 return pnv_ioda_setup_dev_PE(npu_pdev);
1175 else
1176 return pe;
1177 }
1178
1179 static void pnv_ioda_setup_npu_PEs(struct pci_bus *bus)
1180 {
1181 struct pci_dev *pdev;
1182
1183 list_for_each_entry(pdev, &bus->devices, bus_list)
1184 pnv_ioda_setup_npu_PE(pdev);
1185 }
1186
1187 static void pnv_pci_ioda_setup_PEs(void)
1188 {
1189 struct pci_controller *hose, *tmp;
1190 struct pnv_phb *phb;
1191
1192 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
1193 phb = hose->private_data;
1194 if (phb->type == PNV_PHB_NPU) {
1195 /* PE#0 is needed for error reporting */
1196 pnv_ioda_reserve_pe(phb, 0);
1197 pnv_ioda_setup_npu_PEs(hose->bus);
1198 }
1199 }
1200 }
1201
1202 #ifdef CONFIG_PCI_IOV
1203 static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
1204 {
1205 struct pci_bus *bus;
1206 struct pci_controller *hose;
1207 struct pnv_phb *phb;
1208 struct pci_dn *pdn;
1209 int i, j;
1210 int m64_bars;
1211
1212 bus = pdev->bus;
1213 hose = pci_bus_to_host(bus);
1214 phb = hose->private_data;
1215 pdn = pci_get_pdn(pdev);
1216
1217 if (pdn->m64_single_mode)
1218 m64_bars = num_vfs;
1219 else
1220 m64_bars = 1;
1221
1222 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++)
1223 for (j = 0; j < m64_bars; j++) {
1224 if (pdn->m64_map[j][i] == IODA_INVALID_M64)
1225 continue;
1226 opal_pci_phb_mmio_enable(phb->opal_id,
1227 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 0);
1228 clear_bit(pdn->m64_map[j][i], &phb->ioda.m64_bar_alloc);
1229 pdn->m64_map[j][i] = IODA_INVALID_M64;
1230 }
1231
1232 kfree(pdn->m64_map);
1233 return 0;
1234 }
1235
1236 static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
1237 {
1238 struct pci_bus *bus;
1239 struct pci_controller *hose;
1240 struct pnv_phb *phb;
1241 struct pci_dn *pdn;
1242 unsigned int win;
1243 struct resource *res;
1244 int i, j;
1245 int64_t rc;
1246 int total_vfs;
1247 resource_size_t size, start;
1248 int pe_num;
1249 int m64_bars;
1250
1251 bus = pdev->bus;
1252 hose = pci_bus_to_host(bus);
1253 phb = hose->private_data;
1254 pdn = pci_get_pdn(pdev);
1255 total_vfs = pci_sriov_get_totalvfs(pdev);
1256
1257 if (pdn->m64_single_mode)
1258 m64_bars = num_vfs;
1259 else
1260 m64_bars = 1;
1261
1262 pdn->m64_map = kmalloc(sizeof(*pdn->m64_map) * m64_bars, GFP_KERNEL);
1263 if (!pdn->m64_map)
1264 return -ENOMEM;
1265 /* Initialize the m64_map to IODA_INVALID_M64 */
1266 for (i = 0; i < m64_bars ; i++)
1267 for (j = 0; j < PCI_SRIOV_NUM_BARS; j++)
1268 pdn->m64_map[i][j] = IODA_INVALID_M64;
1269
1270
1271 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
1272 res = &pdev->resource[i + PCI_IOV_RESOURCES];
1273 if (!res->flags || !res->parent)
1274 continue;
1275
1276 for (j = 0; j < m64_bars; j++) {
1277 do {
1278 win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
1279 phb->ioda.m64_bar_idx + 1, 0);
1280
1281 if (win >= phb->ioda.m64_bar_idx + 1)
1282 goto m64_failed;
1283 } while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
1284
1285 pdn->m64_map[j][i] = win;
1286
1287 if (pdn->m64_single_mode) {
1288 size = pci_iov_resource_size(pdev,
1289 PCI_IOV_RESOURCES + i);
1290 start = res->start + size * j;
1291 } else {
1292 size = resource_size(res);
1293 start = res->start;
1294 }
1295
1296 /* Map the M64 here */
1297 if (pdn->m64_single_mode) {
1298 pe_num = pdn->pe_num_map[j];
1299 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
1300 pe_num, OPAL_M64_WINDOW_TYPE,
1301 pdn->m64_map[j][i], 0);
1302 }
1303
1304 rc = opal_pci_set_phb_mem_window(phb->opal_id,
1305 OPAL_M64_WINDOW_TYPE,
1306 pdn->m64_map[j][i],
1307 start,
1308 0, /* unused */
1309 size);
1310
1311
1312 if (rc != OPAL_SUCCESS) {
1313 dev_err(&pdev->dev, "Failed to map M64 window #%d: %lld\n",
1314 win, rc);
1315 goto m64_failed;
1316 }
1317
1318 if (pdn->m64_single_mode)
1319 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1320 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 2);
1321 else
1322 rc = opal_pci_phb_mmio_enable(phb->opal_id,
1323 OPAL_M64_WINDOW_TYPE, pdn->m64_map[j][i], 1);
1324
1325 if (rc != OPAL_SUCCESS) {
1326 dev_err(&pdev->dev, "Failed to enable M64 window #%d: %llx\n",
1327 win, rc);
1328 goto m64_failed;
1329 }
1330 }
1331 }
1332 return 0;
1333
1334 m64_failed:
1335 pnv_pci_vf_release_m64(pdev, num_vfs);
1336 return -EBUSY;
1337 }
1338
1339 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
1340 int num);
1341 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable);
1342
1343 static void pnv_pci_ioda2_release_dma_pe(struct pci_dev *dev, struct pnv_ioda_pe *pe)
1344 {
1345 struct iommu_table *tbl;
1346 int64_t rc;
1347
1348 tbl = pe->table_group.tables[0];
1349 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
1350 if (rc)
1351 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
1352
1353 pnv_pci_ioda2_set_bypass(pe, false);
1354 if (pe->table_group.group) {
1355 iommu_group_put(pe->table_group.group);
1356 BUG_ON(pe->table_group.group);
1357 }
1358 pnv_pci_ioda2_table_free_pages(tbl);
1359 iommu_free_table(tbl, of_node_full_name(dev->dev.of_node));
1360 }
1361
1362 static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
1363 {
1364 struct pci_bus *bus;
1365 struct pci_controller *hose;
1366 struct pnv_phb *phb;
1367 struct pnv_ioda_pe *pe, *pe_n;
1368 struct pci_dn *pdn;
1369
1370 bus = pdev->bus;
1371 hose = pci_bus_to_host(bus);
1372 phb = hose->private_data;
1373 pdn = pci_get_pdn(pdev);
1374
1375 if (!pdev->is_physfn)
1376 return;
1377
1378 list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
1379 if (pe->parent_dev != pdev)
1380 continue;
1381
1382 pnv_pci_ioda2_release_dma_pe(pdev, pe);
1383
1384 /* Remove from list */
1385 mutex_lock(&phb->ioda.pe_list_mutex);
1386 list_del(&pe->list);
1387 mutex_unlock(&phb->ioda.pe_list_mutex);
1388
1389 pnv_ioda_deconfigure_pe(phb, pe);
1390
1391 pnv_ioda_free_pe(pe);
1392 }
1393 }
1394
1395 void pnv_pci_sriov_disable(struct pci_dev *pdev)
1396 {
1397 struct pci_bus *bus;
1398 struct pci_controller *hose;
1399 struct pnv_phb *phb;
1400 struct pnv_ioda_pe *pe;
1401 struct pci_dn *pdn;
1402 struct pci_sriov *iov;
1403 u16 num_vfs, i;
1404
1405 bus = pdev->bus;
1406 hose = pci_bus_to_host(bus);
1407 phb = hose->private_data;
1408 pdn = pci_get_pdn(pdev);
1409 iov = pdev->sriov;
1410 num_vfs = pdn->num_vfs;
1411
1412 /* Release VF PEs */
1413 pnv_ioda_release_vf_PE(pdev);
1414
1415 if (phb->type == PNV_PHB_IODA2) {
1416 if (!pdn->m64_single_mode)
1417 pnv_pci_vf_resource_shift(pdev, -*pdn->pe_num_map);
1418
1419 /* Release M64 windows */
1420 pnv_pci_vf_release_m64(pdev, num_vfs);
1421
1422 /* Release PE numbers */
1423 if (pdn->m64_single_mode) {
1424 for (i = 0; i < num_vfs; i++) {
1425 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1426 continue;
1427
1428 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1429 pnv_ioda_free_pe(pe);
1430 }
1431 } else
1432 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1433 /* Releasing pe_num_map */
1434 kfree(pdn->pe_num_map);
1435 }
1436 }
1437
1438 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
1439 struct pnv_ioda_pe *pe);
1440 static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
1441 {
1442 struct pci_bus *bus;
1443 struct pci_controller *hose;
1444 struct pnv_phb *phb;
1445 struct pnv_ioda_pe *pe;
1446 int pe_num;
1447 u16 vf_index;
1448 struct pci_dn *pdn;
1449
1450 bus = pdev->bus;
1451 hose = pci_bus_to_host(bus);
1452 phb = hose->private_data;
1453 pdn = pci_get_pdn(pdev);
1454
1455 if (!pdev->is_physfn)
1456 return;
1457
1458 /* Reserve PE for each VF */
1459 for (vf_index = 0; vf_index < num_vfs; vf_index++) {
1460 if (pdn->m64_single_mode)
1461 pe_num = pdn->pe_num_map[vf_index];
1462 else
1463 pe_num = *pdn->pe_num_map + vf_index;
1464
1465 pe = &phb->ioda.pe_array[pe_num];
1466 pe->pe_number = pe_num;
1467 pe->phb = phb;
1468 pe->flags = PNV_IODA_PE_VF;
1469 pe->pbus = NULL;
1470 pe->parent_dev = pdev;
1471 pe->mve_number = -1;
1472 pe->rid = (pci_iov_virtfn_bus(pdev, vf_index) << 8) |
1473 pci_iov_virtfn_devfn(pdev, vf_index);
1474
1475 pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%d\n",
1476 hose->global_number, pdev->bus->number,
1477 PCI_SLOT(pci_iov_virtfn_devfn(pdev, vf_index)),
1478 PCI_FUNC(pci_iov_virtfn_devfn(pdev, vf_index)), pe_num);
1479
1480 if (pnv_ioda_configure_pe(phb, pe)) {
1481 /* XXX What do we do here ? */
1482 pnv_ioda_free_pe(pe);
1483 pe->pdev = NULL;
1484 continue;
1485 }
1486
1487 /* Put PE to the list */
1488 mutex_lock(&phb->ioda.pe_list_mutex);
1489 list_add_tail(&pe->list, &phb->ioda.pe_list);
1490 mutex_unlock(&phb->ioda.pe_list_mutex);
1491
1492 pnv_pci_ioda2_setup_dma_pe(phb, pe);
1493 }
1494 }
1495
1496 int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1497 {
1498 struct pci_bus *bus;
1499 struct pci_controller *hose;
1500 struct pnv_phb *phb;
1501 struct pnv_ioda_pe *pe;
1502 struct pci_dn *pdn;
1503 int ret;
1504 u16 i;
1505
1506 bus = pdev->bus;
1507 hose = pci_bus_to_host(bus);
1508 phb = hose->private_data;
1509 pdn = pci_get_pdn(pdev);
1510
1511 if (phb->type == PNV_PHB_IODA2) {
1512 if (!pdn->vfs_expanded) {
1513 dev_info(&pdev->dev, "don't support this SRIOV device"
1514 " with non 64bit-prefetchable IOV BAR\n");
1515 return -ENOSPC;
1516 }
1517
1518 /*
1519 * When M64 BARs functions in Single PE mode, the number of VFs
1520 * could be enabled must be less than the number of M64 BARs.
