]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/powerpc/platforms/pseries/eeh.c
Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-serial
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / platforms / pseries / eeh.c
1 /*
2 * eeh.c
3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/seq_file.h>
27 #include <linux/spinlock.h>
28 #include <asm/atomic.h>
29 #include <asm/eeh.h>
30 #include <asm/eeh_event.h>
31 #include <asm/io.h>
32 #include <asm/machdep.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/rtas.h>
35
36 #undef DEBUG
37
38 /** Overview:
39 * EEH, or "Extended Error Handling" is a PCI bridge technology for
40 * dealing with PCI bus errors that can't be dealt with within the
41 * usual PCI framework, except by check-stopping the CPU. Systems
42 * that are designed for high-availability/reliability cannot afford
43 * to crash due to a "mere" PCI error, thus the need for EEH.
44 * An EEH-capable bridge operates by converting a detected error
45 * into a "slot freeze", taking the PCI adapter off-line, making
46 * the slot behave, from the OS'es point of view, as if the slot
47 * were "empty": all reads return 0xff's and all writes are silently
48 * ignored. EEH slot isolation events can be triggered by parity
49 * errors on the address or data busses (e.g. during posted writes),
50 * which in turn might be caused by low voltage on the bus, dust,
51 * vibration, humidity, radioactivity or plain-old failed hardware.
52 *
53 * Note, however, that one of the leading causes of EEH slot
54 * freeze events are buggy device drivers, buggy device microcode,
55 * or buggy device hardware. This is because any attempt by the
56 * device to bus-master data to a memory address that is not
57 * assigned to the device will trigger a slot freeze. (The idea
58 * is to prevent devices-gone-wild from corrupting system memory).
59 * Buggy hardware/drivers will have a miserable time co-existing
60 * with EEH.
61 *
62 * Ideally, a PCI device driver, when suspecting that an isolation
63 * event has occured (e.g. by reading 0xff's), will then ask EEH
64 * whether this is the case, and then take appropriate steps to
65 * reset the PCI slot, the PCI device, and then resume operations.
66 * However, until that day, the checking is done here, with the
67 * eeh_check_failure() routine embedded in the MMIO macros. If
68 * the slot is found to be isolated, an "EEH Event" is synthesized
69 * and sent out for processing.
70 */
71
72 /* If a device driver keeps reading an MMIO register in an interrupt
73 * handler after a slot isolation event has occurred, we assume it
74 * is broken and panic. This sets the threshold for how many read
75 * attempts we allow before panicking.
76 */
77 #define EEH_MAX_FAILS 100000
78
79 /* RTAS tokens */
80 static int ibm_set_eeh_option;
81 static int ibm_set_slot_reset;
82 static int ibm_read_slot_reset_state;
83 static int ibm_read_slot_reset_state2;
84 static int ibm_slot_error_detail;
85 static int ibm_get_config_addr_info;
86 static int ibm_configure_bridge;
87
88 int eeh_subsystem_enabled;
89 EXPORT_SYMBOL(eeh_subsystem_enabled);
90
91 /* Lock to avoid races due to multiple reports of an error */
92 static DEFINE_SPINLOCK(confirm_error_lock);
93
94 /* Buffer for reporting slot-error-detail rtas calls */
95 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
96 static DEFINE_SPINLOCK(slot_errbuf_lock);
97 static int eeh_error_buf_size;
98
99 /* System monitoring statistics */
100 static unsigned long no_device;
101 static unsigned long no_dn;
102 static unsigned long no_cfg_addr;
103 static unsigned long ignored_check;
104 static unsigned long total_mmio_ffs;
105 static unsigned long false_positives;
106 static unsigned long ignored_failures;
107 static unsigned long slot_resets;
108
109 #define IS_BRIDGE(class_code) (((class_code)<<16) == PCI_BASE_CLASS_BRIDGE)
110
111 /* --------------------------------------------------------------- */
112 /* Below lies the EEH event infrastructure */
113
114 void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
115 {
116 int config_addr;
117 unsigned long flags;
118 int rc;
119
120 /* Log the error with the rtas logger */
121 spin_lock_irqsave(&slot_errbuf_lock, flags);
122 memset(slot_errbuf, 0, eeh_error_buf_size);
123
124 /* Use PE configuration address, if present */
125 config_addr = pdn->eeh_config_addr;
126 if (pdn->eeh_pe_config_addr)
127 config_addr = pdn->eeh_pe_config_addr;
