]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/platforms/pseries/eeh.c
7fbfd16d72b703b91b2e1e91a5f60935018e0af2
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / platforms / pseries / eeh.c
1 /*
2 * eeh.c
3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/delay.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/pci.h>
24 #include <linux/proc_fs.h>
25 #include <linux/rbtree.h>
26 #include <linux/seq_file.h>
27 #include <linux/spinlock.h>
28 #include <asm/atomic.h>
29 #include <asm/eeh.h>
30 #include <asm/eeh_event.h>
31 #include <asm/io.h>
32 #include <asm/machdep.h>
33 #include <asm/ppc-pci.h>
34 #include <asm/rtas.h>
35
36 #undef DEBUG
37
38 /** Overview:
39 * EEH, or "Extended Error Handling" is a PCI bridge technology for
40 * dealing with PCI bus errors that can't be dealt with within the
41 * usual PCI framework, except by check-stopping the CPU. Systems
42 * that are designed for high-availability/reliability cannot afford
43 * to crash due to a "mere" PCI error, thus the need for EEH.
44 * An EEH-capable bridge operates by converting a detected error
45 * into a "slot freeze", taking the PCI adapter off-line, making
46 * the slot behave, from the OS'es point of view, as if the slot
47 * were "empty": all reads return 0xff's and all writes are silently
48 * ignored. EEH slot isolation events can be triggered by parity
49 * errors on the address or data busses (e.g. during posted writes),
50 * which in turn might be caused by low voltage on the bus, dust,
51 * vibration, humidity, radioactivity or plain-old failed hardware.
52 *
53 * Note, however, that one of the leading causes of EEH slot
54 * freeze events are buggy device drivers, buggy device microcode,
55 * or buggy device hardware. This is because any attempt by the
56 * device to bus-master data to a memory address that is not
57 * assigned to the device will trigger a slot freeze. (The idea
58 * is to prevent devices-gone-wild from corrupting system memory).
59 * Buggy hardware/drivers will have a miserable time co-existing
60 * with EEH.
61 *
62 * Ideally, a PCI device driver, when suspecting that an isolation
63 * event has occured (e.g. by reading 0xff's), will then ask EEH
64 * whether this is the case, and then take appropriate steps to
65 * reset the PCI slot, the PCI device, and then resume operations.
66 * However, until that day, the checking is done here, with the
67 * eeh_check_failure() routine embedded in the MMIO macros. If
68 * the slot is found to be isolated, an "EEH Event" is synthesized
69 * and sent out for processing.
70 */
71
72 /* If a device driver keeps reading an MMIO register in an interrupt
73 * handler after a slot isolation event has occurred, we assume it
74 * is broken and panic. This sets the threshold for how many read
75 * attempts we allow before panicking.
76 */
77 #define EEH_MAX_FAILS 100000
78
79 /* Misc forward declaraions */
80 static void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn);
81
82 /* RTAS tokens */
83 static int ibm_set_eeh_option;
84 static int ibm_set_slot_reset;
85 static int ibm_read_slot_reset_state;
86 static int ibm_read_slot_reset_state2;
87 static int ibm_slot_error_detail;
88
89 int eeh_subsystem_enabled;
90 EXPORT_SYMBOL(eeh_subsystem_enabled);
91
92 /* Lock to avoid races due to multiple reports of an error */
93 static DEFINE_SPINLOCK(confirm_error_lock);
94
95 /* Buffer for reporting slot-error-detail rtas calls */
96 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
97 static DEFINE_SPINLOCK(slot_errbuf_lock);
98 static int eeh_error_buf_size;
99
100 /* System monitoring statistics */
101 static DEFINE_PER_CPU(unsigned long, no_device);
102 static DEFINE_PER_CPU(unsigned long, no_dn);
103 static DEFINE_PER_CPU(unsigned long, no_cfg_addr);
104 static DEFINE_PER_CPU(unsigned long, ignored_check);
105 static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
106 static DEFINE_PER_CPU(unsigned long, false_positives);
107 static DEFINE_PER_CPU(unsigned long, ignored_failures);
108 static DEFINE_PER_CPU(unsigned long, slot_resets);
109
110 /**
111 * The pci address cache subsystem. This subsystem places
112 * PCI device address resources into a red-black tree, sorted
113 * according to the address range, so that given only an i/o
114 * address, the corresponding PCI device can be **quickly**
115 * found. It is safe to perform an address lookup in an interrupt
116 * context; this ability is an important feature.
117 *
118 * Currently, the only customer of this code is the EEH subsystem;
119 * thus, this code has been somewhat tailored to suit EEH better.
120 * In particular, the cache does *not* hold the addresses of devices
121 * for which EEH is not enabled.
122 *
123 * (Implementation Note: The RB tree seems to be better/faster
124 * than any hash algo I could think of for this problem, even
125 * with the penalty of slow pointer chases for d-cache misses).