1521 */
1522 if (pdn->m64_single_mode && num_vfs > phb->ioda.m64_bar_idx) {
1523 dev_info(&pdev->dev, "Not enough M64 BAR for VFs\n");
1524 return -EBUSY;
1525 }
1526
1527 /* Allocating pe_num_map */
1528 if (pdn->m64_single_mode)
1529 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map) * num_vfs,
1530 GFP_KERNEL);
1531 else
1532 pdn->pe_num_map = kmalloc(sizeof(*pdn->pe_num_map), GFP_KERNEL);
1533
1534 if (!pdn->pe_num_map)
1535 return -ENOMEM;
1536
1537 if (pdn->m64_single_mode)
1538 for (i = 0; i < num_vfs; i++)
1539 pdn->pe_num_map[i] = IODA_INVALID_PE;
1540
1541 /* Calculate available PE for required VFs */
1542 if (pdn->m64_single_mode) {
1543 for (i = 0; i < num_vfs; i++) {
1544 pe = pnv_ioda_alloc_pe(phb);
1545 if (!pe) {
1546 ret = -EBUSY;
1547 goto m64_failed;
1548 }
1549
1550 pdn->pe_num_map[i] = pe->pe_number;
1551 }
1552 } else {
1553 mutex_lock(&phb->ioda.pe_alloc_mutex);
1554 *pdn->pe_num_map = bitmap_find_next_zero_area(
1555 phb->ioda.pe_alloc, phb->ioda.total_pe_num,
1556 0, num_vfs, 0);
1557 if (*pdn->pe_num_map >= phb->ioda.total_pe_num) {
1558 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1559 dev_info(&pdev->dev, "Failed to enable VF%d\n", num_vfs);
1560 kfree(pdn->pe_num_map);
1561 return -EBUSY;
1562 }
1563 bitmap_set(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1564 mutex_unlock(&phb->ioda.pe_alloc_mutex);
1565 }
1566 pdn->num_vfs = num_vfs;
1567
1568 /* Assign M64 window accordingly */
1569 ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
1570 if (ret) {
1571 dev_info(&pdev->dev, "Not enough M64 window resources\n");
1572 goto m64_failed;
1573 }
1574
1575 /*
1576 * When using one M64 BAR to map one IOV BAR, we need to shift
1577 * the IOV BAR according to the PE# allocated to the VFs.
1578 * Otherwise, the PE# for the VF will conflict with others.
1579 */
1580 if (!pdn->m64_single_mode) {
1581 ret = pnv_pci_vf_resource_shift(pdev, *pdn->pe_num_map);
1582 if (ret)
1583 goto m64_failed;
1584 }
1585 }
1586
1587 /* Setup VF PEs */
1588 pnv_ioda_setup_vf_PE(pdev, num_vfs);
1589
1590 return 0;
1591
1592 m64_failed:
1593 if (pdn->m64_single_mode) {
1594 for (i = 0; i < num_vfs; i++) {
1595 if (pdn->pe_num_map[i] == IODA_INVALID_PE)
1596 continue;
1597
1598 pe = &phb->ioda.pe_array[pdn->pe_num_map[i]];
1599 pnv_ioda_free_pe(pe);
1600 }
1601 } else
1602 bitmap_clear(phb->ioda.pe_alloc, *pdn->pe_num_map, num_vfs);
1603
1604 /* Releasing pe_num_map */
1605 kfree(pdn->pe_num_map);
1606
1607 return ret;
1608 }
1609
1610 int pcibios_sriov_disable(struct pci_dev *pdev)
1611 {
1612 pnv_pci_sriov_disable(pdev);
1613
1614 /* Release PCI data */
1615 remove_dev_pci_data(pdev);
1616 return 0;
1617 }
1618
1619 int pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
1620 {
1621 /* Allocate PCI data */
1622 add_dev_pci_data(pdev);
1623
1624 return pnv_pci_sriov_enable(pdev, num_vfs);
1625 }
1626 #endif /* CONFIG_PCI_IOV */
1627
1628 static void pnv_pci_ioda_dma_dev_setup(struct pnv_phb *phb, struct pci_dev *pdev)
1629 {
1630 struct pci_dn *pdn = pci_get_pdn(pdev);
1631 struct pnv_ioda_pe *pe;
1632
1633 /*
1634 * The function can be called while the PE#
1635 * hasn't been assigned. Do nothing for the
1636 * case.
1637 */
1638 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
1639 return;
1640
1641 pe = &phb->ioda.pe_array[pdn->pe_number];
1642 WARN_ON(get_dma_ops(&pdev->dev) != &dma_iommu_ops);
1643 set_dma_offset(&pdev->dev, pe->tce_bypass_base);
1644 set_iommu_table_base(&pdev->dev, pe->table_group.tables[0]);
1645 /*
1646 * Note: iommu_add_device() will fail here as
1647 * for physical PE: the device is already added by now;
1648 * for virtual PE: sysfs entries are not ready yet and
1649 * tce_iommu_bus_notifier will add the device to a group later.
1650 */
1651 }
1652
1653 static int pnv_pci_ioda_dma_set_mask(struct pci_dev *pdev, u64 dma_mask)
1654 {
1655 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1656 struct pnv_phb *phb = hose->private_data;
1657 struct pci_dn *pdn = pci_get_pdn(pdev);
1658 struct pnv_ioda_pe *pe;
1659 uint64_t top;
1660 bool bypass = false;
1661
1662 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1663 return -ENODEV;;
1664
1665 pe = &phb->ioda.pe_array[pdn->pe_number];
1666 if (pe->tce_bypass_enabled) {
1667 top = pe->tce_bypass_base + memblock_end_of_DRAM() - 1;
1668 bypass = (dma_mask >= top);
1669 }
1670
1671 if (bypass) {
1672 dev_info(&pdev->dev, "Using 64-bit DMA iommu bypass\n");
1673 set_dma_ops(&pdev->dev, &dma_direct_ops);
1674 } else {
1675 dev_info(&pdev->dev, "Using 32-bit DMA via iommu\n");
1676 set_dma_ops(&pdev->dev, &dma_iommu_ops);
1677 }
1678 *pdev->dev.dma_mask = dma_mask;
1679
1680 /* Update peer npu devices */
1681 pnv_npu_try_dma_set_bypass(pdev, bypass);
1682
1683 return 0;
1684 }
1685
1686 static u64 pnv_pci_ioda_dma_get_required_mask(struct pci_dev *pdev)
1687 {
1688 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
1689 struct pnv_phb *phb = hose->private_data;
1690 struct pci_dn *pdn = pci_get_pdn(pdev);
1691 struct pnv_ioda_pe *pe;
1692 u64 end, mask;
1693
1694 if (WARN_ON(!pdn || pdn->pe_number == IODA_INVALID_PE))
1695 return 0;
1696
1697 pe = &phb->ioda.pe_array[pdn->pe_number];
1698 if (!pe->tce_bypass_enabled)
1699 return __dma_get_required_mask(&pdev->dev);
1700
1701
1702 end = pe->tce_bypass_base + memblock_end_of_DRAM();
1703 mask = 1ULL << (fls64(end) - 1);
1704 mask += mask - 1;
1705
1706 return mask;
1707 }
1708
1709 static void pnv_ioda_setup_bus_dma(struct pnv_ioda_pe *pe,
1710 struct pci_bus *bus)
1711 {
1712 struct pci_dev *dev;
1713
1714 list_for_each_entry(dev, &bus->devices, bus_list) {
1715 set_iommu_table_base(&dev->dev, pe->table_group.tables[0]);
1716 set_dma_offset(&dev->dev, pe->tce_bypass_base);
1717 iommu_add_device(&dev->dev);
1718
1719 if ((pe->flags & PNV_IODA_PE_BUS_ALL) && dev->subordinate)
1720 pnv_ioda_setup_bus_dma(pe, dev->subordinate);
1721 }
1722 }
1723
1724 static void pnv_pci_ioda1_tce_invalidate(struct iommu_table *tbl,
1725 unsigned long index, unsigned long npages, bool rm)
1726 {
1727 struct iommu_table_group_link *tgl = list_first_entry_or_null(
1728 &tbl->it_group_list, struct iommu_table_group_link,
1729 next);
1730 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1731 struct pnv_ioda_pe, table_group);
1732 __be64 __iomem *invalidate = rm ?
1733 (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1734 pe->phb->ioda.tce_inval_reg;
1735 unsigned long start, end, inc;
1736 const unsigned shift = tbl->it_page_shift;
1737
1738 start = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset);
1739 end = __pa(((__be64 *)tbl->it_base) + index - tbl->it_offset +
1740 npages - 1);
1741
1742 /* BML uses this case for p6/p7/galaxy2: Shift addr and put in node */
1743 if (tbl->it_busno) {
1744 start <<= shift;
1745 end <<= shift;
1746 inc = 128ull << shift;
1747 start |= tbl->it_busno;
1748 end |= tbl->it_busno;
1749 } else if (tbl->it_type & TCE_PCI_SWINV_PAIR) {
1750 /* p7ioc-style invalidation, 2 TCEs per write */
1751 start |= (1ull << 63);
1752 end |= (1ull << 63);
1753 inc = 16;
1754 } else {
1755 /* Default (older HW) */
1756 inc = 128;
1757 }
1758
1759 end |= inc - 1; /* round up end to be different than start */
1760
1761 mb(); /* Ensure above stores are visible */
1762 while (start <= end) {
1763 if (rm)
1764 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1765 else
1766 __raw_writeq(cpu_to_be64(start), invalidate);
1767 start += inc;
1768 }
1769
1770 /*
1771 * The iommu layer will do another mb() for us on build()
1772 * and we don't care on free()
1773 */
1774 }
1775
1776 static int pnv_ioda1_tce_build(struct iommu_table *tbl, long index,
1777 long npages, unsigned long uaddr,
1778 enum dma_data_direction direction,
1779 struct dma_attrs *attrs)
1780 {
1781 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1782 attrs);
1783
1784 if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1785 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1786
1787 return ret;
1788 }
1789
1790 #ifdef CONFIG_IOMMU_API
1791 static int pnv_ioda1_tce_xchg(struct iommu_table *tbl, long index,
1792 unsigned long *hpa, enum dma_data_direction *direction)
1793 {
1794 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1795
1796 if (!ret && (tbl->it_type &
1797 (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1798 pnv_pci_ioda1_tce_invalidate(tbl, index, 1, false);
1799
1800 return ret;
1801 }
1802 #endif
1803
1804 static void pnv_ioda1_tce_free(struct iommu_table *tbl, long index,
1805 long npages)
1806 {
1807 pnv_tce_free(tbl, index, npages);
1808
1809 if (tbl->it_type & TCE_PCI_SWINV_FREE)
1810 pnv_pci_ioda1_tce_invalidate(tbl, index, npages, false);
1811 }
1812
1813 static struct iommu_table_ops pnv_ioda1_iommu_ops = {
1814 .set = pnv_ioda1_tce_build,
1815 #ifdef CONFIG_IOMMU_API
1816 .exchange = pnv_ioda1_tce_xchg,
1817 #endif
1818 .clear = pnv_ioda1_tce_free,
1819 .get = pnv_tce_get,
1820 };
1821
1822 #define TCE_KILL_INVAL_ALL PPC_BIT(0)
1823 #define TCE_KILL_INVAL_PE PPC_BIT(1)
1824 #define TCE_KILL_INVAL_TCE PPC_BIT(2)
1825
1826 void pnv_pci_ioda2_tce_invalidate_entire(struct pnv_phb *phb, bool rm)
1827 {
1828 const unsigned long val = TCE_KILL_INVAL_ALL;
1829
1830 mb(); /* Ensure previous TCE table stores are visible */
1831 if (rm)
1832 __raw_rm_writeq(cpu_to_be64(val),
1833 (__be64 __iomem *)
1834 phb->ioda.tce_inval_reg_phys);
1835 else
1836 __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1837 }
1838
1839 static inline void pnv_pci_ioda2_tce_invalidate_pe(struct pnv_ioda_pe *pe)
1840 {
1841 /* 01xb - invalidate TCEs that match the specified PE# */
1842 unsigned long val = TCE_KILL_INVAL_PE | (pe->pe_number & 0xFF);
1843 struct pnv_phb *phb = pe->phb;
1844
1845 if (!phb->ioda.tce_inval_reg)
1846 return;
1847
1848 mb(); /* Ensure above stores are visible */
1849 __raw_writeq(cpu_to_be64(val), phb->ioda.tce_inval_reg);
1850 }
1851
1852 static void pnv_pci_ioda2_do_tce_invalidate(unsigned pe_number, bool rm,
1853 __be64 __iomem *invalidate, unsigned shift,
1854 unsigned long index, unsigned long npages)
1855 {
1856 unsigned long start, end, inc;
1857
1858 /* We'll invalidate DMA address in PE scope */
1859 start = TCE_KILL_INVAL_TCE;
1860 start |= (pe_number & 0xFF);
1861 end = start;
1862
1863 /* Figure out the start, end and step */
1864 start |= (index << shift);
1865 end |= ((index + npages - 1) << shift);
1866 inc = (0x1ull << shift);
1867 mb();
1868
1869 while (start <= end) {
1870 if (rm)
1871 __raw_rm_writeq(cpu_to_be64(start), invalidate);
1872 else
1873 __raw_writeq(cpu_to_be64(start), invalidate);
1874 start += inc;
1875 }
1876 }
1877
1878 static void pnv_pci_ioda2_tce_invalidate(struct iommu_table *tbl,
1879 unsigned long index, unsigned long npages, bool rm)
1880 {
1881 struct iommu_table_group_link *tgl;
1882
1883 list_for_each_entry_rcu(tgl, &tbl->it_group_list, next) {
1884 struct pnv_ioda_pe *pe = container_of(tgl->table_group,
1885 struct pnv_ioda_pe, table_group);
1886 __be64 __iomem *invalidate = rm ?