128
129 rc = rtas_call(ibm_slot_error_detail,
130 8, 1, NULL, config_addr,
131 BUID_HI(pdn->phb->buid),
132 BUID_LO(pdn->phb->buid), NULL, 0,
133 virt_to_phys(slot_errbuf),
134 eeh_error_buf_size,
135 severity);
136
137 if (rc == 0)
138 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
139 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
140 }
141
142 /**
143 * read_slot_reset_state - Read the reset state of a device node's slot
144 * @dn: device node to read
145 * @rets: array to return results in
146 */
147 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
148 {
149 int token, outputs;
150 int config_addr;
151
152 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
153 token = ibm_read_slot_reset_state2;
154 outputs = 4;
155 } else {
156 token = ibm_read_slot_reset_state;
157 rets[2] = 0; /* fake PE Unavailable info */
158 outputs = 3;
159 }
160
161 /* Use PE configuration address, if present */
162 config_addr = pdn->eeh_config_addr;
163 if (pdn->eeh_pe_config_addr)
164 config_addr = pdn->eeh_pe_config_addr;
165
166 return rtas_call(token, 3, outputs, rets, config_addr,
167 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
168 }
169
170 /**
171 * eeh_token_to_phys - convert EEH address token to phys address
172 * @token i/o token, should be address in the form 0xA....
173 */
174 static inline unsigned long eeh_token_to_phys(unsigned long token)
175 {
176 pte_t *ptep;
177 unsigned long pa;
178
179 ptep = find_linux_pte(init_mm.pgd, token);
180 if (!ptep)
181 return token;
182 pa = pte_pfn(*ptep) << PAGE_SHIFT;
183
184 return pa | (token & (PAGE_SIZE-1));
185 }
186
187 /**
188 * Return the "partitionable endpoint" (pe) under which this device lies
189 */
190 struct device_node * find_device_pe(struct device_node *dn)
191 {
192 while ((dn->parent) && PCI_DN(dn->parent) &&
193 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
194 dn = dn->parent;
195 }
196 return dn;
197 }
198
199 /** Mark all devices that are peers of this device as failed.
200 * Mark the device driver too, so that it can see the failure
201 * immediately; this is critical, since some drivers poll
202 * status registers in interrupts ... If a driver is polling,
203 * and the slot is frozen, then the driver can deadlock in
204 * an interrupt context, which is bad.
205 */
206
207 static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
208 {
209 while (dn) {
210 if (PCI_DN(dn)) {
211 /* Mark the pci device driver too */
212 struct pci_dev *dev = PCI_DN(dn)->pcidev;
213
214 PCI_DN(dn)->eeh_mode |= mode_flag;
215
216 if (dev && dev->driver)
217 dev->error_state = pci_channel_io_frozen;
218
219 if (dn->child)
220 __eeh_mark_slot (dn->child, mode_flag);
221 }
222 dn = dn->sibling;
223 }
224 }
225
226 void eeh_mark_slot (struct device_node *dn, int mode_flag)
227 {
228 struct pci_dev *dev;
229 dn = find_device_pe (dn);
230
231 /* Back up one, since config addrs might be shared */
232 if (PCI_DN(dn) && PCI_DN(dn)->eeh_pe_config_addr)
233 dn = dn->parent;
234
235 PCI_DN(dn)->eeh_mode |= mode_flag;
236
237 /* Mark the pci device too */
238 dev = PCI_DN(dn)->pcidev;
239 if (dev)
240 dev->error_state = pci_channel_io_frozen;
241
242 __eeh_mark_slot (dn->child, mode_flag);
243 }
244
245 static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
246 {
247 while (dn) {
248 if (PCI_DN(dn)) {
249 PCI_DN(dn)->eeh_mode &= ~mode_flag;
250 PCI_DN(dn)->eeh_check_count = 0;
251 if (dn->child)
252 __eeh_clear_slot (dn->child, mode_flag);
253 }
254 dn = dn->sibling;
255 }
256 }
257
258 void eeh_clear_slot (struct device_node *dn, int mode_flag)
259 {
260 unsigned long flags;
261 spin_lock_irqsave(&confirm_error_lock, flags);
262
263 dn = find_device_pe (dn);
264
265 /* Back up one, since config addrs might be shared */
266 if (PCI_DN(dn) && PCI_DN(dn)->eeh_pe_config_addr)
267 dn = dn->parent;
268
269 PCI_DN(dn)->eeh_mode &= ~mode_flag;
270 PCI_DN(dn)->eeh_check_count = 0;
271 __eeh_clear_slot (dn->child, mode_flag);
272 spin_unlock_irqrestore(&confirm_error_lock, flags);
273 }
274
275 /**
276 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
277 * @dn device node
278 * @dev pci device, if known
279 *
280 * Check for an EEH failure for the given device node. Call this
281 * routine if the result of a read was all 0xff's and you want to
282 * find out if this is due to an EEH slot freeze. This routine
283 * will query firmware for the EEH status.