126 */
127 struct pci_io_addr_range
128 {
129 struct rb_node rb_node;
130 unsigned long addr_lo;
131 unsigned long addr_hi;
132 struct pci_dev *pcidev;
133 unsigned int flags;
134 };
135
136 static struct pci_io_addr_cache
137 {
138 struct rb_root rb_root;
139 spinlock_t piar_lock;
140 } pci_io_addr_cache_root;
141
142 static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
143 {
144 struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
145
146 while (n) {
147 struct pci_io_addr_range *piar;
148 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
149
150 if (addr < piar->addr_lo) {
151 n = n->rb_left;
152 } else {
153 if (addr > piar->addr_hi) {
154 n = n->rb_right;
155 } else {
156 pci_dev_get(piar->pcidev);
157 return piar->pcidev;
158 }
159 }
160 }
161
162 return NULL;
163 }
164
165 /**
166 * pci_get_device_by_addr - Get device, given only address
167 * @addr: mmio (PIO) phys address or i/o port number
168 *
169 * Given an mmio phys address, or a port number, find a pci device
170 * that implements this address. Be sure to pci_dev_put the device
171 * when finished. I/O port numbers are assumed to be offset
172 * from zero (that is, they do *not* have pci_io_addr added in).
173 * It is safe to call this function within an interrupt.
174 */
175 static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
176 {
177 struct pci_dev *dev;
178 unsigned long flags;
179
180 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
181 dev = __pci_get_device_by_addr(addr);
182 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
183 return dev;
184 }
185
186 #ifdef DEBUG
187 /*
188 * Handy-dandy debug print routine, does nothing more
189 * than print out the contents of our addr cache.
190 */
191 static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
192 {
193 struct rb_node *n;
194 int cnt = 0;
195
196 n = rb_first(&cache->rb_root);
197 while (n) {
198 struct pci_io_addr_range *piar;
199 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
200 printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
201 (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
202 piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
203 cnt++;
204 n = rb_next(n);
205 }
206 }
207 #endif
208
209 /* Insert address range into the rb tree. */
210 static struct pci_io_addr_range *
211 pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
212 unsigned long ahi, unsigned int flags)
213 {
214 struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
215 struct rb_node *parent = NULL;
216 struct pci_io_addr_range *piar;
217
218 /* Walk tree, find a place to insert into tree */
219 while (*p) {
220 parent = *p;
221 piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
222 if (ahi < piar->addr_lo) {
223 p = &parent->rb_left;
224 } else if (alo > piar->addr_hi) {
225 p = &parent->rb_right;
226 } else {
227 if (dev != piar->pcidev ||
228 alo != piar->addr_lo || ahi != piar->addr_hi) {
229 printk(KERN_WARNING "PIAR: overlapping address range\n");
230 }
231 return piar;
232 }
233 }
234 piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
235 if (!piar)
236 return NULL;
237
238 piar->addr_lo = alo;
239 piar->addr_hi = ahi;
240 piar->pcidev = dev;
241 piar->flags = flags;
242
243 #ifdef DEBUG
244 printk(KERN_DEBUG "PIAR: insert range=[%lx:%lx] dev=%s\n",
245 alo, ahi, pci_name (dev));
246 #endif
247
248 rb_link_node(&piar->rb_node, parent, p);
249 rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
250
251 return piar;
252 }
253
254 static void __pci_addr_cache_insert_device(struct pci_dev *dev)
255 {
256 struct device_node *dn;
257 struct pci_dn *pdn;
258 int i;
259 int inserted = 0;
260
261 dn = pci_device_to_OF_node(dev);
262 if (!dn) {
263 printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n", pci_name(dev));
264 return;
265 }
266
267 /* Skip any devices for which EEH is not enabled. */
268 pdn = PCI_DN(dn);
269 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
270 pdn->eeh_mode & EEH_MODE_NOCHECK) {
271 #ifdef DEBUG
272 printk(KERN_INFO "PCI: skip building address cache for=%s - %s\n",
273 pci_name(dev), pdn->node->full_name);
274 #endif
275 return;
276 }
277
278 /* The cache holds a reference to the device... */
279 pci_dev_get(dev);
280
281 /* Walk resources on this device, poke them into the tree */
282 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
283 unsigned long start = pci_resource_start(dev,i);
284 unsigned long end = pci_resource_end(dev,i);
285 unsigned int flags = pci_resource_flags(dev,i);
286
287 /* We are interested only bus addresses, not dma or other stuff */
288 if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
289 continue;
290 if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
291 continue;
292 pci_addr_cache_insert(dev, start, end, flags);
293 inserted = 1;
294 }
295
296 /* If there was nothing to add, the cache has no reference... */
297 if (!inserted)
298 pci_dev_put(dev);
299 }
300
301 /**
302 * pci_addr_cache_insert_device - Add a device to the address cache
303 * @dev: PCI device whose I/O addresses we are interested in.
304 *
305 * In order to support the fast lookup of devices based on addresses,
306 * we maintain a cache of devices that can be quickly searched.
307 * This routine adds a device to that cache.