1887 (__be64 __iomem *)pe->phb->ioda.tce_inval_reg_phys :
1888 pe->phb->ioda.tce_inval_reg;
1889
1890 if (pe->phb->type == PNV_PHB_NPU) {
1891 /*
1892 * The NVLink hardware does not support TCE kill
1893 * per TCE entry so we have to invalidate
1894 * the entire cache for it.
1895 */
1896 pnv_pci_ioda2_tce_invalidate_entire(pe->phb, rm);
1897 continue;
1898 }
1899 pnv_pci_ioda2_do_tce_invalidate(pe->pe_number, rm,
1900 invalidate, tbl->it_page_shift,
1901 index, npages);
1902 }
1903 }
1904
1905 static int pnv_ioda2_tce_build(struct iommu_table *tbl, long index,
1906 long npages, unsigned long uaddr,
1907 enum dma_data_direction direction,
1908 struct dma_attrs *attrs)
1909 {
1910 int ret = pnv_tce_build(tbl, index, npages, uaddr, direction,
1911 attrs);
1912
1913 if (!ret && (tbl->it_type & TCE_PCI_SWINV_CREATE))
1914 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1915
1916 return ret;
1917 }
1918
1919 #ifdef CONFIG_IOMMU_API
1920 static int pnv_ioda2_tce_xchg(struct iommu_table *tbl, long index,
1921 unsigned long *hpa, enum dma_data_direction *direction)
1922 {
1923 long ret = pnv_tce_xchg(tbl, index, hpa, direction);
1924
1925 if (!ret && (tbl->it_type &
1926 (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE)))
1927 pnv_pci_ioda2_tce_invalidate(tbl, index, 1, false);
1928
1929 return ret;
1930 }
1931 #endif
1932
1933 static void pnv_ioda2_tce_free(struct iommu_table *tbl, long index,
1934 long npages)
1935 {
1936 pnv_tce_free(tbl, index, npages);
1937
1938 if (tbl->it_type & TCE_PCI_SWINV_FREE)
1939 pnv_pci_ioda2_tce_invalidate(tbl, index, npages, false);
1940 }
1941
1942 static void pnv_ioda2_table_free(struct iommu_table *tbl)
1943 {
1944 pnv_pci_ioda2_table_free_pages(tbl);
1945 iommu_free_table(tbl, "pnv");
1946 }
1947
1948 static struct iommu_table_ops pnv_ioda2_iommu_ops = {
1949 .set = pnv_ioda2_tce_build,
1950 #ifdef CONFIG_IOMMU_API
1951 .exchange = pnv_ioda2_tce_xchg,
1952 #endif
1953 .clear = pnv_ioda2_tce_free,
1954 .get = pnv_tce_get,
1955 .free = pnv_ioda2_table_free,
1956 };
1957
1958 static int pnv_pci_ioda_dev_dma_weight(struct pci_dev *dev, void *data)
1959 {
1960 unsigned int *weight = (unsigned int *)data;
1961
1962 /* This is quite simplistic. The "base" weight of a device
1963 * is 10. 0 means no DMA is to be accounted for it.
1964 */
1965 if (dev->hdr_type != PCI_HEADER_TYPE_NORMAL)
1966 return 0;
1967
1968 if (dev->class == PCI_CLASS_SERIAL_USB_UHCI ||
1969 dev->class == PCI_CLASS_SERIAL_USB_OHCI ||
1970 dev->class == PCI_CLASS_SERIAL_USB_EHCI)
1971 *weight += 3;
1972 else if ((dev->class >> 8) == PCI_CLASS_STORAGE_RAID)
1973 *weight += 15;
1974 else
1975 *weight += 10;
1976
1977 return 0;
1978 }
1979
1980 static unsigned int pnv_pci_ioda_pe_dma_weight(struct pnv_ioda_pe *pe)
1981 {
1982 unsigned int weight = 0;
1983
1984 /* SRIOV VF has same DMA32 weight as its PF */
1985 #ifdef CONFIG_PCI_IOV
1986 if ((pe->flags & PNV_IODA_PE_VF) && pe->parent_dev) {
1987 pnv_pci_ioda_dev_dma_weight(pe->parent_dev, &weight);
1988 return weight;
1989 }
1990 #endif
1991
1992 if ((pe->flags & PNV_IODA_PE_DEV) && pe->pdev) {
1993 pnv_pci_ioda_dev_dma_weight(pe->pdev, &weight);
1994 } else if ((pe->flags & PNV_IODA_PE_BUS) && pe->pbus) {
1995 struct pci_dev *pdev;
1996
1997 list_for_each_entry(pdev, &pe->pbus->devices, bus_list)
1998 pnv_pci_ioda_dev_dma_weight(pdev, &weight);
1999 } else if ((pe->flags & PNV_IODA_PE_BUS_ALL) && pe->pbus) {
2000 pci_walk_bus(pe->pbus, pnv_pci_ioda_dev_dma_weight, &weight);
2001 }
2002
2003 return weight;
2004 }
2005
2006 static void pnv_pci_ioda1_setup_dma_pe(struct pnv_phb *phb,
2007 struct pnv_ioda_pe *pe)
2008 {
2009
2010 struct page *tce_mem = NULL;
2011 struct iommu_table *tbl;
2012 unsigned int weight, total_weight = 0;
2013 unsigned int tce32_segsz, base, segs, avail, i;
2014 int64_t rc;
2015 void *addr;
2016
2017 /* XXX FIXME: Handle 64-bit only DMA devices */
2018 /* XXX FIXME: Provide 64-bit DMA facilities & non-4K TCE tables etc.. */
2019 /* XXX FIXME: Allocate multi-level tables on PHB3 */
2020 weight = pnv_pci_ioda_pe_dma_weight(pe);
2021 if (!weight)
2022 return;
2023
2024 pci_walk_bus(phb->hose->bus, pnv_pci_ioda_dev_dma_weight,
2025 &total_weight);
2026 segs = (weight * phb->ioda.dma32_count) / total_weight;
2027 if (!segs)
2028 segs = 1;
2029
2030 /*
2031 * Allocate contiguous DMA32 segments. We begin with the expected
2032 * number of segments. With one more attempt, the number of DMA32
2033 * segments to be allocated is decreased by one until one segment
2034 * is allocated successfully.
2035 */
2036 do {
2037 for (base = 0; base <= phb->ioda.dma32_count - segs; base++) {
2038 for (avail = 0, i = base; i < base + segs; i++) {
2039 if (phb->ioda.dma32_segmap[i] ==
2040 IODA_INVALID_PE)
2041 avail++;
2042 }
2043
2044 if (avail == segs)
2045 goto found;
2046 }
2047 } while (--segs);
2048
2049 if (!segs) {
2050 pe_warn(pe, "No available DMA32 segments\n");
2051 return;
2052 }
2053
2054 found:
2055 tbl = pnv_pci_table_alloc(phb->hose->node);
2056 iommu_register_group(&pe->table_group, phb->hose->global_number,
2057 pe->pe_number);
2058 pnv_pci_link_table_and_group(phb->hose->node, 0, tbl, &pe->table_group);
2059
2060 /* Grab a 32-bit TCE table */
2061 pe_info(pe, "DMA weight %d (%d), assigned (%d) %d DMA32 segments\n",
2062 weight, total_weight, base, segs);
2063 pe_info(pe, " Setting up 32-bit TCE table at %08x..%08x\n",
2064 base * PNV_IODA1_DMA32_SEGSIZE,
2065 (base + segs) * PNV_IODA1_DMA32_SEGSIZE - 1);
2066
2067 /* XXX Currently, we allocate one big contiguous table for the
2068 * TCEs. We only really need one chunk per 256M of TCE space
2069 * (ie per segment) but that's an optimization for later, it
2070 * requires some added smarts with our get/put_tce implementation
2071 *
2072 * Each TCE page is 4KB in size and each TCE entry occupies 8
2073 * bytes
2074 */
2075 tce32_segsz = PNV_IODA1_DMA32_SEGSIZE >> (IOMMU_PAGE_SHIFT_4K - 3);
2076 tce_mem = alloc_pages_node(phb->hose->node, GFP_KERNEL,
2077 get_order(tce32_segsz * segs));
2078 if (!tce_mem) {
2079 pe_err(pe, " Failed to allocate a 32-bit TCE memory\n");
2080 goto fail;
2081 }
2082 addr = page_address(tce_mem);
2083 memset(addr, 0, tce32_segsz * segs);
2084
2085 /* Configure HW */
2086 for (i = 0; i < segs; i++) {
2087 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2088 pe->pe_number,
2089 base + i, 1,
2090 __pa(addr) + tce32_segsz * i,
2091 tce32_segsz, IOMMU_PAGE_SIZE_4K);
2092 if (rc) {
2093 pe_err(pe, " Failed to configure 32-bit TCE table,"
2094 " err %ld\n", rc);
2095 goto fail;
2096 }
2097 }
2098
2099 /* Setup DMA32 segment mapping */
2100 for (i = base; i < base + segs; i++)
2101 phb->ioda.dma32_segmap[i] = pe->pe_number;
2102
2103 /* Setup linux iommu table */
2104 pnv_pci_setup_iommu_table(tbl, addr, tce32_segsz * segs,
2105 base * PNV_IODA1_DMA32_SEGSIZE,
2106 IOMMU_PAGE_SHIFT_4K);
2107
2108 /* OPAL variant of P7IOC SW invalidated TCEs */
2109 if (phb->ioda.tce_inval_reg)
2110 tbl->it_type |= (TCE_PCI_SWINV_CREATE |
2111 TCE_PCI_SWINV_FREE |
2112 TCE_PCI_SWINV_PAIR);
2113
2114 tbl->it_ops = &pnv_ioda1_iommu_ops;
2115 pe->table_group.tce32_start = tbl->it_offset << tbl->it_page_shift;
2116 pe->table_group.tce32_size = tbl->it_size << tbl->it_page_shift;
2117 iommu_init_table(tbl, phb->hose->node);
2118
2119 if (pe->flags & PNV_IODA_PE_DEV) {
2120 /*
2121 * Setting table base here only for carrying iommu_group
2122 * further down to let iommu_add_device() do the job.
2123 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2124 */
2125 set_iommu_table_base(&pe->pdev->dev, tbl);
2126 iommu_add_device(&pe->pdev->dev);
2127 } else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2128 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2129
2130 return;
2131 fail:
2132 /* XXX Failure: Try to fallback to 64-bit only ? */
2133 if (tce_mem)
2134 __free_pages(tce_mem, get_order(tce32_segsz * segs));
2135 if (tbl) {
2136 pnv_pci_unlink_table_and_group(tbl, &pe->table_group);
2137 iommu_free_table(tbl, "pnv");
2138 }
2139 }
2140
2141 static long pnv_pci_ioda2_set_window(struct iommu_table_group *table_group,
2142 int num, struct iommu_table *tbl)
2143 {
2144 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2145 table_group);
2146 struct pnv_phb *phb = pe->phb;
2147 int64_t rc;
2148 const unsigned long size = tbl->it_indirect_levels ?
2149 tbl->it_level_size : tbl->it_size;
2150 const __u64 start_addr = tbl->it_offset << tbl->it_page_shift;
2151 const __u64 win_size = tbl->it_size << tbl->it_page_shift;
2152
2153 pe_info(pe, "Setting up window#%d %llx..%llx pg=%x\n", num,
2154 start_addr, start_addr + win_size - 1,
2155 IOMMU_PAGE_SIZE(tbl));
2156
2157 /*
2158 * Map TCE table through TVT. The TVE index is the PE number
2159 * shifted by 1 bit for 32-bits DMA space.