284 *
285 * Returns 0 if there has not been an EEH error; otherwise returns
286 * a non-zero value and queues up a slot isolation event notification.
287 *
288 * It is safe to call this routine in an interrupt context.
289 */
290 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
291 {
292 int ret;
293 int rets[3];
294 unsigned long flags;
295 struct pci_dn *pdn;
296 enum pci_channel_state state;
297 int rc = 0;
298
299 total_mmio_ffs++;
300
301 if (!eeh_subsystem_enabled)
302 return 0;
303
304 if (!dn) {
305 no_dn++;
306 return 0;
307 }
308 pdn = PCI_DN(dn);
309
310 /* Access to IO BARs might get this far and still not want checking. */
311 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
312 pdn->eeh_mode & EEH_MODE_NOCHECK) {
313 ignored_check++;
314 #ifdef DEBUG
315 printk ("EEH:ignored check (%x) for %s %s\n",
316 pdn->eeh_mode, pci_name (dev), dn->full_name);
317 #endif
318 return 0;
319 }
320
321 if (!pdn->eeh_config_addr && !pdn->eeh_pe_config_addr) {
322 no_cfg_addr++;
323 return 0;
324 }
325
326 /* If we already have a pending isolation event for this
327 * slot, we know it's bad already, we don't need to check.
328 * Do this checking under a lock; as multiple PCI devices
329 * in one slot might report errors simultaneously, and we
330 * only want one error recovery routine running.
331 */
332 spin_lock_irqsave(&confirm_error_lock, flags);
333 rc = 1;
334 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
335 pdn->eeh_check_count ++;
336 if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
337 printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
338 pdn->eeh_check_count);
339 dump_stack();
340
341 /* re-read the slot reset state */
342 if (read_slot_reset_state(pdn, rets) != 0)
343 rets[0] = -1; /* reset state unknown */
344
345 /* If we are here, then we hit an infinite loop. Stop. */
346 panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
347 }
348 goto dn_unlock;
349 }
350
351 /*
352 * Now test for an EEH failure. This is VERY expensive.
353 * Note that the eeh_config_addr may be a parent device
354 * in the case of a device behind a bridge, or it may be
355 * function zero of a multi-function device.
356 * In any case they must share a common PHB.
357 */
358 ret = read_slot_reset_state(pdn, rets);
359
360 /* If the call to firmware failed, punt */
361 if (ret != 0) {
362 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
363 ret, dn->full_name);
364 false_positives++;
365 rc = 0;
366 goto dn_unlock;
367 }
368
369 /* If EEH is not supported on this device, punt. */
370 if (rets[1] != 1) {
371 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
372 ret, dn->full_name);
373 false_positives++;
374 rc = 0;
375 goto dn_unlock;
376 }
377
378 /* If not the kind of error we know about, punt. */
379 if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
380 false_positives++;
381 rc = 0;
382 goto dn_unlock;
383 }
384
385 /* Note that config-io to empty slots may fail;
386 * we recognize empty because they don't have children. */
387 if ((rets[0] == 5) && (dn->child == NULL)) {
388 false_positives++;
389 rc = 0;
390 goto dn_unlock;
391 }
392
393 slot_resets++;
394
395 /* Avoid repeated reports of this failure, including problems
396 * with other functions on this device, and functions under
397 * bridges. */
398 eeh_mark_slot (dn, EEH_MODE_ISOLATED);
399 spin_unlock_irqrestore(&confirm_error_lock, flags);
400
401 state = pci_channel_io_normal;
402 if ((rets[0] == 2) || (rets[0] == 4))
403 state = pci_channel_io_frozen;
404 if (rets[0] == 5)
405 state = pci_channel_io_perm_failure;
406 eeh_send_failure_event (dn, dev, state, rets[2]);
407
408 /* Most EEH events are due to device driver bugs. Having
409 * a stack trace will help the device-driver authors figure
410 * out what happened. So print that out. */
411 if (rets[0] != 5) dump_stack();
412 return 1;
413
414 dn_unlock:
415 spin_unlock_irqrestore(&confirm_error_lock, flags);
416 return rc;
417 }
418
419 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
420
421 /**
422 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
423 * @token i/o token, should be address in the form 0xA....