308 */
309 static void pci_addr_cache_insert_device(struct pci_dev *dev)
310 {
311 unsigned long flags;
312
313 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
314 __pci_addr_cache_insert_device(dev);
315 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
316 }
317
318 static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
319 {
320 struct rb_node *n;
321 int removed = 0;
322
323 restart:
324 n = rb_first(&pci_io_addr_cache_root.rb_root);
325 while (n) {
326 struct pci_io_addr_range *piar;
327 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
328
329 if (piar->pcidev == dev) {
330 rb_erase(n, &pci_io_addr_cache_root.rb_root);
331 removed = 1;
332 kfree(piar);
333 goto restart;
334 }
335 n = rb_next(n);
336 }
337
338 /* The cache no longer holds its reference to this device... */
339 if (removed)
340 pci_dev_put(dev);
341 }
342
343 /**
344 * pci_addr_cache_remove_device - remove pci device from addr cache
345 * @dev: device to remove
346 *
347 * Remove a device from the addr-cache tree.
348 * This is potentially expensive, since it will walk
349 * the tree multiple times (once per resource).
350 * But so what; device removal doesn't need to be that fast.
351 */
352 static void pci_addr_cache_remove_device(struct pci_dev *dev)
353 {
354 unsigned long flags;
355
356 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
357 __pci_addr_cache_remove_device(dev);
358 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
359 }
360
361 /**
362 * pci_addr_cache_build - Build a cache of I/O addresses
363 *
364 * Build a cache of pci i/o addresses. This cache will be used to
365 * find the pci device that corresponds to a given address.
366 * This routine scans all pci busses to build the cache.
367 * Must be run late in boot process, after the pci controllers
368 * have been scaned for devices (after all device resources are known).
369 */
370 void __init pci_addr_cache_build(void)
371 {
372 struct device_node *dn;
373 struct pci_dev *dev = NULL;
374
375 if (!eeh_subsystem_enabled)
376 return;
377
378 spin_lock_init(&pci_io_addr_cache_root.piar_lock);
379
380 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
381 /* Ignore PCI bridges ( XXX why ??) */
382 if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
383 continue;
384 }
385 pci_addr_cache_insert_device(dev);
386
387 /* Save the BAR's; firmware doesn't restore these after EEH reset */
388 dn = pci_device_to_OF_node(dev);
389 eeh_save_bars(dev, PCI_DN(dn));
390 }
391
392 #ifdef DEBUG
393 /* Verify tree built up above, echo back the list of addrs. */
394 pci_addr_cache_print(&pci_io_addr_cache_root);
395 #endif
396 }
397
398 /* --------------------------------------------------------------- */
399 /* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
400
401 void eeh_slot_error_detail (struct pci_dn *pdn, int severity)
402 {
403 unsigned long flags;
404 int rc;
405
406 /* Log the error with the rtas logger */
407 spin_lock_irqsave(&slot_errbuf_lock, flags);
408 memset(slot_errbuf, 0, eeh_error_buf_size);
409
410 rc = rtas_call(ibm_slot_error_detail,
411 8, 1, NULL, pdn->eeh_config_addr,
412 BUID_HI(pdn->phb->buid),
413 BUID_LO(pdn->phb->buid), NULL, 0,
414 virt_to_phys(slot_errbuf),
415 eeh_error_buf_size,
416 severity);
417
418 if (rc == 0)
419 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
420 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
421 }
422
423 /**
424 * read_slot_reset_state - Read the reset state of a device node's slot
425 * @dn: device node to read
426 * @rets: array to return results in
427 */
428 static int read_slot_reset_state(struct pci_dn *pdn, int rets[])
429 {
430 int token, outputs;
431
432 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
433 token = ibm_read_slot_reset_state2;
434 outputs = 4;
435 } else {
436 token = ibm_read_slot_reset_state;
437 rets[2] = 0; /* fake PE Unavailable info */
438 outputs = 3;
439 }
440
441 return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr,
442 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
443 }
444
445 /**
446 * eeh_token_to_phys - convert EEH address token to phys address
447 * @token i/o token, should be address in the form 0xA....
448 */
449 static inline unsigned long eeh_token_to_phys(unsigned long token)
450 {
451 pte_t *ptep;
452 unsigned long pa;
453
454 ptep = find_linux_pte(init_mm.pgd, token);
455 if (!ptep)
456 return token;
457 pa = pte_pfn(*ptep) << PAGE_SHIFT;
458
459 return pa | (token & (PAGE_SIZE-1));
460 }
461
462 /**
463 * Return the "partitionable endpoint" (pe) under which this device lies
464 */
465 static struct device_node * find_device_pe(struct device_node *dn)
466 {
467 while ((dn->parent) && PCI_DN(dn->parent) &&
468 (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
469 dn = dn->parent;
470 }
471 return dn;
472 }
473
474 /** Mark all devices that are peers of this device as failed.
475 * Mark the device driver too, so that it can see the failure
476 * immediately; this is critical, since some drivers poll
477 * status registers in interrupts ... If a driver is polling,
478 * and the slot is frozen, then the driver can deadlock in
479 * an interrupt context, which is bad.