2160 */
2161 rc = opal_pci_map_pe_dma_window(phb->opal_id,
2162 pe->pe_number,
2163 (pe->pe_number << 1) + num,
2164 tbl->it_indirect_levels + 1,
2165 __pa(tbl->it_base),
2166 size << 3,
2167 IOMMU_PAGE_SIZE(tbl));
2168 if (rc) {
2169 pe_err(pe, "Failed to configure TCE table, err %ld\n", rc);
2170 return rc;
2171 }
2172
2173 pnv_pci_link_table_and_group(phb->hose->node, num,
2174 tbl, &pe->table_group);
2175 pnv_pci_ioda2_tce_invalidate_pe(pe);
2176
2177 return 0;
2178 }
2179
2180 static void pnv_pci_ioda2_set_bypass(struct pnv_ioda_pe *pe, bool enable)
2181 {
2182 uint16_t window_id = (pe->pe_number << 1 ) + 1;
2183 int64_t rc;
2184
2185 pe_info(pe, "%sabling 64-bit DMA bypass\n", enable ? "En" : "Dis");
2186 if (enable) {
2187 phys_addr_t top = memblock_end_of_DRAM();
2188
2189 top = roundup_pow_of_two(top);
2190 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2191 pe->pe_number,
2192 window_id,
2193 pe->tce_bypass_base,
2194 top);
2195 } else {
2196 rc = opal_pci_map_pe_dma_window_real(pe->phb->opal_id,
2197 pe->pe_number,
2198 window_id,
2199 pe->tce_bypass_base,
2200 0);
2201 }
2202 if (rc)
2203 pe_err(pe, "OPAL error %lld configuring bypass window\n", rc);
2204 else
2205 pe->tce_bypass_enabled = enable;
2206 }
2207
2208 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2209 __u32 page_shift, __u64 window_size, __u32 levels,
2210 struct iommu_table *tbl);
2211
2212 static long pnv_pci_ioda2_create_table(struct iommu_table_group *table_group,
2213 int num, __u32 page_shift, __u64 window_size, __u32 levels,
2214 struct iommu_table **ptbl)
2215 {
2216 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2217 table_group);
2218 int nid = pe->phb->hose->node;
2219 __u64 bus_offset = num ? pe->tce_bypass_base : table_group->tce32_start;
2220 long ret;
2221 struct iommu_table *tbl;
2222
2223 tbl = pnv_pci_table_alloc(nid);
2224 if (!tbl)
2225 return -ENOMEM;
2226
2227 ret = pnv_pci_ioda2_table_alloc_pages(nid,
2228 bus_offset, page_shift, window_size,
2229 levels, tbl);
2230 if (ret) {
2231 iommu_free_table(tbl, "pnv");
2232 return ret;
2233 }
2234
2235 tbl->it_ops = &pnv_ioda2_iommu_ops;
2236 if (pe->phb->ioda.tce_inval_reg)
2237 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2238
2239 *ptbl = tbl;
2240
2241 return 0;
2242 }
2243
2244 static long pnv_pci_ioda2_setup_default_config(struct pnv_ioda_pe *pe)
2245 {
2246 struct iommu_table *tbl = NULL;
2247 long rc;
2248
2249 /*
2250 * crashkernel= specifies the kdump kernel's maximum memory at
2251 * some offset and there is no guaranteed the result is a power
2252 * of 2, which will cause errors later.
2253 */
2254 const u64 max_memory = __rounddown_pow_of_two(memory_hotplug_max());
2255
2256 /*
2257 * In memory constrained environments, e.g. kdump kernel, the
2258 * DMA window can be larger than available memory, which will
2259 * cause errors later.
2260 */
2261 const u64 window_size = min((u64)pe->table_group.tce32_size, max_memory);
2262
2263 rc = pnv_pci_ioda2_create_table(&pe->table_group, 0,
2264 IOMMU_PAGE_SHIFT_4K,
2265 window_size,
2266 POWERNV_IOMMU_DEFAULT_LEVELS, &tbl);
2267 if (rc) {
2268 pe_err(pe, "Failed to create 32-bit TCE table, err %ld",
2269 rc);
2270 return rc;
2271 }
2272
2273 iommu_init_table(tbl, pe->phb->hose->node);
2274
2275 rc = pnv_pci_ioda2_set_window(&pe->table_group, 0, tbl);
2276 if (rc) {
2277 pe_err(pe, "Failed to configure 32-bit TCE table, err %ld\n",
2278 rc);
2279 pnv_ioda2_table_free(tbl);
2280 return rc;
2281 }
2282
2283 if (!pnv_iommu_bypass_disabled)
2284 pnv_pci_ioda2_set_bypass(pe, true);
2285
2286 /* OPAL variant of PHB3 invalidated TCEs */
2287 if (pe->phb->ioda.tce_inval_reg)
2288 tbl->it_type |= (TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE);
2289
2290 /*
2291 * Setting table base here only for carrying iommu_group
2292 * further down to let iommu_add_device() do the job.
2293 * pnv_pci_ioda_dma_dev_setup will override it later anyway.
2294 */
2295 if (pe->flags & PNV_IODA_PE_DEV)
2296 set_iommu_table_base(&pe->pdev->dev, tbl);
2297
2298 return 0;
2299 }
2300
2301 #if defined(CONFIG_IOMMU_API) || defined(CONFIG_PCI_IOV)
2302 static long pnv_pci_ioda2_unset_window(struct iommu_table_group *table_group,
2303 int num)
2304 {
2305 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2306 table_group);
2307 struct pnv_phb *phb = pe->phb;
2308 long ret;
2309
2310 pe_info(pe, "Removing DMA window #%d\n", num);
2311
2312 ret = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
2313 (pe->pe_number << 1) + num,
2314 0/* levels */, 0/* table address */,
2315 0/* table size */, 0/* page size */);
2316 if (ret)
2317 pe_warn(pe, "Unmapping failed, ret = %ld\n", ret);
2318 else
2319 pnv_pci_ioda2_tce_invalidate_pe(pe);
2320
2321 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
2322
2323 return ret;
2324 }
2325 #endif
2326
2327 #ifdef CONFIG_IOMMU_API
2328 static unsigned long pnv_pci_ioda2_get_table_size(__u32 page_shift,
2329 __u64 window_size, __u32 levels)
2330 {
2331 unsigned long bytes = 0;
2332 const unsigned window_shift = ilog2(window_size);
2333 unsigned entries_shift = window_shift - page_shift;
2334 unsigned table_shift = entries_shift + 3;
2335 unsigned long tce_table_size = max(0x1000UL, 1UL << table_shift);
2336 unsigned long direct_table_size;
2337
2338 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS) ||
2339 (window_size > memory_hotplug_max()) ||
2340 !is_power_of_2(window_size))
2341 return 0;
2342
2343 /* Calculate a direct table size from window_size and levels */
2344 entries_shift = (entries_shift + levels - 1) / levels;
2345 table_shift = entries_shift + 3;
2346 table_shift = max_t(unsigned, table_shift, PAGE_SHIFT);
2347 direct_table_size = 1UL << table_shift;
2348
2349 for ( ; levels; --levels) {
2350 bytes += _ALIGN_UP(tce_table_size, direct_table_size);
2351
2352 tce_table_size /= direct_table_size;
2353 tce_table_size <<= 3;
2354 tce_table_size = _ALIGN_UP(tce_table_size, direct_table_size);
2355 }
2356
2357 return bytes;
2358 }
2359
2360 static void pnv_ioda2_take_ownership(struct iommu_table_group *table_group)
2361 {
2362 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2363 table_group);
2364 /* Store @tbl as pnv_pci_ioda2_unset_window() resets it */
2365 struct iommu_table *tbl = pe->table_group.tables[0];
2366
2367 pnv_pci_ioda2_set_bypass(pe, false);
2368 pnv_pci_ioda2_unset_window(&pe->table_group, 0);
2369 pnv_ioda2_table_free(tbl);
2370 }
2371
2372 static void pnv_ioda2_release_ownership(struct iommu_table_group *table_group)
2373 {
2374 struct pnv_ioda_pe *pe = container_of(table_group, struct pnv_ioda_pe,
2375 table_group);
2376
2377 pnv_pci_ioda2_setup_default_config(pe);
2378 }
2379
2380 static struct iommu_table_group_ops pnv_pci_ioda2_ops = {
2381 .get_table_size = pnv_pci_ioda2_get_table_size,
2382 .create_table = pnv_pci_ioda2_create_table,
2383 .set_window = pnv_pci_ioda2_set_window,
2384 .unset_window = pnv_pci_ioda2_unset_window,
2385 .take_ownership = pnv_ioda2_take_ownership,
2386 .release_ownership = pnv_ioda2_release_ownership,
2387 };
2388
2389 static int gpe_table_group_to_npe_cb(struct device *dev, void *opaque)
2390 {
2391 struct pci_controller *hose;
2392 struct pnv_phb *phb;
2393 struct pnv_ioda_pe **ptmppe = opaque;
2394 struct pci_dev *pdev = container_of(dev, struct pci_dev, dev);
2395 struct pci_dn *pdn = pci_get_pdn(pdev);
2396
2397 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
2398 return 0;
2399
2400 hose = pci_bus_to_host(pdev->bus);
2401 phb = hose->private_data;
2402 if (phb->type != PNV_PHB_NPU)
2403 return 0;
2404
2405 *ptmppe = &phb->ioda.pe_array[pdn->pe_number];
2406
2407 return 1;
2408 }
2409
2410 /*
2411 * This returns PE of associated NPU.
2412 * This assumes that NPU is in the same IOMMU group with GPU and there is
2413 * no other PEs.
2414 */
2415 static struct pnv_ioda_pe *gpe_table_group_to_npe(
2416 struct iommu_table_group *table_group)
2417 {
2418 struct pnv_ioda_pe *npe = NULL;
2419 int ret = iommu_group_for_each_dev(table_group->group, &npe,
2420 gpe_table_group_to_npe_cb);
2421
2422 BUG_ON(!ret || !npe);
2423
2424 return npe;
2425 }
2426
2427 static long pnv_pci_ioda2_npu_set_window(struct iommu_table_group *table_group,
2428 int num, struct iommu_table *tbl)
2429 {
2430 long ret = pnv_pci_ioda2_set_window(table_group, num, tbl);
2431
2432 if (ret)
2433 return ret;
2434
2435 ret = pnv_npu_set_window(gpe_table_group_to_npe(table_group), num, tbl);
2436 if (ret)
2437 pnv_pci_ioda2_unset_window(table_group, num);
2438
2439 return ret;
2440 }
2441
2442 static long pnv_pci_ioda2_npu_unset_window(
2443 struct iommu_table_group *table_group,
2444 int num)
2445 {
2446 long ret = pnv_pci_ioda2_unset_window(table_group, num);
2447
2448 if (ret)
2449 return ret;
2450
2451 return pnv_npu_unset_window(gpe_table_group_to_npe(table_group), num);
2452 }
2453
2454 static void pnv_ioda2_npu_take_ownership(struct iommu_table_group *table_group)
2455 {
2456 /*
2457 * Detach NPU first as pnv_ioda2_take_ownership() will destroy
2458 * the iommu_table if 32bit DMA is enabled.
2459 */
2460 pnv_npu_take_ownership(gpe_table_group_to_npe(table_group));
2461 pnv_ioda2_take_ownership(table_group);
2462 }
2463
2464 static struct iommu_table_group_ops pnv_pci_ioda2_npu_ops = {
2465 .get_table_size = pnv_pci_ioda2_get_table_size,
2466 .create_table = pnv_pci_ioda2_create_table,
2467 .set_window = pnv_pci_ioda2_npu_set_window,
2468 .unset_window = pnv_pci_ioda2_npu_unset_window,
2469 .take_ownership = pnv_ioda2_npu_take_ownership,
2470 .release_ownership = pnv_ioda2_release_ownership,
2471 };
2472
2473 static void pnv_pci_ioda_setup_iommu_api(void)
2474 {
2475 struct pci_controller *hose, *tmp;
2476 struct pnv_phb *phb;
2477 struct pnv_ioda_pe *pe, *gpe;
2478
2479 /*
2480 * Now we have all PHBs discovered, time to add NPU devices to
2481 * the corresponding IOMMU groups.