424 * @val value, should be all 1's (XXX why do we need this arg??)
425 *
426 * Check for an EEH failure at the given token address. Call this
427 * routine if the result of a read was all 0xff's and you want to
428 * find out if this is due to an EEH slot freeze event. This routine
429 * will query firmware for the EEH status.
430 *
431 * Note this routine is safe to call in an interrupt context.
432 */
433 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
434 {
435 unsigned long addr;
436 struct pci_dev *dev;
437 struct device_node *dn;
438
439 /* Finding the phys addr + pci device; this is pretty quick. */
440 addr = eeh_token_to_phys((unsigned long __force) token);
441 dev = pci_get_device_by_addr(addr);
442 if (!dev) {
443 no_device++;
444 return val;
445 }
446
447 dn = pci_device_to_OF_node(dev);
448 eeh_dn_check_failure (dn, dev);
449
450 pci_dev_put(dev);
451 return val;
452 }
453
454 EXPORT_SYMBOL(eeh_check_failure);
455
456 /* ------------------------------------------------------------- */
457 /* The code below deals with error recovery */
458
459 /**
460 * eeh_slot_availability - returns error status of slot
461 * @pdn pci device node
462 *
463 * Return negative value if a permanent error, else return
464 * a number of milliseconds to wait until the PCI slot is
465 * ready to be used.
466 */
467 static int
468 eeh_slot_availability(struct pci_dn *pdn)
469 {
470 int rc;
471 int rets[3];
472
473 rc = read_slot_reset_state(pdn, rets);
474
475 if (rc) return rc;
476
477 if (rets[1] == 0) return -1; /* EEH is not supported */
478 if (rets[0] == 0) return 0; /* Oll Korrect */
479 if (rets[0] == 5) {
480 if (rets[2] == 0) return -1; /* permanently unavailable */
481 return rets[2]; /* number of millisecs to wait */
482 }
483 if (rets[0] == 1)
484 return 250;
485
486 printk (KERN_ERR "EEH: Slot unavailable: rc=%d, rets=%d %d %d\n",
487 rc, rets[0], rets[1], rets[2]);
488 return -2;
489 }
490
491 /**
492 * rtas_pci_enable - enable MMIO or DMA transfers for this slot
493 * @pdn pci device node
494 */
495
496 int
497 rtas_pci_enable(struct pci_dn *pdn, int function)
498 {
499 int config_addr;
500 int rc;
501
502 /* Use PE configuration address, if present */
503 config_addr = pdn->eeh_config_addr;
504 if (pdn->eeh_pe_config_addr)
505 config_addr = pdn->eeh_pe_config_addr;
506
507 rc = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
508 config_addr,
509 BUID_HI(pdn->phb->buid),
510 BUID_LO(pdn->phb->buid),
511 function);
512
513 if (rc)
514 printk(KERN_WARNING "EEH: Cannot enable function %d, err=%d dn=%s\n",
515 function, rc, pdn->node->full_name);
516
517 return rc;
518 }
519
520 /**
521 * rtas_pci_slot_reset - raises/lowers the pci #RST line
522 * @pdn pci device node
523 * @state: 1/0 to raise/lower the #RST
524 *
525 * Clear the EEH-frozen condition on a slot. This routine
526 * asserts the PCI #RST line if the 'state' argument is '1',
527 * and drops the #RST line if 'state is '0'. This routine is
528 * safe to call in an interrupt context.