480 */
481
482 static void __eeh_mark_slot (struct device_node *dn, int mode_flag)
483 {
484 while (dn) {
485 if (PCI_DN(dn)) {
486 PCI_DN(dn)->eeh_mode |= mode_flag;
487
488 if (dn->child)
489 __eeh_mark_slot (dn->child, mode_flag);
490 }
491 dn = dn->sibling;
492 }
493 }
494
495 void eeh_mark_slot (struct device_node *dn, int mode_flag)
496 {
497 dn = find_device_pe (dn);
498 PCI_DN(dn)->eeh_mode |= mode_flag;
499 __eeh_mark_slot (dn->child, mode_flag);
500 }
501
502 static void __eeh_clear_slot (struct device_node *dn, int mode_flag)
503 {
504 while (dn) {
505 if (PCI_DN(dn)) {
506 PCI_DN(dn)->eeh_mode &= ~mode_flag;
507 PCI_DN(dn)->eeh_check_count = 0;
508 if (dn->child)
509 __eeh_clear_slot (dn->child, mode_flag);
510 }
511 dn = dn->sibling;
512 }
513 }
514
515 void eeh_clear_slot (struct device_node *dn, int mode_flag)
516 {
517 unsigned long flags;
518 spin_lock_irqsave(&confirm_error_lock, flags);
519 dn = find_device_pe (dn);
520 PCI_DN(dn)->eeh_mode &= ~mode_flag;
521 PCI_DN(dn)->eeh_check_count = 0;
522 __eeh_clear_slot (dn->child, mode_flag);
523 spin_unlock_irqrestore(&confirm_error_lock, flags);
524 }
525
526 /**
527 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
528 * @dn device node
529 * @dev pci device, if known
530 *
531 * Check for an EEH failure for the given device node. Call this
532 * routine if the result of a read was all 0xff's and you want to
533 * find out if this is due to an EEH slot freeze. This routine
534 * will query firmware for the EEH status.
535 *
536 * Returns 0 if there has not been an EEH error; otherwise returns
537 * a non-zero value and queues up a slot isolation event notification.
538 *
539 * It is safe to call this routine in an interrupt context.
540 */
541 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
542 {
543 int ret;
544 int rets[3];
545 unsigned long flags;
546 struct pci_dn *pdn;
547 int rc = 0;
548
549 __get_cpu_var(total_mmio_ffs)++;
550
551 if (!eeh_subsystem_enabled)
552 return 0;
553
554 if (!dn) {
555 __get_cpu_var(no_dn)++;
556 return 0;
557 }
558 pdn = PCI_DN(dn);
559
560 /* Access to IO BARs might get this far and still not want checking. */
561 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
562 pdn->eeh_mode & EEH_MODE_NOCHECK) {
563 __get_cpu_var(ignored_check)++;
564 #ifdef DEBUG
565 printk ("EEH:ignored check (%x) for %s %s\n",
566 pdn->eeh_mode, pci_name (dev), dn->full_name);
567 #endif
568 return 0;
569 }
570
571 if (!pdn->eeh_config_addr) {
572 __get_cpu_var(no_cfg_addr)++;
573 return 0;
574 }
575
576 /* If we already have a pending isolation event for this
577 * slot, we know it's bad already, we don't need to check.
578 * Do this checking under a lock; as multiple PCI devices
579 * in one slot might report errors simultaneously, and we
580 * only want one error recovery routine running.
581 */
582 spin_lock_irqsave(&confirm_error_lock, flags);
583 rc = 1;
584 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
585 pdn->eeh_check_count ++;
586 if (pdn->eeh_check_count >= EEH_MAX_FAILS) {
587 printk (KERN_ERR "EEH: Device driver ignored %d bad reads, panicing\n",
588 pdn->eeh_check_count);
589 dump_stack();
590
591 /* re-read the slot reset state */
592 if (read_slot_reset_state(pdn, rets) != 0)
593 rets[0] = -1; /* reset state unknown */
594
595 /* If we are here, then we hit an infinite loop. Stop. */
596 panic("EEH: MMIO halt (%d) on device:%s\n", rets[0], pci_name(dev));
597 }
598 goto dn_unlock;
599 }
600
601 /*
602 * Now test for an EEH failure. This is VERY expensive.
603 * Note that the eeh_config_addr may be a parent device
604 * in the case of a device behind a bridge, or it may be
605 * function zero of a multi-function device.
606 * In any case they must share a common PHB.
607 */
608 ret = read_slot_reset_state(pdn, rets);
609
610 /* If the call to firmware failed, punt */
611 if (ret != 0) {
612 printk(KERN_WARNING "EEH: read_slot_reset_state() failed; rc=%d dn=%s\n",
613 ret, dn->full_name);
614 __get_cpu_var(false_positives)++;
615 rc = 0;
616 goto dn_unlock;
617 }
618
619 /* If EEH is not supported on this device, punt. */
620 if (rets[1] != 1) {
621 printk(KERN_WARNING "EEH: event on unsupported device, rc=%d dn=%s\n",
622 ret, dn->full_name);
623 __get_cpu_var(false_positives)++;
624 rc = 0;
625 goto dn_unlock;
626 }
627
628 /* If not the kind of error we know about, punt. */
629 if (rets[0] != 2 && rets[0] != 4 && rets[0] != 5) {
630 __get_cpu_var(false_positives)++;
631 rc = 0;
632 goto dn_unlock;
633 }
634
635 /* Note that config-io to empty slots may fail;
636 * we recognize empty because they don't have children. */
637 if ((rets[0] == 5) && (dn->child == NULL)) {
638 __get_cpu_var(false_positives)++;
639 rc = 0;
640 goto dn_unlock;
641 }
642
643 __get_cpu_var(slot_resets)++;
644
645 /* Avoid repeated reports of this failure, including problems
646 * with other functions on this device, and functions under
647 * bridges. */
648 eeh_mark_slot (dn, EEH_MODE_ISOLATED);
649 spin_unlock_irqrestore(&confirm_error_lock, flags);
650
651 eeh_send_failure_event (dn, dev, rets[0], rets[2]);
652
653 /* Most EEH events are due to device driver bugs. Having
654 * a stack trace will help the device-driver authors figure
655 * out what happened. So print that out. */
656 if (rets[0] != 5) dump_stack();
657 return 1;
658
659 dn_unlock:
660 spin_unlock_irqrestore(&confirm_error_lock, flags);
661 return rc;
662 }
663
664 EXPORT_SYMBOL_GPL(eeh_dn_check_failure);
665
666 /**
667 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
668 * @token i/o token, should be address in the form 0xA....