2482 */
2483 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
2484 phb = hose->private_data;
2485
2486 if (phb->type != PNV_PHB_NPU)
2487 continue;
2488
2489 list_for_each_entry(pe, &phb->ioda.pe_list, list) {
2490 gpe = pnv_pci_npu_setup_iommu(pe);
2491 if (gpe)
2492 gpe->table_group.ops = &pnv_pci_ioda2_npu_ops;
2493 }
2494 }
2495 }
2496 #else /* !CONFIG_IOMMU_API */
2497 static void pnv_pci_ioda_setup_iommu_api(void) { };
2498 #endif
2499
2500 static void pnv_pci_ioda_setup_opal_tce_kill(struct pnv_phb *phb)
2501 {
2502 const __be64 *swinvp;
2503
2504 /* OPAL variant of PHB3 invalidated TCEs */
2505 swinvp = of_get_property(phb->hose->dn, "ibm,opal-tce-kill", NULL);
2506 if (!swinvp)
2507 return;
2508
2509 phb->ioda.tce_inval_reg_phys = be64_to_cpup(swinvp);
2510 phb->ioda.tce_inval_reg = ioremap(phb->ioda.tce_inval_reg_phys, 8);
2511 }
2512
2513 static __be64 *pnv_pci_ioda2_table_do_alloc_pages(int nid, unsigned shift,
2514 unsigned levels, unsigned long limit,
2515 unsigned long *current_offset, unsigned long *total_allocated)
2516 {
2517 struct page *tce_mem = NULL;
2518 __be64 *addr, *tmp;
2519 unsigned order = max_t(unsigned, shift, PAGE_SHIFT) - PAGE_SHIFT;
2520 unsigned long allocated = 1UL << (order + PAGE_SHIFT);
2521 unsigned entries = 1UL << (shift - 3);
2522 long i;
2523
2524 tce_mem = alloc_pages_node(nid, GFP_KERNEL, order);
2525 if (!tce_mem) {
2526 pr_err("Failed to allocate a TCE memory, order=%d\n", order);
2527 return NULL;
2528 }
2529 addr = page_address(tce_mem);
2530 memset(addr, 0, allocated);
2531 *total_allocated += allocated;
2532
2533 --levels;
2534 if (!levels) {
2535 *current_offset += allocated;
2536 return addr;
2537 }
2538
2539 for (i = 0; i < entries; ++i) {
2540 tmp = pnv_pci_ioda2_table_do_alloc_pages(nid, shift,
2541 levels, limit, current_offset, total_allocated);
2542 if (!tmp)
2543 break;
2544
2545 addr[i] = cpu_to_be64(__pa(tmp) |
2546 TCE_PCI_READ | TCE_PCI_WRITE);
2547
2548 if (*current_offset >= limit)
2549 break;
2550 }
2551
2552 return addr;
2553 }
2554
2555 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2556 unsigned long size, unsigned level);
2557
2558 static long pnv_pci_ioda2_table_alloc_pages(int nid, __u64 bus_offset,
2559 __u32 page_shift, __u64 window_size, __u32 levels,
2560 struct iommu_table *tbl)
2561 {
2562 void *addr;
2563 unsigned long offset = 0, level_shift, total_allocated = 0;
2564 const unsigned window_shift = ilog2(window_size);
2565 unsigned entries_shift = window_shift - page_shift;
2566 unsigned table_shift = max_t(unsigned, entries_shift + 3, PAGE_SHIFT);
2567 const unsigned long tce_table_size = 1UL << table_shift;
2568
2569 if (!levels || (levels > POWERNV_IOMMU_MAX_LEVELS))
2570 return -EINVAL;
2571
2572 if ((window_size > memory_hotplug_max()) || !is_power_of_2(window_size))
2573 return -EINVAL;
2574
2575 /* Adjust direct table size from window_size and levels */
2576 entries_shift = (entries_shift + levels - 1) / levels;
2577 level_shift = entries_shift + 3;
2578 level_shift = max_t(unsigned, level_shift, PAGE_SHIFT);
2579
2580 /* Allocate TCE table */
2581 addr = pnv_pci_ioda2_table_do_alloc_pages(nid, level_shift,
2582 levels, tce_table_size, &offset, &total_allocated);
2583
2584 /* addr==NULL means that the first level allocation failed */
2585 if (!addr)
2586 return -ENOMEM;
2587
2588 /*
2589 * First level was allocated but some lower level failed as
2590 * we did not allocate as much as we wanted,
2591 * release partially allocated table.
2592 */
2593 if (offset < tce_table_size) {
2594 pnv_pci_ioda2_table_do_free_pages(addr,
2595 1ULL << (level_shift - 3), levels - 1);
2596 return -ENOMEM;
2597 }
2598
2599 /* Setup linux iommu table */
2600 pnv_pci_setup_iommu_table(tbl, addr, tce_table_size, bus_offset,
2601 page_shift);
2602 tbl->it_level_size = 1ULL << (level_shift - 3);
2603 tbl->it_indirect_levels = levels - 1;
2604 tbl->it_allocated_size = total_allocated;
2605
2606 pr_devel("Created TCE table: ws=%08llx ts=%lx @%08llx\n",
2607 window_size, tce_table_size, bus_offset);
2608
2609 return 0;
2610 }
2611
2612 static void pnv_pci_ioda2_table_do_free_pages(__be64 *addr,
2613 unsigned long size, unsigned level)
2614 {
2615 const unsigned long addr_ul = (unsigned long) addr &
2616 ~(TCE_PCI_READ | TCE_PCI_WRITE);
2617
2618 if (level) {
2619 long i;
2620 u64 *tmp = (u64 *) addr_ul;
2621
2622 for (i = 0; i < size; ++i) {
2623 unsigned long hpa = be64_to_cpu(tmp[i]);
2624
2625 if (!(hpa & (TCE_PCI_READ | TCE_PCI_WRITE)))
2626 continue;
2627
2628 pnv_pci_ioda2_table_do_free_pages(__va(hpa), size,
2629 level - 1);
2630 }
2631 }
2632
2633 free_pages(addr_ul, get_order(size << 3));
2634 }
2635
2636 static void pnv_pci_ioda2_table_free_pages(struct iommu_table *tbl)
2637 {
2638 const unsigned long size = tbl->it_indirect_levels ?
2639 tbl->it_level_size : tbl->it_size;
2640
2641 if (!tbl->it_size)
2642 return;
2643
2644 pnv_pci_ioda2_table_do_free_pages((__be64 *)tbl->it_base, size,
2645 tbl->it_indirect_levels);
2646 }
2647
2648 static void pnv_pci_ioda2_setup_dma_pe(struct pnv_phb *phb,
2649 struct pnv_ioda_pe *pe)
2650 {
2651 int64_t rc;
2652
2653 if (!pnv_pci_ioda_pe_dma_weight(pe))
2654 return;
2655
2656 /* TVE #1 is selected by PCI address bit 59 */
2657 pe->tce_bypass_base = 1ull << 59;
2658
2659 iommu_register_group(&pe->table_group, phb->hose->global_number,
2660 pe->pe_number);
2661
2662 /* The PE will reserve all possible 32-bits space */
2663 pe_info(pe, "Setting up 32-bit TCE table at 0..%08x\n",
2664 phb->ioda.m32_pci_base);
2665
2666 /* Setup linux iommu table */
2667 pe->table_group.tce32_start = 0;
2668 pe->table_group.tce32_size = phb->ioda.m32_pci_base;
2669 pe->table_group.max_dynamic_windows_supported =
2670 IOMMU_TABLE_GROUP_MAX_TABLES;
2671 pe->table_group.max_levels = POWERNV_IOMMU_MAX_LEVELS;
2672 pe->table_group.pgsizes = SZ_4K | SZ_64K | SZ_16M;
2673 #ifdef CONFIG_IOMMU_API
2674 pe->table_group.ops = &pnv_pci_ioda2_ops;
2675 #endif
2676
2677 rc = pnv_pci_ioda2_setup_default_config(pe);
2678 if (rc)
2679 return;
2680
2681 if (pe->flags & PNV_IODA_PE_DEV)
2682 iommu_add_device(&pe->pdev->dev);
2683 else if (pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL))
2684 pnv_ioda_setup_bus_dma(pe, pe->pbus);
2685 }
2686
2687 #ifdef CONFIG_PCI_MSI
2688 static void pnv_ioda2_msi_eoi(struct irq_data *d)
2689 {
2690 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
2691 struct irq_chip *chip = irq_data_get_irq_chip(d);
2692 struct pnv_phb *phb = container_of(chip, struct pnv_phb,
2693 ioda.irq_chip);
2694 int64_t rc;
2695
2696 rc = opal_pci_msi_eoi(phb->opal_id, hw_irq);
2697 WARN_ON_ONCE(rc);
2698
2699 icp_native_eoi(d);
2700 }
2701
2702
2703 void pnv_set_msi_irq_chip(struct pnv_phb *phb, unsigned int virq)
2704 {
2705 struct irq_data *idata;
2706 struct irq_chip *ichip;
2707
2708 if (phb->type != PNV_PHB_IODA2)
2709 return;
2710
2711 if (!phb->ioda.irq_chip_init) {
2712 /*
2713 * First time we setup an MSI IRQ, we need to setup the
2714 * corresponding IRQ chip to route correctly.
2715 */
2716 idata = irq_get_irq_data(virq);
2717 ichip = irq_data_get_irq_chip(idata);
2718 phb->ioda.irq_chip_init = 1;
2719 phb->ioda.irq_chip = *ichip;
2720 phb->ioda.irq_chip.irq_eoi = pnv_ioda2_msi_eoi;
2721 }
2722 irq_set_chip(virq, &phb->ioda.irq_chip);
2723 }
2724
2725 static int pnv_pci_ioda_msi_setup(struct pnv_phb *phb, struct pci_dev *dev,
2726 unsigned int hwirq, unsigned int virq,
2727 unsigned int is_64, struct msi_msg *msg)
2728 {
2729 struct pnv_ioda_pe *pe = pnv_ioda_get_pe(dev);
2730 unsigned int xive_num = hwirq - phb->msi_base;
2731 __be32 data;
2732 int rc;
2733
2734 /* No PE assigned ? bail out ... no MSI for you ! */
2735 if (pe == NULL)
2736 return -ENXIO;
2737
2738 /* Check if we have an MVE */
2739 if (pe->mve_number < 0)
2740 return -ENXIO;
2741
2742 /* Force 32-bit MSI on some broken devices */
2743 if (dev->no_64bit_msi)
2744 is_64 = 0;
2745
2746 /* Assign XIVE to PE */
2747 rc = opal_pci_set_xive_pe(phb->opal_id, pe->pe_number, xive_num);
2748 if (rc) {
2749 pr_warn("%s: OPAL error %d setting XIVE %d PE\n",
2750 pci_name(dev), rc, xive_num);
2751 return -EIO;
2752 }
2753
2754 if (is_64) {
2755 __be64 addr64;
2756
2757 rc = opal_get_msi_64(phb->opal_id, pe->mve_number, xive_num, 1,
2758 &addr64, &data);
2759 if (rc) {
2760 pr_warn("%s: OPAL error %d getting 64-bit MSI data\n",
2761 pci_name(dev), rc);
2762 return -EIO;
2763 }
2764 msg->address_hi = be64_to_cpu(addr64) >> 32;
2765 msg->address_lo = be64_to_cpu(addr64) & 0xfffffffful;
2766 } else {
2767 __be32 addr32;
2768
2769 rc = opal_get_msi_32(phb->opal_id, pe->mve_number, xive_num, 1,
2770 &addr32, &data);
2771 if (rc) {
2772 pr_warn("%s: OPAL error %d getting 32-bit MSI data\n",
2773 pci_name(dev), rc);
2774 return -EIO;
2775 }
2776 msg->address_hi = 0;
2777 msg->address_lo = be32_to_cpu(addr32);
2778 }
2779 msg->data = be32_to_cpu(data);
2780
2781 pnv_set_msi_irq_chip(phb, virq);
2782
2783 pr_devel("%s: %s-bit MSI on hwirq %x (xive #%d),"
2784 " address=%x_%08x data=%x PE# %d\n",
2785 pci_name(dev), is_64 ? "64" : "32", hwirq, xive_num,
2786 msg->address_hi, msg->address_lo, data, pe->pe_number);
2787
2788 return 0;
2789 }
2790
2791 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb)
2792 {
2793 unsigned int count;
2794 const __be32 *prop = of_get_property(phb->hose->dn,
2795 "ibm,opal-msi-ranges", NULL);
2796 if (!prop) {
2797 /* BML Fallback */
2798 prop = of_get_property(phb->hose->dn, "msi-ranges", NULL);
2799 }
2800 if (!prop)
2801 return;
2802
2803 phb->msi_base = be32_to_cpup(prop);
2804 count = be32_to_cpup(prop + 1);
2805 if (msi_bitmap_alloc(&phb->msi_bmp, count, phb->hose->dn)) {
2806 pr_err("PCI %d: Failed to allocate MSI bitmap !\n",
2807 phb->hose->global_number);
2808 return;
2809 }
2810
2811 phb->msi_setup = pnv_pci_ioda_msi_setup;
2812 phb->msi32_support = 1;
2813 pr_info(" Allocated bitmap for %d MSIs (base IRQ 0x%x)\n",
2814 count, phb->msi_base);
2815 }
2816 #else
2817 static void pnv_pci_init_ioda_msis(struct pnv_phb *phb) { }
2818 #endif /* CONFIG_PCI_MSI */
2819
2820 #ifdef CONFIG_PCI_IOV
2821 static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
2822 {
2823 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
2824 struct pnv_phb *phb = hose->private_data;
2825 const resource_size_t gate = phb->ioda.m64_segsize >> 2;
2826 struct resource *res;
2827 int i;
2828 resource_size_t size, total_vf_bar_sz;
2829 struct pci_dn *pdn;
2830 int mul, total_vfs;
2831
2832 if (!pdev->is_physfn || pdev->is_added)
2833 return;
2834
2835 pdn = pci_get_pdn(pdev);
2836 pdn->vfs_expanded = 0;
2837 pdn->m64_single_mode = false;
2838
2839 total_vfs = pci_sriov_get_totalvfs(pdev);
2840 mul = phb->ioda.total_pe_num;
2841 total_vf_bar_sz = 0;
2842
2843 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2844 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2845 if (!res->flags || res->parent)
2846 continue;
2847 if (!pnv_pci_is_mem_pref_64(res->flags)) {
2848 dev_warn(&pdev->dev, "Don't support SR-IOV with"
2849 " non M64 VF BAR%d: %pR. \n",
2850 i, res);
2851 goto truncate_iov;
2852 }
2853
2854 total_vf_bar_sz += pci_iov_resource_size(pdev,
2855 i + PCI_IOV_RESOURCES);
2856
2857 /*
2858 * If bigger than quarter of M64 segment size, just round up
2859 * power of two.