529 *
530 */
531
532 static void
533 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
534 {
535 int config_addr;
536 int rc;
537
538 BUG_ON (pdn==NULL);
539
540 if (!pdn->phb) {
541 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
542 pdn->node->full_name);
543 return;
544 }
545
546 /* Use PE configuration address, if present */
547 config_addr = pdn->eeh_config_addr;
548 if (pdn->eeh_pe_config_addr)
549 config_addr = pdn->eeh_pe_config_addr;
550
551 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
552 config_addr,
553 BUID_HI(pdn->phb->buid),
554 BUID_LO(pdn->phb->buid),
555 state);
556 if (rc)
557 printk (KERN_WARNING "EEH: Unable to reset the failed slot,"
558 " (%d) #RST=%d dn=%s\n",
559 rc, state, pdn->node->full_name);
560 }
561
562 /**
563 * rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
564 * @pdn: pci device node to be reset.
565 *
566 * Return 0 if success, else a non-zero value.
567 */
568
569 static void __rtas_set_slot_reset(struct pci_dn *pdn)
570 {
571 rtas_pci_slot_reset (pdn, 1);
572
573 /* The PCI bus requires that the reset be held high for at least
574 * a 100 milliseconds. We wait a bit longer 'just in case'. */
575
576 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
577 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
578
579 /* We might get hit with another EEH freeze as soon as the
580 * pci slot reset line is dropped. Make sure we don't miss
581 * these, and clear the flag now. */
582 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
583
584 rtas_pci_slot_reset (pdn, 0);
585
586 /* After a PCI slot has been reset, the PCI Express spec requires
587 * a 1.5 second idle time for the bus to stabilize, before starting
588 * up traffic. */
589 #define PCI_BUS_SETTLE_TIME_MSEC 1800
590 msleep (PCI_BUS_SETTLE_TIME_MSEC);
591 }
592
593 int rtas_set_slot_reset(struct pci_dn *pdn)
594 {
595 int i, rc;
596
597 __rtas_set_slot_reset(pdn);
598
599 /* Now double check with the firmware to make sure the device is
600 * ready to be used; if not, wait for recovery. */
601 for (i=0; i<10; i++) {
602 rc = eeh_slot_availability (pdn);
603 if (rc == 0)
604 return 0;
605
606 if (rc == -2) {
607 printk (KERN_ERR "EEH: failed (%d) to reset slot %s\n",
608 i, pdn->node->full_name);
609 __rtas_set_slot_reset(pdn);
610 continue;
611 }
612
613 if (rc < 0) {
614 printk (KERN_ERR "EEH: unrecoverable slot failure %s\n",
615 pdn->node->full_name);
616 return -1;
617 }
618
619 msleep (rc+100);
620 }
621
622 rc = eeh_slot_availability (pdn);
623 if (rc)
624 printk (KERN_ERR "EEH: timeout resetting slot %s\n", pdn->node->full_name);
625
626 return rc;
627 }
628
629 /* ------------------------------------------------------- */
630 /** Save and restore of PCI BARs
631 *
632 * Although firmware will set up BARs during boot, it doesn't
633 * set up device BAR's after a device reset, although it will,
634 * if requested, set up bridge configuration. Thus, we need to
635 * configure the PCI devices ourselves.
636 */
637
638 /**
639 * __restore_bars - Restore the Base Address Registers
640 * @pdn: pci device node
641 *
642 * Loads the PCI configuration space base address registers,
643 * the expansion ROM base address, the latency timer, and etc.
644 * from the saved values in the device node.
645 */
646 static inline void __restore_bars (struct pci_dn *pdn)
647 {
648 int i;
649
650 if (NULL==pdn->phb) return;
651 for (i=4; i<10; i++) {
652 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
653 }
654
655 /* 12 == Expansion ROM Address */
656 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
657
658 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
659 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
660
661 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
662 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
663
664 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
665 SAVED_BYTE(PCI_LATENCY_TIMER));
666
667 /* max latency, min grant, interrupt pin and line */
668 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
669 }
670
671 /**
672 * eeh_restore_bars - restore the PCI config space info
673 *
674 * This routine performs a recursive walk to the children
675 * of this device as well.
676 */
677 void eeh_restore_bars(struct pci_dn *pdn)
678 {
679 struct device_node *dn;
680 if (!pdn)
681 return;
682
683 if ((pdn->eeh_mode & EEH_MODE_SUPPORTED) && !IS_BRIDGE(pdn->class_code))
684 __restore_bars (pdn);
685
686 dn = pdn->node->child;
687 while (dn) {
688 eeh_restore_bars (PCI_DN(dn));
689 dn = dn->sibling;
690 }
691 }
692
693 /**
694 * eeh_save_bars - save device bars
695 *
696 * Save the values of the device bars. Unlike the restore
697 * routine, this routine is *not* recursive. This is because
698 * PCI devices are added individuallly; but, for the restore,
699 * an entire slot is reset at a time.