669 * @val value, should be all 1's (XXX why do we need this arg??)
670 *
671 * Check for an EEH failure at the given token address. Call this
672 * routine if the result of a read was all 0xff's and you want to
673 * find out if this is due to an EEH slot freeze event. This routine
674 * will query firmware for the EEH status.
675 *
676 * Note this routine is safe to call in an interrupt context.
677 */
678 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
679 {
680 unsigned long addr;
681 struct pci_dev *dev;
682 struct device_node *dn;
683
684 /* Finding the phys addr + pci device; this is pretty quick. */
685 addr = eeh_token_to_phys((unsigned long __force) token);
686 dev = pci_get_device_by_addr(addr);
687 if (!dev) {
688 __get_cpu_var(no_device)++;
689 return val;
690 }
691
692 dn = pci_device_to_OF_node(dev);
693 eeh_dn_check_failure (dn, dev);
694
695 pci_dev_put(dev);
696 return val;
697 }
698
699 EXPORT_SYMBOL(eeh_check_failure);
700
701 /* ------------------------------------------------------------- */
702 /* The code below deals with error recovery */
703
704 /** Return negative value if a permanent error, else return
705 * a number of milliseconds to wait until the PCI slot is
706 * ready to be used.
707 */
708 static int
709 eeh_slot_availability(struct pci_dn *pdn)
710 {
711 int rc;
712 int rets[3];
713
714 rc = read_slot_reset_state(pdn, rets);
715
716 if (rc) return rc;
717
718 if (rets[1] == 0) return -1; /* EEH is not supported */
719 if (rets[0] == 0) return 0; /* Oll Korrect */
720 if (rets[0] == 5) {
721 if (rets[2] == 0) return -1; /* permanently unavailable */
722 return rets[2]; /* number of millisecs to wait */
723 }
724 return -1;
725 }
726
727 /** rtas_pci_slot_reset raises/lowers the pci #RST line
728 * state: 1/0 to raise/lower the #RST
729 *
730 * Clear the EEH-frozen condition on a slot. This routine
731 * asserts the PCI #RST line if the 'state' argument is '1',
732 * and drops the #RST line if 'state is '0'. This routine is
733 * safe to call in an interrupt context.
734 *
735 */
736
737 static void
738 rtas_pci_slot_reset(struct pci_dn *pdn, int state)
739 {
740 int rc;
741
742 BUG_ON (pdn==NULL);
743
744 if (!pdn->phb) {
745 printk (KERN_WARNING "EEH: in slot reset, device node %s has no phb\n",
746 pdn->node->full_name);
747 return;
748 }
749
750 rc = rtas_call(ibm_set_slot_reset,4,1, NULL,
751 pdn->eeh_config_addr,
752 BUID_HI(pdn->phb->buid),
753 BUID_LO(pdn->phb->buid),
754 state);
755 if (rc) {
756 printk (KERN_WARNING "EEH: Unable to reset the failed slot, (%d) #RST=%d dn=%s\n",
757 rc, state, pdn->node->full_name);
758 return;
759 }
760 }
761
762 /** rtas_set_slot_reset -- assert the pci #RST line for 1/4 second
763 * dn -- device node to be reset.
764 */
765
766 void
767 rtas_set_slot_reset(struct pci_dn *pdn)
768 {
769 int i, rc;
770
771 rtas_pci_slot_reset (pdn, 1);
772
773 /* The PCI bus requires that the reset be held high for at least
774 * a 100 milliseconds. We wait a bit longer 'just in case'. */
775
776 #define PCI_BUS_RST_HOLD_TIME_MSEC 250
777 msleep (PCI_BUS_RST_HOLD_TIME_MSEC);
778
779 /* We might get hit with another EEH freeze as soon as the
780 * pci slot reset line is dropped. Make sure we don't miss
781 * these, and clear the flag now. */
782 eeh_clear_slot (pdn->node, EEH_MODE_ISOLATED);
783
784 rtas_pci_slot_reset (pdn, 0);
785
786 /* After a PCI slot has been reset, the PCI Express spec requires
787 * a 1.5 second idle time for the bus to stabilize, before starting
788 * up traffic. */
789 #define PCI_BUS_SETTLE_TIME_MSEC 1800
790 msleep (PCI_BUS_SETTLE_TIME_MSEC);
791
792 /* Now double check with the firmware to make sure the device is
793 * ready to be used; if not, wait for recovery. */
794 for (i=0; i<10; i++) {
795 rc = eeh_slot_availability (pdn);
796 if (rc <= 0) break;
797
798 msleep (rc+100);
799 }
800 }
801
802 /* ------------------------------------------------------- */
803 /** Save and restore of PCI BARs
804 *
805 * Although firmware will set up BARs during boot, it doesn't
806 * set up device BAR's after a device reset, although it will,
807 * if requested, set up bridge configuration. Thus, we need to
808 * configure the PCI devices ourselves.