2860 *
2861 * Generally, one M64 BAR maps one IOV BAR. To avoid conflict
2862 * with other devices, IOV BAR size is expanded to be
2863 * (total_pe * VF_BAR_size). When VF_BAR_size is half of M64
2864 * segment size , the expanded size would equal to half of the
2865 * whole M64 space size, which will exhaust the M64 Space and
2866 * limit the system flexibility. This is a design decision to
2867 * set the boundary to quarter of the M64 segment size.
2868 */
2869 if (total_vf_bar_sz > gate) {
2870 mul = roundup_pow_of_two(total_vfs);
2871 dev_info(&pdev->dev,
2872 "VF BAR Total IOV size %llx > %llx, roundup to %d VFs\n",
2873 total_vf_bar_sz, gate, mul);
2874 pdn->m64_single_mode = true;
2875 break;
2876 }
2877 }
2878
2879 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2880 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2881 if (!res->flags || res->parent)
2882 continue;
2883
2884 size = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
2885 /*
2886 * On PHB3, the minimum size alignment of M64 BAR in single
2887 * mode is 32MB.
2888 */
2889 if (pdn->m64_single_mode && (size < SZ_32M))
2890 goto truncate_iov;
2891 dev_dbg(&pdev->dev, " Fixing VF BAR%d: %pR to\n", i, res);
2892 res->end = res->start + size * mul - 1;
2893 dev_dbg(&pdev->dev, " %pR\n", res);
2894 dev_info(&pdev->dev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
2895 i, res, mul);
2896 }
2897 pdn->vfs_expanded = mul;
2898
2899 return;
2900
2901 truncate_iov:
2902 /* To save MMIO space, IOV BAR is truncated. */
2903 for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
2904 res = &pdev->resource[i + PCI_IOV_RESOURCES];
2905 res->flags = 0;
2906 res->end = res->start - 1;
2907 }
2908 }
2909 #endif /* CONFIG_PCI_IOV */
2910
2911 static void pnv_ioda_setup_pe_res(struct pnv_ioda_pe *pe,
2912 struct resource *res)
2913 {
2914 struct pnv_phb *phb = pe->phb;
2915 struct pci_bus_region region;
2916 int index;
2917 int64_t rc;
2918
2919 if (!res || !res->flags || res->start > res->end)
2920 return;
2921
2922 if (res->flags & IORESOURCE_IO) {
2923 region.start = res->start - phb->ioda.io_pci_base;
2924 region.end = res->end - phb->ioda.io_pci_base;
2925 index = region.start / phb->ioda.io_segsize;
2926
2927 while (index < phb->ioda.total_pe_num &&
2928 region.start <= region.end) {
2929 phb->ioda.io_segmap[index] = pe->pe_number;
2930 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2931 pe->pe_number, OPAL_IO_WINDOW_TYPE, 0, index);
2932 if (rc != OPAL_SUCCESS) {
2933 pr_err("%s: Error %lld mapping IO segment#%d to PE#%d\n",
2934 __func__, rc, index, pe->pe_number);
2935 break;
2936 }
2937
2938 region.start += phb->ioda.io_segsize;
2939 index++;
2940 }
2941 } else if ((res->flags & IORESOURCE_MEM) &&
2942 !pnv_pci_is_mem_pref_64(res->flags)) {
2943 region.start = res->start -
2944 phb->hose->mem_offset[0] -
2945 phb->ioda.m32_pci_base;
2946 region.end = res->end -
2947 phb->hose->mem_offset[0] -
2948 phb->ioda.m32_pci_base;
2949 index = region.start / phb->ioda.m32_segsize;
2950
2951 while (index < phb->ioda.total_pe_num &&
2952 region.start <= region.end) {
2953 phb->ioda.m32_segmap[index] = pe->pe_number;
2954 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
2955 pe->pe_number, OPAL_M32_WINDOW_TYPE, 0, index);
2956 if (rc != OPAL_SUCCESS) {
2957 pr_err("%s: Error %lld mapping M32 segment#%d to PE#%d",
2958 __func__, rc, index, pe->pe_number);
2959 break;
2960 }
2961
2962 region.start += phb->ioda.m32_segsize;
2963 index++;
2964 }
2965 }
2966 }
2967
2968 /*
2969 * This function is supposed to be called on basis of PE from top
2970 * to bottom style. So the the I/O or MMIO segment assigned to
2971 * parent PE could be overrided by its child PEs if necessary.
2972 */
2973 static void pnv_ioda_setup_pe_seg(struct pnv_ioda_pe *pe)
2974 {
2975 struct pci_dev *pdev;
2976 int i;
2977
2978 /*
2979 * NOTE: We only care PCI bus based PE for now. For PCI
2980 * device based PE, for example SRIOV sensitive VF should
2981 * be figured out later.
2982 */
2983 BUG_ON(!(pe->flags & (PNV_IODA_PE_BUS | PNV_IODA_PE_BUS_ALL)));
2984
2985 list_for_each_entry(pdev, &pe->pbus->devices, bus_list) {
2986 for (i = 0; i <= PCI_ROM_RESOURCE; i++)
2987 pnv_ioda_setup_pe_res(pe, &pdev->resource[i]);
2988
2989 /*
2990 * If the PE contains all subordinate PCI buses, the
2991 * windows of the child bridges should be mapped to
2992 * the PE as well.
2993 */
2994 if (!(pe->flags & PNV_IODA_PE_BUS_ALL) || !pci_is_bridge(pdev))
2995 continue;
2996 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++)
2997 pnv_ioda_setup_pe_res(pe,
2998 &pdev->resource[PCI_BRIDGE_RESOURCES + i]);
2999 }
3000 }
3001
3002 static void pnv_pci_ioda_create_dbgfs(void)
3003 {
3004 #ifdef CONFIG_DEBUG_FS
3005 struct pci_controller *hose, *tmp;
3006 struct pnv_phb *phb;
3007 char name[16];
3008
3009 list_for_each_entry_safe(hose, tmp, &hose_list, list_node) {
3010 phb = hose->private_data;
3011
3012 /* Notify initialization of PHB done */
3013 phb->initialized = 1;
3014
3015 sprintf(name, "PCI%04x", hose->global_number);
3016 phb->dbgfs = debugfs_create_dir(name, powerpc_debugfs_root);
3017 if (!phb->dbgfs)
3018 pr_warning("%s: Error on creating debugfs on PHB#%x\n",
3019 __func__, hose->global_number);
3020 }
3021 #endif /* CONFIG_DEBUG_FS */
3022 }
3023
3024 static void pnv_pci_ioda_fixup(void)
3025 {
3026 pnv_pci_ioda_setup_PEs();
3027 pnv_pci_ioda_setup_iommu_api();
3028 pnv_pci_ioda_create_dbgfs();
3029
3030 #ifdef CONFIG_EEH
3031 eeh_init();
3032 eeh_addr_cache_build();
3033 #endif
3034 }
3035
3036 /*
3037 * Returns the alignment for I/O or memory windows for P2P
3038 * bridges. That actually depends on how PEs are segmented.
3039 * For now, we return I/O or M32 segment size for PE sensitive
3040 * P2P bridges. Otherwise, the default values (4KiB for I/O,
3041 * 1MiB for memory) will be returned.
3042 *
3043 * The current PCI bus might be put into one PE, which was
3044 * create against the parent PCI bridge. For that case, we
3045 * needn't enlarge the alignment so that we can save some
3046 * resources.
3047 */
3048 static resource_size_t pnv_pci_window_alignment(struct pci_bus *bus,
3049 unsigned long type)
3050 {
3051 struct pci_dev *bridge;
3052 struct pci_controller *hose = pci_bus_to_host(bus);
3053 struct pnv_phb *phb = hose->private_data;
3054 int num_pci_bridges = 0;
3055
3056 bridge = bus->self;
3057 while (bridge) {
3058 if (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE) {
3059 num_pci_bridges++;
3060 if (num_pci_bridges >= 2)
3061 return 1;
3062 }
3063
3064 bridge = bridge->bus->self;
3065 }
3066
3067 /* We fail back to M32 if M64 isn't supported */
3068 if (phb->ioda.m64_segsize &&
3069 pnv_pci_is_mem_pref_64(type))
3070 return phb->ioda.m64_segsize;
3071 if (type & IORESOURCE_MEM)
3072 return phb->ioda.m32_segsize;
3073
3074 return phb->ioda.io_segsize;
3075 }
3076
3077 /*
3078 * We are updating root port or the upstream port of the
3079 * bridge behind the root port with PHB's windows in order
3080 * to accommodate the changes on required resources during
3081 * PCI (slot) hotplug, which is connected to either root
3082 * port or the downstream ports of PCIe switch behind the
3083 * root port.
3084 */
3085 static void pnv_pci_fixup_bridge_resources(struct pci_bus *bus,
3086 unsigned long type)
3087 {
3088 struct pci_controller *hose = pci_bus_to_host(bus);
3089 struct pnv_phb *phb = hose->private_data;
3090 struct pci_dev *bridge = bus->self;
3091 struct resource *r, *w;
3092 bool msi_region = false;
3093 int i;
3094
3095 /* Check if we need apply fixup to the bridge's windows */
3096 if (!pci_is_root_bus(bridge->bus) &&
3097 !pci_is_root_bus(bridge->bus->self->bus))
3098 return;
3099
3100 /* Fixup the resources */
3101 for (i = 0; i < PCI_BRIDGE_RESOURCE_NUM; i++) {
3102 r = &bridge->resource[PCI_BRIDGE_RESOURCES + i];
3103 if (!r->flags || !r->parent)
3104 continue;
3105
3106 w = NULL;
3107 if (r->flags & type & IORESOURCE_IO)
3108 w = &hose->io_resource;
3109 else if (pnv_pci_is_mem_pref_64(r->flags) &&
3110 (type & IORESOURCE_PREFETCH) &&
3111 phb->ioda.m64_segsize)
3112 w = &hose->mem_resources[1];
3113 else if (r->flags & type & IORESOURCE_MEM) {
3114 w = &hose->mem_resources[0];
3115 msi_region = true;
3116 }
3117
3118 r->start = w->start;
3119 r->end = w->end;
3120
3121 /* The 64KB 32-bits MSI region shouldn't be included in
3122 * the 32-bits bridge window. Otherwise, we can see strange
3123 * issues. One of them is EEH error observed on Garrison.
3124 *
3125 * Exclude top 1MB region which is the minimal alignment of
3126 * 32-bits bridge window.
3127 */
3128 if (msi_region) {
3129 r->end += 0x10000;
3130 r->end -= 0x100000;
3131 }
3132 }
3133 }
3134
3135 static void pnv_pci_setup_bridge(struct pci_bus *bus, unsigned long type)
3136 {
3137 struct pci_controller *hose = pci_bus_to_host(bus);
3138 struct pnv_phb *phb = hose->private_data;
3139 struct pci_dev *bridge = bus->self;
3140 struct pnv_ioda_pe *pe;
3141 bool all = (pci_pcie_type(bridge) == PCI_EXP_TYPE_PCI_BRIDGE);
3142
3143 /* Extend bridge's windows if necessary */
3144 pnv_pci_fixup_bridge_resources(bus, type);
3145
3146 /* The PE for root bus should be realized before any one else */
3147 if (!phb->ioda.root_pe_populated) {
3148 pe = pnv_ioda_setup_bus_PE(phb->hose->bus, false);
3149 if (pe) {
3150 phb->ioda.root_pe_idx = pe->pe_number;
3151 phb->ioda.root_pe_populated = true;
3152 }
3153 }
3154
3155 /* Don't assign PE to PCI bus, which doesn't have subordinate devices */
3156 if (list_empty(&bus->devices))
3157 return;
3158
3159 /* Reserve PEs according to used M64 resources */
3160 if (phb->reserve_m64_pe)
3161 phb->reserve_m64_pe(bus, NULL, all);
3162
3163 /*
3164 * Assign PE. We might run here because of partial hotplug.