700 */
701 static void eeh_save_bars(struct pci_dn *pdn)
702 {
703 int i;
704
705 if (!pdn )
706 return;
707
708 for (i = 0; i < 16; i++)
709 rtas_read_config(pdn, i * 4, 4, &pdn->config_space[i]);
710 }
711
712 void
713 rtas_configure_bridge(struct pci_dn *pdn)
714 {
715 int config_addr;
716 int rc;
717
718 /* Use PE configuration address, if present */
719 config_addr = pdn->eeh_config_addr;
720 if (pdn->eeh_pe_config_addr)
721 config_addr = pdn->eeh_pe_config_addr;
722
723 rc = rtas_call(ibm_configure_bridge,3,1, NULL,
724 config_addr,
725 BUID_HI(pdn->phb->buid),
726 BUID_LO(pdn->phb->buid));
727 if (rc) {
728 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
729 rc, pdn->node->full_name);
730 }
731 }
732
733 /* ------------------------------------------------------------- */
734 /* The code below deals with enabling EEH for devices during the
735 * early boot sequence. EEH must be enabled before any PCI probing
736 * can be done.
737 */
738
739 #define EEH_ENABLE 1
740
741 struct eeh_early_enable_info {
742 unsigned int buid_hi;
743 unsigned int buid_lo;
744 };
745
746 /* Enable eeh for the given device node. */
747 static void *early_enable_eeh(struct device_node *dn, void *data)
748 {
749 struct eeh_early_enable_info *info = data;
750 int ret;
751 const char *status = get_property(dn, "status", NULL);
752 const u32 *class_code = get_property(dn, "class-code", NULL);
753 const u32 *vendor_id = get_property(dn, "vendor-id", NULL);
754 const u32 *device_id = get_property(dn, "device-id", NULL);
755 const u32 *regs;
756 int enable;
757 struct pci_dn *pdn = PCI_DN(dn);
758
759 pdn->class_code = 0;
760 pdn->eeh_mode = 0;
761 pdn->eeh_check_count = 0;
762 pdn->eeh_freeze_count = 0;
763
764 if (status && strcmp(status, "ok") != 0)
765 return NULL; /* ignore devices with bad status */
766
767 /* Ignore bad nodes. */
768 if (!class_code || !vendor_id || !device_id)
769 return NULL;
770
771 /* There is nothing to check on PCI to ISA bridges */
772 if (dn->type && !strcmp(dn->type, "isa")) {
773 pdn->eeh_mode |= EEH_MODE_NOCHECK;
774 return NULL;
775 }
776 pdn->class_code = *class_code;
777
778 /*
779 * Now decide if we are going to "Disable" EEH checking
780 * for this device. We still run with the EEH hardware active,
781 * but we won't be checking for ff's. This means a driver
782 * could return bad data (very bad!), an interrupt handler could
783 * hang waiting on status bits that won't change, etc.
784 * But there are a few cases like display devices that make sense.
785 */
786 enable = 1; /* i.e. we will do checking */
787 #if 0
788 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
789 enable = 0;
790 #endif
791
792 if (!enable)
793 pdn->eeh_mode |= EEH_MODE_NOCHECK;
794
795 /* Ok... see if this device supports EEH. Some do, some don't,
796 * and the only way to find out is to check each and every one. */
797 regs = get_property(dn, "reg", NULL);
798 if (regs) {
799 /* First register entry is addr (00BBSS00) */
800 /* Try to enable eeh */
801 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
802 regs[0], info->buid_hi, info->buid_lo,
803 EEH_ENABLE);
804
805 if (ret == 0) {
806 eeh_subsystem_enabled = 1;
807 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
808 pdn->eeh_config_addr = regs[0];
809
810 /* If the newer, better, ibm,get-config-addr-info is supported,
811 * then use that instead. */
812 pdn->eeh_pe_config_addr = 0;
813 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
814 unsigned int rets[2];
815 ret = rtas_call (ibm_get_config_addr_info, 4, 2, rets,
816 pdn->eeh_config_addr,
817 info->buid_hi, info->buid_lo,
818 0);
819 if (ret == 0)
820 pdn->eeh_pe_config_addr = rets[0];
821 }
822 #ifdef DEBUG
823 printk(KERN_DEBUG "EEH: %s: eeh enabled, config=%x pe_config=%x\n",
824 dn->full_name, pdn->eeh_config_addr, pdn->eeh_pe_config_addr);
825 #endif
826 } else {
827
828 /* This device doesn't support EEH, but it may have an
829 * EEH parent, in which case we mark it as supported. */
830 if (dn->parent && PCI_DN(dn->parent)
831 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
832 /* Parent supports EEH. */
833 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
834 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
835 return NULL;
836 }
837 }
838 } else {
839 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
840 dn->full_name);
841 }
842
843 eeh_save_bars(pdn);
844 return NULL;
845 }
846
847 /*
848 * Initialize EEH by trying to enable it for all of the adapters in the system.