809 */
810
811 /**
812 * __restore_bars - Restore the Base Address Registers
813 * Loads the PCI configuration space base address registers,
814 * the expansion ROM base address, the latency timer, and etc.
815 * from the saved values in the device node.
816 */
817 static inline void __restore_bars (struct pci_dn *pdn)
818 {
819 int i;
820
821 if (NULL==pdn->phb) return;
822 for (i=4; i<10; i++) {
823 rtas_write_config(pdn, i*4, 4, pdn->config_space[i]);
824 }
825
826 /* 12 == Expansion ROM Address */
827 rtas_write_config(pdn, 12*4, 4, pdn->config_space[12]);
828
829 #define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
830 #define SAVED_BYTE(OFF) (((u8 *)(pdn->config_space))[BYTE_SWAP(OFF)])
831
832 rtas_write_config (pdn, PCI_CACHE_LINE_SIZE, 1,
833 SAVED_BYTE(PCI_CACHE_LINE_SIZE));
834
835 rtas_write_config (pdn, PCI_LATENCY_TIMER, 1,
836 SAVED_BYTE(PCI_LATENCY_TIMER));
837
838 /* max latency, min grant, interrupt pin and line */
839 rtas_write_config(pdn, 15*4, 4, pdn->config_space[15]);
840 }
841
842 /**
843 * eeh_restore_bars - restore the PCI config space info
844 *
845 * This routine performs a recursive walk to the children
846 * of this device as well.
847 */
848 void eeh_restore_bars(struct pci_dn *pdn)
849 {
850 struct device_node *dn;
851 if (!pdn)
852 return;
853
854 if (! pdn->eeh_is_bridge)
855 __restore_bars (pdn);
856
857 dn = pdn->node->child;
858 while (dn) {
859 eeh_restore_bars (PCI_DN(dn));
860 dn = dn->sibling;
861 }
862 }
863
864 /**
865 * eeh_save_bars - save device bars
866 *
867 * Save the values of the device bars. Unlike the restore
868 * routine, this routine is *not* recursive. This is because
869 * PCI devices are added individuallly; but, for the restore,
870 * an entire slot is reset at a time.
871 */
872 static void eeh_save_bars(struct pci_dev * pdev, struct pci_dn *pdn)
873 {
874 int i;
875
876 if (!pdev || !pdn )
877 return;
878
879 for (i = 0; i < 16; i++)
880 pci_read_config_dword(pdev, i * 4, &pdn->config_space[i]);
881
882 if (pdev->hdr_type == PCI_HEADER_TYPE_BRIDGE)
883 pdn->eeh_is_bridge = 1;
884 }
885
886 void
887 rtas_configure_bridge(struct pci_dn *pdn)
888 {
889 int token = rtas_token ("ibm,configure-bridge");
890 int rc;
891
892 if (token == RTAS_UNKNOWN_SERVICE)
893 return;
894 rc = rtas_call(token,3,1, NULL,
895 pdn->eeh_config_addr,
896 BUID_HI(pdn->phb->buid),
897 BUID_LO(pdn->phb->buid));
898 if (rc) {
899 printk (KERN_WARNING "EEH: Unable to configure device bridge (%d) for %s\n",
900 rc, pdn->node->full_name);
901 }
902 }
903
904 /* ------------------------------------------------------------- */
905 /* The code below deals with enabling EEH for devices during the
906 * early boot sequence. EEH must be enabled before any PCI probing
907 * can be done.
908 */
909
910 #define EEH_ENABLE 1
911
912 struct eeh_early_enable_info {
913 unsigned int buid_hi;
914 unsigned int buid_lo;
915 };
916
917 /* Enable eeh for the given device node. */
918 static void *early_enable_eeh(struct device_node *dn, void *data)
919 {
920 struct eeh_early_enable_info *info = data;
921 int ret;
922 char *status = get_property(dn, "status", NULL);
923 u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
924 u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
925 u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
926 u32 *regs;
927 int enable;
928 struct pci_dn *pdn = PCI_DN(dn);
929
930 pdn->eeh_mode = 0;
931 pdn->eeh_check_count = 0;
932 pdn->eeh_freeze_count = 0;
933
934 if (status && strcmp(status, "ok") != 0)
935 return NULL; /* ignore devices with bad status */
936
937 /* Ignore bad nodes. */
938 if (!class_code || !vendor_id || !device_id)
939 return NULL;
940
941 /* There is nothing to check on PCI to ISA bridges */
942 if (dn->type && !strcmp(dn->type, "isa")) {
943 pdn->eeh_mode |= EEH_MODE_NOCHECK;
944 return NULL;
945 }
946
947 /*
948 * Now decide if we are going to "Disable" EEH checking
949 * for this device. We still run with the EEH hardware active,
950 * but we won't be checking for ff's. This means a driver
951 * could return bad data (very bad!), an interrupt handler could
952 * hang waiting on status bits that won't change, etc.