3165 * For the case, we just pick up the existing PE and should
3166 * not allocate resources again.
3167 */
3168 pe = pnv_ioda_setup_bus_PE(bus, all);
3169 if (!pe)
3170 return;
3171
3172 pnv_ioda_setup_pe_seg(pe);
3173 switch (phb->type) {
3174 case PNV_PHB_IODA1:
3175 pnv_pci_ioda1_setup_dma_pe(phb, pe);
3176 break;
3177 case PNV_PHB_IODA2:
3178 pnv_pci_ioda2_setup_dma_pe(phb, pe);
3179 break;
3180 default:
3181 pr_warn("%s: No DMA for PHB#%d (type %d)\n",
3182 __func__, phb->hose->global_number, phb->type);
3183 }
3184 }
3185
3186 #ifdef CONFIG_PCI_IOV
3187 static resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
3188 int resno)
3189 {
3190 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3191 struct pnv_phb *phb = hose->private_data;
3192 struct pci_dn *pdn = pci_get_pdn(pdev);
3193 resource_size_t align;
3194
3195 /*
3196 * On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
3197 * SR-IOV. While from hardware perspective, the range mapped by M64
3198 * BAR should be size aligned.
3199 *
3200 * When IOV BAR is mapped with M64 BAR in Single PE mode, the extra
3201 * powernv-specific hardware restriction is gone. But if just use the
3202 * VF BAR size as the alignment, PF BAR / VF BAR may be allocated with
3203 * in one segment of M64 #15, which introduces the PE conflict between
3204 * PF and VF. Based on this, the minimum alignment of an IOV BAR is
3205 * m64_segsize.
3206 *
3207 * This function returns the total IOV BAR size if M64 BAR is in
3208 * Shared PE mode or just VF BAR size if not.
3209 * If the M64 BAR is in Single PE mode, return the VF BAR size or
3210 * M64 segment size if IOV BAR size is less.
3211 */
3212 align = pci_iov_resource_size(pdev, resno);
3213 if (!pdn->vfs_expanded)
3214 return align;
3215 if (pdn->m64_single_mode)
3216 return max(align, (resource_size_t)phb->ioda.m64_segsize);
3217
3218 return pdn->vfs_expanded * align;
3219 }
3220 #endif /* CONFIG_PCI_IOV */
3221
3222 /* Prevent enabling devices for which we couldn't properly
3223 * assign a PE
3224 */
3225 static bool pnv_pci_enable_device_hook(struct pci_dev *dev)
3226 {
3227 struct pci_controller *hose = pci_bus_to_host(dev->bus);
3228 struct pnv_phb *phb = hose->private_data;
3229 struct pci_dn *pdn;
3230
3231 /* The function is probably called while the PEs have
3232 * not be created yet. For example, resource reassignment
3233 * during PCI probe period. We just skip the check if
3234 * PEs isn't ready.
3235 */
3236 if (!phb->initialized)
3237 return true;
3238
3239 pdn = pci_get_pdn(dev);
3240 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3241 return false;
3242
3243 return true;
3244 }
3245
3246 static long pnv_pci_ioda1_unset_window(struct iommu_table_group *table_group,
3247 int num)
3248 {
3249 struct pnv_ioda_pe *pe = container_of(table_group,
3250 struct pnv_ioda_pe, table_group);
3251 struct pnv_phb *phb = pe->phb;
3252 unsigned int idx;
3253 long rc;
3254
3255 pe_info(pe, "Removing DMA window #%d\n", num);
3256 for (idx = 0; idx < phb->ioda.dma32_count; idx++) {
3257 if (phb->ioda.dma32_segmap[idx] != pe->pe_number)
3258 continue;
3259
3260 rc = opal_pci_map_pe_dma_window(phb->opal_id, pe->pe_number,
3261 idx, 0, 0ul, 0ul, 0ul);
3262 if (rc != OPAL_SUCCESS) {
3263 pe_warn(pe, "Failure %ld unmapping DMA32 segment#%d\n",
3264 rc, idx);
3265 return rc;
3266 }
3267
3268 phb->ioda.dma32_segmap[idx] = IODA_INVALID_PE;
3269 }
3270
3271 pnv_pci_unlink_table_and_group(table_group->tables[num], table_group);
3272 return OPAL_SUCCESS;
3273 }
3274
3275 static void pnv_pci_ioda1_release_pe_dma(struct pnv_ioda_pe *pe)
3276 {
3277 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3278 struct iommu_table *tbl = pe->table_group.tables[0];
3279 int64_t rc;
3280
3281 if (!weight)
3282 return;
3283
3284 rc = pnv_pci_ioda1_unset_window(&pe->table_group, 0);
3285 if (rc != OPAL_SUCCESS)
3286 return;
3287
3288 pnv_pci_ioda1_tce_invalidate(tbl, tbl->it_offset, tbl->it_size, false);
3289 if (pe->table_group.group) {
3290 iommu_group_put(pe->table_group.group);
3291 WARN_ON(pe->table_group.group);
3292 }
3293
3294 free_pages(tbl->it_base, get_order(tbl->it_size << 3));
3295 iommu_free_table(tbl, "pnv");
3296 }
3297
3298 static void pnv_pci_ioda2_release_pe_dma(struct pnv_ioda_pe *pe)
3299 {
3300 struct iommu_table *tbl = pe->table_group.tables[0];
3301 unsigned int weight = pnv_pci_ioda_pe_dma_weight(pe);
3302 #ifdef CONFIG_IOMMU_API
3303 int64_t rc;
3304 #endif
3305
3306 if (!weight)
3307 return;
3308
3309 #ifdef CONFIG_IOMMU_API
3310 rc = pnv_pci_ioda2_unset_window(&pe->table_group, 0);
3311 if (rc)
3312 pe_warn(pe, "OPAL error %ld release DMA window\n", rc);
3313 #endif
3314
3315 pnv_pci_ioda2_set_bypass(pe, false);
3316 if (pe->table_group.group) {
3317 iommu_group_put(pe->table_group.group);
3318 WARN_ON(pe->table_group.group);
3319 }
3320
3321 pnv_pci_ioda2_table_free_pages(tbl);
3322 iommu_free_table(tbl, "pnv");
3323 }
3324
3325 static void pnv_ioda_free_pe_seg(struct pnv_ioda_pe *pe,
3326 unsigned short win,
3327 unsigned int *map)
3328 {
3329 struct pnv_phb *phb = pe->phb;
3330 int idx;
3331 int64_t rc;
3332
3333 for (idx = 0; idx < phb->ioda.total_pe_num; idx++) {
3334 if (map[idx] != pe->pe_number)
3335 continue;
3336
3337 if (win == OPAL_M64_WINDOW_TYPE)
3338 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3339 phb->ioda.reserved_pe_idx, win,
3340 idx / PNV_IODA1_M64_SEGS,
3341 idx % PNV_IODA1_M64_SEGS);
3342 else
3343 rc = opal_pci_map_pe_mmio_window(phb->opal_id,
3344 phb->ioda.reserved_pe_idx, win, 0, idx);
3345
3346 if (rc != OPAL_SUCCESS)
3347 pe_warn(pe, "Error %ld unmapping (%d) segment#%d\n",
3348 rc, win, idx);
3349
3350 map[idx] = IODA_INVALID_PE;
3351 }
3352 }
3353
3354 static void pnv_ioda_release_pe_seg(struct pnv_ioda_pe *pe)
3355 {
3356 struct pnv_phb *phb = pe->phb;
3357
3358 if (phb->type == PNV_PHB_IODA1) {
3359 pnv_ioda_free_pe_seg(pe, OPAL_IO_WINDOW_TYPE,
3360 phb->ioda.io_segmap);
3361 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3362 phb->ioda.m32_segmap);
3363 pnv_ioda_free_pe_seg(pe, OPAL_M64_WINDOW_TYPE,
3364 phb->ioda.m64_segmap);
3365 } else if (phb->type == PNV_PHB_IODA2) {
3366 pnv_ioda_free_pe_seg(pe, OPAL_M32_WINDOW_TYPE,
3367 phb->ioda.m32_segmap);
3368 }
3369 }
3370
3371 static void pnv_ioda_release_pe(struct pnv_ioda_pe *pe)
3372 {
3373 struct pnv_phb *phb = pe->phb;
3374 struct pnv_ioda_pe *slave, *tmp;
3375
3376 /* Release slave PEs in compound PE */
3377 if (pe->flags & PNV_IODA_PE_MASTER) {
3378 list_for_each_entry_safe(slave, tmp, &pe->slaves, list)
3379 pnv_ioda_release_pe(slave);
3380 }
3381
3382 list_del(&pe->list);
3383 switch (phb->type) {
3384 case PNV_PHB_IODA1:
3385 pnv_pci_ioda1_release_pe_dma(pe);
3386 break;
3387 case PNV_PHB_IODA2:
3388 pnv_pci_ioda2_release_pe_dma(pe);
3389 break;
3390 default:
3391 WARN_ON(1);
3392 }
3393
3394 pnv_ioda_release_pe_seg(pe);
3395 pnv_ioda_deconfigure_pe(pe->phb, pe);
3396 pnv_ioda_free_pe(pe);
3397 }
3398
3399 static void pnv_pci_release_device(struct pci_dev *pdev)
3400 {
3401 struct pci_controller *hose = pci_bus_to_host(pdev->bus);
3402 struct pnv_phb *phb = hose->private_data;
3403 struct pci_dn *pdn = pci_get_pdn(pdev);
3404 struct pnv_ioda_pe *pe;
3405
3406 if (pdev->is_virtfn)
3407 return;
3408
3409 if (!pdn || pdn->pe_number == IODA_INVALID_PE)
3410 return;
3411
3412 pe = &phb->ioda.pe_array[pdn->pe_number];
3413 WARN_ON(--pe->device_count < 0);
3414 if (pe->device_count == 0)
3415 pnv_ioda_release_pe(pe);
3416 }
3417
3418 static void pnv_pci_ioda_shutdown(struct pci_controller *hose)
3419 {
3420 struct pnv_phb *phb = hose->private_data;
3421
3422 opal_pci_reset(phb->opal_id, OPAL_RESET_PCI_IODA_TABLE,
3423 OPAL_ASSERT_RESET);
3424 }
3425
3426 static const struct pci_controller_ops pnv_pci_ioda_controller_ops = {
3427 .dma_dev_setup = pnv_pci_dma_dev_setup,
3428 .dma_bus_setup = pnv_pci_dma_bus_setup,
3429 #ifdef CONFIG_PCI_MSI
3430 .setup_msi_irqs = pnv_setup_msi_irqs,
3431 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3432 #endif
3433 .enable_device_hook = pnv_pci_enable_device_hook,
3434 .release_device = pnv_pci_release_device,
3435 .window_alignment = pnv_pci_window_alignment,
3436 .setup_bridge = pnv_pci_setup_bridge,
3437 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3438 .dma_set_mask = pnv_pci_ioda_dma_set_mask,
3439 .dma_get_required_mask = pnv_pci_ioda_dma_get_required_mask,
3440 .shutdown = pnv_pci_ioda_shutdown,
3441 };
3442
3443 static int pnv_npu_dma_set_mask(struct pci_dev *npdev, u64 dma_mask)
3444 {
3445 dev_err_once(&npdev->dev,
3446 "%s operation unsupported for NVLink devices\n",
3447 __func__);
3448 return -EPERM;
3449 }
3450
3451 static const struct pci_controller_ops pnv_npu_ioda_controller_ops = {
3452 .dma_dev_setup = pnv_pci_dma_dev_setup,
3453 #ifdef CONFIG_PCI_MSI
3454 .setup_msi_irqs = pnv_setup_msi_irqs,
3455 .teardown_msi_irqs = pnv_teardown_msi_irqs,
3456 #endif
3457 .enable_device_hook = pnv_pci_enable_device_hook,
3458 .window_alignment = pnv_pci_window_alignment,
3459 .reset_secondary_bus = pnv_pci_reset_secondary_bus,
3460 .dma_set_mask = pnv_npu_dma_set_mask,
3461 .shutdown = pnv_pci_ioda_shutdown,
3462 };
3463
3464 static void __init pnv_pci_init_ioda_phb(struct device_node *np,
3465 u64 hub_id, int ioda_type)
3466 {
3467 struct pci_controller *hose;
3468 struct pnv_phb *phb;