849 * As a side effect we can determine here if eeh is supported at all.
850 * Note that we leave EEH on so failed config cycles won't cause a machine
851 * check. If a user turns off EEH for a particular adapter they are really
852 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
853 * grant access to a slot if EEH isn't enabled, and so we always enable
854 * EEH for all slots/all devices.
855 *
856 * The eeh-force-off option disables EEH checking globally, for all slots.
857 * Even if force-off is set, the EEH hardware is still enabled, so that
858 * newer systems can boot.
859 */
860 void __init eeh_init(void)
861 {
862 struct device_node *phb, *np;
863 struct eeh_early_enable_info info;
864
865 spin_lock_init(&confirm_error_lock);
866 spin_lock_init(&slot_errbuf_lock);
867
868 np = of_find_node_by_path("/rtas");
869 if (np == NULL)
870 return;
871
872 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
873 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
874 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
875 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
876 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
877 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
878 ibm_configure_bridge = rtas_token ("ibm,configure-bridge");
879
880 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
881 return;
882
883 eeh_error_buf_size = rtas_token("rtas-error-log-max");
884 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
885 eeh_error_buf_size = 1024;
886 }
887 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
888 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
889 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
890 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
891 }
892
893 /* Enable EEH for all adapters. Note that eeh requires buid's */
894 for (phb = of_find_node_by_name(NULL, "pci"); phb;
895 phb = of_find_node_by_name(phb, "pci")) {
896 unsigned long buid;
897
898 buid = get_phb_buid(phb);
899 if (buid == 0 || PCI_DN(phb) == NULL)
900 continue;
901
902 info.buid_lo = BUID_LO(buid);
903 info.buid_hi = BUID_HI(buid);
904 traverse_pci_devices(phb, early_enable_eeh, &info);
905 }
906
907 if (eeh_subsystem_enabled)
908 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
909 else
910 printk(KERN_WARNING "EEH: No capable adapters found\n");
911 }
912
913 /**
914 * eeh_add_device_early - enable EEH for the indicated device_node
915 * @dn: device node for which to set up EEH
916 *
917 * This routine must be used to perform EEH initialization for PCI
918 * devices that were added after system boot (e.g. hotplug, dlpar).
919 * This routine must be called before any i/o is performed to the
920 * adapter (inluding any config-space i/o).
921 * Whether this actually enables EEH or not for this device depends
922 * on the CEC architecture, type of the device, on earlier boot
923 * command-line arguments & etc.
924 */
925 static void eeh_add_device_early(struct device_node *dn)
926 {
927 struct pci_controller *phb;
928 struct eeh_early_enable_info info;
929
930 if (!dn || !PCI_DN(dn))
931 return;
932 phb = PCI_DN(dn)->phb;
933
934 /* USB Bus children of PCI devices will not have BUID's */
935 if (NULL == phb || 0 == phb->buid)
936 return;
937
938 info.buid_hi = BUID_HI(phb->buid);
939 info.buid_lo = BUID_LO(phb->buid);
940 early_enable_eeh(dn, &info);
941 }
942
943 void eeh_add_device_tree_early(struct device_node *dn)
944 {
945 struct device_node *sib;
946 for (sib = dn->child; sib; sib = sib->sibling)
947 eeh_add_device_tree_early(sib);
948 eeh_add_device_early(dn);
949 }
950 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
951
952 /**
953 * eeh_add_device_late - perform EEH initialization for the indicated pci device
954 * @dev: pci device for which to set up EEH
955 *
956 * This routine must be used to complete EEH initialization for PCI
957 * devices that were added after system boot (e.g. hotplug, dlpar).