953 * But there are a few cases like display devices that make sense.
954 */
955 enable = 1; /* i.e. we will do checking */
956 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
957 enable = 0;
958
959 if (!enable)
960 pdn->eeh_mode |= EEH_MODE_NOCHECK;
961
962 /* Ok... see if this device supports EEH. Some do, some don't,
963 * and the only way to find out is to check each and every one. */
964 regs = (u32 *)get_property(dn, "reg", NULL);
965 if (regs) {
966 /* First register entry is addr (00BBSS00) */
967 /* Try to enable eeh */
968 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
969 regs[0], info->buid_hi, info->buid_lo,
970 EEH_ENABLE);
971
972 if (ret == 0) {
973 eeh_subsystem_enabled = 1;
974 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
975 pdn->eeh_config_addr = regs[0];
976 #ifdef DEBUG
977 printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
978 #endif
979 } else {
980
981 /* This device doesn't support EEH, but it may have an
982 * EEH parent, in which case we mark it as supported. */
983 if (dn->parent && PCI_DN(dn->parent)
984 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
985 /* Parent supports EEH. */
986 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
987 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
988 return NULL;
989 }
990 }
991 } else {
992 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
993 dn->full_name);
994 }
995
996 return NULL;
997 }
998
999 /*
1000 * Initialize EEH by trying to enable it for all of the adapters in the system.
1001 * As a side effect we can determine here if eeh is supported at all.
1002 * Note that we leave EEH on so failed config cycles won't cause a machine
1003 * check. If a user turns off EEH for a particular adapter they are really
1004 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
1005 * grant access to a slot if EEH isn't enabled, and so we always enable
1006 * EEH for all slots/all devices.
1007 *
1008 * The eeh-force-off option disables EEH checking globally, for all slots.
1009 * Even if force-off is set, the EEH hardware is still enabled, so that
1010 * newer systems can boot.
1011 */
1012 void __init eeh_init(void)
1013 {
1014 struct device_node *phb, *np;
1015 struct eeh_early_enable_info info;
1016
1017 spin_lock_init(&confirm_error_lock);
1018 spin_lock_init(&slot_errbuf_lock);
1019
1020 np = of_find_node_by_path("/rtas");
1021 if (np == NULL)
1022 return;
1023
1024 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
1025 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
1026 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
1027 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
1028 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
1029
1030 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
1031 return;
1032
1033 eeh_error_buf_size = rtas_token("rtas-error-log-max");
1034 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
1035 eeh_error_buf_size = 1024;
1036 }
1037 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
1038 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
1039 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
1040 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
1041 }
1042
1043 /* Enable EEH for all adapters. Note that eeh requires buid's */
1044 for (phb = of_find_node_by_name(NULL, "pci"); phb;
1045 phb = of_find_node_by_name(phb, "pci")) {
1046 unsigned long buid;
1047
1048 buid = get_phb_buid(phb);
1049 if (buid == 0 || PCI_DN(phb) == NULL)
1050 continue;
1051
1052 info.buid_lo = BUID_LO(buid);
1053 info.buid_hi = BUID_HI(buid);
1054 traverse_pci_devices(phb, early_enable_eeh, &info);
1055 }
1056
1057 if (eeh_subsystem_enabled)
1058 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
1059 else
1060 printk(KERN_WARNING "EEH: No capable adapters found\n");
1061 }
1062
1063 /**
1064 * eeh_add_device_early - enable EEH for the indicated device_node
1065 * @dn: device node for which to set up EEH
1066 *
1067 * This routine must be used to perform EEH initialization for PCI
1068 * devices that were added after system boot (e.g. hotplug, dlpar).
1069 * This routine must be called before any i/o is performed to the
1070 * adapter (inluding any config-space i/o).
1071 * Whether this actually enables EEH or not for this device depends
1072 * on the CEC architecture, type of the device, on earlier boot
1073 * command-line arguments & etc.
1074 */
1075 void eeh_add_device_early(struct device_node *dn)
1076 {
1077 struct pci_controller *phb;
1078 struct eeh_early_enable_info info;
1079
1080 if (!dn || !PCI_DN(dn))
1081 return;
1082 phb = PCI_DN(dn)->phb;
1083 if (NULL == phb || 0 == phb->buid) {
1084 printk(KERN_WARNING "EEH: Expected buid but found none for %s\n",
1085 dn->full_name);
1086 dump_stack();
1087 return;
1088 }
1089
1090 info.buid_hi = BUID_HI(phb->buid);
1091 info.buid_lo = BUID_LO(phb->buid);
1092 early_enable_eeh(dn, &info);
1093 }
1094 EXPORT_SYMBOL_GPL(eeh_add_device_early);
1095
1096 void eeh_add_device_tree_early(struct device_node *dn)
1097 {
1098 struct device_node *sib;
1099 for (sib = dn->child; sib; sib = sib->sibling)
1100 eeh_add_device_tree_early(sib);
1101 eeh_add_device_early(dn);
1102 }
1103 EXPORT_SYMBOL_GPL(eeh_add_device_tree_early);
1104
1105 /**
1106 * eeh_add_device_late - perform EEH initialization for the indicated pci device
1107 * @dev: pci device for which to set up EEH
1108 *
1109 * This routine must be used to complete EEH initialization for PCI
1110 * devices that were added after system boot (e.g. hotplug, dlpar).