3469 unsigned long size, m64map_off, m32map_off, pemap_off;
3470 unsigned long iomap_off = 0, dma32map_off = 0;
3471 const __be64 *prop64;
3472 const __be32 *prop32;
3473 int len;
3474 unsigned int segno;
3475 u64 phb_id;
3476 void *aux;
3477 long rc;
3478
3479 pr_info("Initializing %s PHB (%s)\n",
3480 pnv_phb_names[ioda_type], of_node_full_name(np));
3481
3482 prop64 = of_get_property(np, "ibm,opal-phbid", NULL);
3483 if (!prop64) {
3484 pr_err(" Missing \"ibm,opal-phbid\" property !\n");
3485 return;
3486 }
3487 phb_id = be64_to_cpup(prop64);
3488 pr_debug(" PHB-ID : 0x%016llx\n", phb_id);
3489
3490 phb = memblock_virt_alloc(sizeof(struct pnv_phb), 0);
3491
3492 /* Allocate PCI controller */
3493 phb->hose = hose = pcibios_alloc_controller(np);
3494 if (!phb->hose) {
3495 pr_err(" Can't allocate PCI controller for %s\n",
3496 np->full_name);
3497 memblock_free(__pa(phb), sizeof(struct pnv_phb));
3498 return;
3499 }
3500
3501 spin_lock_init(&phb->lock);
3502 prop32 = of_get_property(np, "bus-range", &len);
3503 if (prop32 && len == 8) {
3504 hose->first_busno = be32_to_cpu(prop32[0]);
3505 hose->last_busno = be32_to_cpu(prop32[1]);
3506 } else {
3507 pr_warn(" Broken <bus-range> on %s\n", np->full_name);
3508 hose->first_busno = 0;
3509 hose->last_busno = 0xff;
3510 }
3511 hose->private_data = phb;
3512 phb->hub_id = hub_id;
3513 phb->opal_id = phb_id;
3514 phb->type = ioda_type;
3515 mutex_init(&phb->ioda.pe_alloc_mutex);
3516
3517 /* Detect specific models for error handling */
3518 if (of_device_is_compatible(np, "ibm,p7ioc-pciex"))
3519 phb->model = PNV_PHB_MODEL_P7IOC;
3520 else if (of_device_is_compatible(np, "ibm,power8-pciex"))
3521 phb->model = PNV_PHB_MODEL_PHB3;
3522 else if (of_device_is_compatible(np, "ibm,power8-npu-pciex"))
3523 phb->model = PNV_PHB_MODEL_NPU;
3524 else
3525 phb->model = PNV_PHB_MODEL_UNKNOWN;
3526
3527 /* Parse 32-bit and IO ranges (if any) */
3528 pci_process_bridge_OF_ranges(hose, np, !hose->global_number);
3529
3530 /* Get registers */
3531 phb->regs = of_iomap(np, 0);
3532 if (phb->regs == NULL)
3533 pr_err(" Failed to map registers !\n");
3534
3535 /* Initialize TCE kill register */
3536 pnv_pci_ioda_setup_opal_tce_kill(phb);
3537
3538 /* Initialize more IODA stuff */
3539 phb->ioda.total_pe_num = 1;
3540 prop32 = of_get_property(np, "ibm,opal-num-pes", NULL);
3541 if (prop32)
3542 phb->ioda.total_pe_num = be32_to_cpup(prop32);
3543 prop32 = of_get_property(np, "ibm,opal-reserved-pe", NULL);
3544 if (prop32)
3545 phb->ioda.reserved_pe_idx = be32_to_cpup(prop32);
3546
3547 /* Invalidate RID to PE# mapping */
3548 for (segno = 0; segno < ARRAY_SIZE(phb->ioda.pe_rmap); segno++)
3549 phb->ioda.pe_rmap[segno] = IODA_INVALID_PE;
3550
3551 /* Parse 64-bit MMIO range */
3552 pnv_ioda_parse_m64_window(phb);
3553
3554 phb->ioda.m32_size = resource_size(&hose->mem_resources[0]);
3555 /* FW Has already off top 64k of M32 space (MSI space) */
3556 phb->ioda.m32_size += 0x10000;
3557
3558 phb->ioda.m32_segsize = phb->ioda.m32_size / phb->ioda.total_pe_num;
3559 phb->ioda.m32_pci_base = hose->mem_resources[0].start - hose->mem_offset[0];
3560 phb->ioda.io_size = hose->pci_io_size;
3561 phb->ioda.io_segsize = phb->ioda.io_size / phb->ioda.total_pe_num;
3562 phb->ioda.io_pci_base = 0; /* XXX calculate this ? */
3563
3564 /* Calculate how many 32-bit TCE segments we have */
3565 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3566 PNV_IODA1_DMA32_SEGSIZE;
3567
3568 /* Allocate aux data & arrays. We don't have IO ports on PHB3 */
3569 size = _ALIGN_UP(max_t(unsigned, phb->ioda.total_pe_num, 8) / 8,
3570 sizeof(unsigned long));
3571 m64map_off = size;
3572 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m64_segmap[0]);
3573 m32map_off = size;
3574 size += phb->ioda.total_pe_num * sizeof(phb->ioda.m32_segmap[0]);
3575 if (phb->type == PNV_PHB_IODA1) {
3576 iomap_off = size;
3577 size += phb->ioda.total_pe_num * sizeof(phb->ioda.io_segmap[0]);
3578 dma32map_off = size;
3579 size += phb->ioda.dma32_count *
3580 sizeof(phb->ioda.dma32_segmap[0]);
3581 }
3582 pemap_off = size;
3583 size += phb->ioda.total_pe_num * sizeof(struct pnv_ioda_pe);
3584 aux = memblock_virt_alloc(size, 0);
3585 phb->ioda.pe_alloc = aux;
3586 phb->ioda.m64_segmap = aux + m64map_off;
3587 phb->ioda.m32_segmap = aux + m32map_off;
3588 for (segno = 0; segno < phb->ioda.total_pe_num; segno++) {
3589 phb->ioda.m64_segmap[segno] = IODA_INVALID_PE;
3590 phb->ioda.m32_segmap[segno] = IODA_INVALID_PE;
3591 }
3592 if (phb->type == PNV_PHB_IODA1) {
3593 phb->ioda.io_segmap = aux + iomap_off;
3594 for (segno = 0; segno < phb->ioda.total_pe_num; segno++)
3595 phb->ioda.io_segmap[segno] = IODA_INVALID_PE;
3596
3597 phb->ioda.dma32_segmap = aux + dma32map_off;
3598 for (segno = 0; segno < phb->ioda.dma32_count; segno++)
3599 phb->ioda.dma32_segmap[segno] = IODA_INVALID_PE;
3600 }
3601 phb->ioda.pe_array = aux + pemap_off;
3602
3603 /*
3604 * Choose PE number for root bus, which shouldn't have
3605 * M64 resources consumed by its child devices. To pick
3606 * the PE number adjacent to the reserved one if possible.
3607 */
3608 pnv_ioda_reserve_pe(phb, phb->ioda.reserved_pe_idx);
3609 if (phb->ioda.reserved_pe_idx == 0) {
3610 phb->ioda.root_pe_idx = 1;
3611 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3612 } else if (phb->ioda.reserved_pe_idx == (phb->ioda.total_pe_num - 1)) {
3613 phb->ioda.root_pe_idx = phb->ioda.reserved_pe_idx - 1;
3614 pnv_ioda_reserve_pe(phb, phb->ioda.root_pe_idx);
3615 } else {
3616 phb->ioda.root_pe_idx = IODA_INVALID_PE;
3617 }
3618
3619 INIT_LIST_HEAD(&phb->ioda.pe_list);
3620 mutex_init(&phb->ioda.pe_list_mutex);
3621
3622 /* Calculate how many 32-bit TCE segments we have */
3623 phb->ioda.dma32_count = phb->ioda.m32_pci_base /
3624 PNV_IODA1_DMA32_SEGSIZE;
3625
3626 #if 0 /* We should really do that ... */
3627 rc = opal_pci_set_phb_mem_window(opal->phb_id,
3628 window_type,
3629 window_num,
3630 starting_real_address,
3631 starting_pci_address,
3632 segment_size);
3633 #endif
3634
3635 pr_info(" %03d (%03d) PE's M32: 0x%x [segment=0x%x]\n",
3636 phb->ioda.total_pe_num, phb->ioda.reserved_pe_idx,
3637 phb->ioda.m32_size, phb->ioda.m32_segsize);
3638 if (phb->ioda.m64_size)
3639 pr_info(" M64: 0x%lx [segment=0x%lx]\n",
3640 phb->ioda.m64_size, phb->ioda.m64_segsize);
3641 if (phb->ioda.io_size)
3642 pr_info(" IO: 0x%x [segment=0x%x]\n",
3643 phb->ioda.io_size, phb->ioda.io_segsize);
3644
3645
3646 phb->hose->ops = &pnv_pci_ops;
3647 phb->get_pe_state = pnv_ioda_get_pe_state;
3648 phb->freeze_pe = pnv_ioda_freeze_pe;
3649 phb->unfreeze_pe = pnv_ioda_unfreeze_pe;
3650
3651 /* Setup MSI support */
3652 pnv_pci_init_ioda_msis(phb);
3653
3654 /*
3655 * We pass the PCI probe flag PCI_REASSIGN_ALL_RSRC here
3656 * to let the PCI core do resource assignment. It's supposed
3657 * that the PCI core will do correct I/O and MMIO alignment
3658 * for the P2P bridge bars so that each PCI bus (excluding
3659 * the child P2P bridges) can form individual PE.
3660 */
3661 ppc_md.pcibios_fixup = pnv_pci_ioda_fixup;
3662
3663 if (phb->type == PNV_PHB_NPU) {
3664 hose->controller_ops = pnv_npu_ioda_controller_ops;
3665 } else {
3666 phb->dma_dev_setup = pnv_pci_ioda_dma_dev_setup;
3667 hose->controller_ops = pnv_pci_ioda_controller_ops;
3668 }
3669
3670 #ifdef CONFIG_PCI_IOV
3671 ppc_md.pcibios_fixup_sriov = pnv_pci_ioda_fixup_iov_resources;
3672 ppc_md.pcibios_iov_resource_alignment = pnv_pci_iov_resource_alignment;
3673 #endif
3674
3675 pci_add_flags(PCI_REASSIGN_ALL_RSRC);
3676
3677 /* Reset IODA tables to a clean state */
3678 rc = opal_pci_reset(phb_id, OPAL_RESET_PCI_IODA_TABLE, OPAL_ASSERT_RESET);
3679 if (rc)
3680 pr_warning(" OPAL Error %ld performing IODA table reset !\n", rc);
3681
3682 /* If we're running in kdump kerenl, the previous kerenl never
3683 * shutdown PCI devices correctly. We already got IODA table
3684 * cleaned out. So we have to issue PHB reset to stop all PCI
3685 * transactions from previous kerenl.
3686 */
3687 if (is_kdump_kernel()) {
3688 pr_info(" Issue PHB reset ...\n");
3689 pnv_eeh_phb_reset(hose, EEH_RESET_FUNDAMENTAL);
3690 pnv_eeh_phb_reset(hose, EEH_RESET_DEACTIVATE);
3691 }
3692
3693 /* Remove M64 resource if we can't configure it successfully */
3694 if (!phb->init_m64 || phb->init_m64(phb))
3695 hose->mem_resources[1].flags = 0;
3696 }
3697
3698 void __init pnv_pci_init_ioda2_phb(struct device_node *np)
3699 {
3700 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_IODA2);
3701 }
3702
3703 void __init pnv_pci_init_npu_phb(struct device_node *np)
3704 {
3705 pnv_pci_init_ioda_phb(np, 0, PNV_PHB_NPU);
3706 }
3707
3708 void __init pnv_pci_init_ioda_hub(struct device_node *np)
3709 {
3710 struct device_node *phbn;
3711 const __be64 *prop64;
3712 u64 hub_id;
3713
3714 pr_info("Probing IODA IO-Hub %s\n", np->full_name);
3715
3716 prop64 = of_get_property(np, "ibm,opal-hubid", NULL);
3717 if (!prop64) {
3718 pr_err(" Missing \"ibm,opal-hubid\" property !\n");
3719 return;
3720 }
3721 hub_id = be64_to_cpup(prop64);
3722 pr_devel(" HUB-ID : 0x%016llx\n", hub_id);
3723
3724 /* Count child PHBs */
3725 for_each_child_of_node(np, phbn) {
3726 /* Look for IODA1 PHBs */
3727 if (of_device_is_compatible(phbn, "ibm,ioda-phb"))
3728 pnv_pci_init_ioda_phb(phbn, hub_id, PNV_PHB_IODA1);
3729 }
3730 }