958 */
959 static void eeh_add_device_late(struct pci_dev *dev)
960 {
961 struct device_node *dn;
962 struct pci_dn *pdn;
963
964 if (!dev || !eeh_subsystem_enabled)
965 return;
966
967 #ifdef DEBUG
968 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
969 #endif
970
971 pci_dev_get (dev);
972 dn = pci_device_to_OF_node(dev);
973 pdn = PCI_DN(dn);
974 pdn->pcidev = dev;
975
976 pci_addr_cache_insert_device (dev);
977 }
978
979 void eeh_add_device_tree_late(struct pci_bus *bus)
980 {
981 struct pci_dev *dev;
982
983 list_for_each_entry(dev, &bus->devices, bus_list) {
984 eeh_add_device_late(dev);
985 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
986 struct pci_bus *subbus = dev->subordinate;
987 if (subbus)
988 eeh_add_device_tree_late(subbus);
989 }
990 }
991 }
992 EXPORT_SYMBOL_GPL(eeh_add_device_tree_late);
993
994 /**
995 * eeh_remove_device - undo EEH setup for the indicated pci device
996 * @dev: pci device to be removed
997 *
998 * This routine should be called when a device is removed from
999 * a running system (e.g. by hotplug or dlpar). It unregisters
1000 * the PCI device from the EEH subsystem. I/O errors affecting
1001 * this device will no longer be detected after this call; thus,
1002 * i/o errors affecting this slot may leave this device unusable.
1003 */
1004 static void eeh_remove_device(struct pci_dev *dev)
1005 {
1006 struct device_node *dn;
1007 if (!dev || !eeh_subsystem_enabled)
1008 return;
1009
1010 /* Unregister the device with the EEH/PCI address search system */
1011 #ifdef DEBUG
1012 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
1013 #endif
1014 pci_addr_cache_remove_device(dev);
1015
1016 dn = pci_device_to_OF_node(dev);
1017 if (PCI_DN(dn)->pcidev) {
1018 PCI_DN(dn)->pcidev = NULL;
1019 pci_dev_put (dev);
1020 }
1021 }
1022
1023 void eeh_remove_bus_device(struct pci_dev *dev)
1024 {
1025 struct pci_bus *bus = dev->subordinate;
1026 struct pci_dev *child, *tmp;
1027
1028 eeh_remove_device(dev);
1029
1030 if (bus && dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1031 list_for_each_entry_safe(child, tmp, &bus->devices, bus_list)
1032 eeh_remove_bus_device(child);
1033 }
1034 }
1035 EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
1036
1037 static int proc_eeh_show(struct seq_file *m, void *v)
1038 {
1039 if (0 == eeh_subsystem_enabled) {
1040 seq_printf(m, "EEH Subsystem is globally disabled\n");
1041 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", total_mmio_ffs);
1042 } else {
1043 seq_printf(m, "EEH Subsystem is enabled\n");
1044 seq_printf(m,
1045 "no device=%ld\n"
1046 "no device node=%ld\n"
1047 "no config address=%ld\n"
1048 "check not wanted=%ld\n"
1049 "eeh_total_mmio_ffs=%ld\n"
1050 "eeh_false_positives=%ld\n"
1051 "eeh_ignored_failures=%ld\n"
1052 "eeh_slot_resets=%ld\n",
1053 no_device, no_dn, no_cfg_addr,
1054 ignored_check, total_mmio_ffs,
1055 false_positives, ignored_failures,
1056 slot_resets);
1057 }
1058
1059 return 0;
1060 }
1061
1062 static int proc_eeh_open(struct inode *inode, struct file *file)
1063 {
1064 return single_open(file, proc_eeh_show, NULL);
1065 }
1066
1067 static struct file_operations proc_eeh_operations = {
1068 .open = proc_eeh_open,
1069 .read = seq_read,
1070 .llseek = seq_lseek,
1071 .release = single_release,
1072 };
1073
1074 static int __init eeh_init_proc(void)
1075 {
1076 struct proc_dir_entry *e;
1077
1078 if (machine_is(pseries)) {
1079 e = create_proc_entry("ppc64/eeh", 0, NULL);
1080 if (e)
1081 e->proc_fops = &proc_eeh_operations;
1082 }
1083
1084 return 0;
1085 }
1086 __initcall(eeh_init_proc);