1111 */
1112 void eeh_add_device_late(struct pci_dev *dev)
1113 {
1114 struct device_node *dn;
1115 struct pci_dn *pdn;
1116
1117 if (!dev || !eeh_subsystem_enabled)
1118 return;
1119
1120 #ifdef DEBUG
1121 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
1122 #endif
1123
1124 pci_dev_get (dev);
1125 dn = pci_device_to_OF_node(dev);
1126 pdn = PCI_DN(dn);
1127 pdn->pcidev = dev;
1128
1129 pci_addr_cache_insert_device (dev);
1130 eeh_save_bars(dev, pdn);
1131 }
1132 EXPORT_SYMBOL_GPL(eeh_add_device_late);
1133
1134 /**
1135 * eeh_remove_device - undo EEH setup for the indicated pci device
1136 * @dev: pci device to be removed
1137 *
1138 * This routine should be when a device is removed from a running
1139 * system (e.g. by hotplug or dlpar).
1140 */
1141 void eeh_remove_device(struct pci_dev *dev)
1142 {
1143 struct device_node *dn;
1144 if (!dev || !eeh_subsystem_enabled)
1145 return;
1146
1147 /* Unregister the device with the EEH/PCI address search system */
1148 #ifdef DEBUG
1149 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
1150 #endif
1151 pci_addr_cache_remove_device(dev);
1152
1153 dn = pci_device_to_OF_node(dev);
1154 PCI_DN(dn)->pcidev = NULL;
1155 pci_dev_put (dev);
1156 }
1157 EXPORT_SYMBOL_GPL(eeh_remove_device);
1158
1159 void eeh_remove_bus_device(struct pci_dev *dev)
1160 {
1161 eeh_remove_device(dev);
1162 if (dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
1163 struct pci_bus *bus = dev->subordinate;
1164 struct list_head *ln;
1165 if (!bus)
1166 return;
1167 for (ln = bus->devices.next; ln != &bus->devices; ln = ln->next) {
1168 struct pci_dev *pdev = pci_dev_b(ln);
1169 if (pdev)
1170 eeh_remove_bus_device(pdev);
1171 }
1172 }
1173 }
1174 EXPORT_SYMBOL_GPL(eeh_remove_bus_device);
1175
1176 static int proc_eeh_show(struct seq_file *m, void *v)
1177 {
1178 unsigned int cpu;
1179 unsigned long ffs = 0, positives = 0, failures = 0;
1180 unsigned long resets = 0;
1181 unsigned long no_dev = 0, no_dn = 0, no_cfg = 0, no_check = 0;
1182
1183 for_each_cpu(cpu) {
1184 ffs += per_cpu(total_mmio_ffs, cpu);
1185 positives += per_cpu(false_positives, cpu);
1186 failures += per_cpu(ignored_failures, cpu);
1187 resets += per_cpu(slot_resets, cpu);
1188 no_dev += per_cpu(no_device, cpu);
1189 no_dn += per_cpu(no_dn, cpu);
1190 no_cfg += per_cpu(no_cfg_addr, cpu);
1191 no_check += per_cpu(ignored_check, cpu);
1192 }
1193
1194 if (0 == eeh_subsystem_enabled) {
1195 seq_printf(m, "EEH Subsystem is globally disabled\n");
1196 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
1197 } else {
1198 seq_printf(m, "EEH Subsystem is enabled\n");
1199 seq_printf(m,
1200 "no device=%ld\n"
1201 "no device node=%ld\n"
1202 "no config address=%ld\n"
1203 "check not wanted=%ld\n"
1204 "eeh_total_mmio_ffs=%ld\n"
1205 "eeh_false_positives=%ld\n"
1206 "eeh_ignored_failures=%ld\n"
1207 "eeh_slot_resets=%ld\n",
1208 no_dev, no_dn, no_cfg, no_check,
1209 ffs, positives, failures, resets);
1210 }
1211
1212 return 0;
1213 }
1214
1215 static int proc_eeh_open(struct inode *inode, struct file *file)
1216 {
1217 return single_open(file, proc_eeh_show, NULL);
1218 }
1219
1220 static struct file_operations proc_eeh_operations = {
1221 .open = proc_eeh_open,
1222 .read = seq_read,
1223 .llseek = seq_lseek,
1224 .release = single_release,
1225 };
1226
1227 static int __init eeh_init_proc(void)
1228 {
1229 struct proc_dir_entry *e;
1230
1231 if (platform_is_pseries()) {
1232 e = create_proc_entry("ppc64/eeh", 0, NULL);
1233 if (e)
1234 e->proc_fops = &proc_eeh_operations;
1235 }
1236
1237 return 0;
1238 }
1239 __initcall(eeh_init_proc);