]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/powerpc/platforms/pseries/eeh_pseries.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / platforms / pseries / eeh_pseries.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * The file intends to implement the platform dependent EEH operations on pseries.
4 * Actually, the pseries platform is built based on RTAS heavily. That means the
5 * pseries platform dependent EEH operations will be built on RTAS calls. The functions
6 * are derived from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
7 * been done.
8 *
9 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
10 * Copyright IBM Corporation 2001, 2005, 2006
11 * Copyright Dave Engebretsen & Todd Inglett 2001
12 * Copyright Linas Vepstas 2005, 2006
13 */
14
15 #include <linux/atomic.h>
16 #include <linux/delay.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/list.h>
20 #include <linux/of.h>
21 #include <linux/pci.h>
22 #include <linux/proc_fs.h>
23 #include <linux/rbtree.h>
24 #include <linux/sched.h>
25 #include <linux/seq_file.h>
26 #include <linux/spinlock.h>
27
28 #include <asm/eeh.h>
29 #include <asm/eeh_event.h>
30 #include <asm/io.h>
31 #include <asm/machdep.h>
32 #include <asm/ppc-pci.h>
33 #include <asm/rtas.h>
34
35 /* RTAS tokens */
36 static int ibm_set_eeh_option;
37 static int ibm_set_slot_reset;
38 static int ibm_read_slot_reset_state;
39 static int ibm_read_slot_reset_state2;
40 static int ibm_slot_error_detail;
41 static int ibm_get_config_addr_info;
42 static int ibm_get_config_addr_info2;
43 static int ibm_configure_pe;
44
45 #ifdef CONFIG_PCI_IOV
46 void pseries_pcibios_bus_add_device(struct pci_dev *pdev)
47 {
48 struct pci_dn *pdn = pci_get_pdn(pdev);
49 struct pci_dn *physfn_pdn;
50 struct eeh_dev *edev;
51
52 if (!pdev->is_virtfn)
53 return;
54
55 pdn->device_id = pdev->device;
56 pdn->vendor_id = pdev->vendor;
57 pdn->class_code = pdev->class;
58 /*
59 * Last allow unfreeze return code used for retrieval
60 * by user space in eeh-sysfs to show the last command
61 * completion from platform.
62 */
63 pdn->last_allow_rc = 0;
64 physfn_pdn = pci_get_pdn(pdev->physfn);
65 pdn->pe_number = physfn_pdn->pe_num_map[pdn->vf_index];
66 edev = pdn_to_eeh_dev(pdn);
67
68 /*
69 * The following operations will fail if VF's sysfs files
70 * aren't created or its resources aren't finalized.
71 */
72 eeh_add_device_early(pdn);
73 eeh_add_device_late(pdev);
74 edev->pe_config_addr = (pdn->busno << 16) | (pdn->devfn << 8);
75 eeh_rmv_from_parent_pe(edev); /* Remove as it is adding to bus pe */
76 eeh_add_to_parent_pe(edev); /* Add as VF PE type */
77 eeh_sysfs_add_device(pdev);
78
79 }
80 #endif
81
82 /*
83 * Buffer for reporting slot-error-detail rtas calls. Its here
84 * in BSS, and not dynamically alloced, so that it ends up in
85 * RMO where RTAS can access it.
86 */
87 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
88 static DEFINE_SPINLOCK(slot_errbuf_lock);
89 static int eeh_error_buf_size;
90
91 /**
92 * pseries_eeh_init - EEH platform dependent initialization
93 *
94 * EEH platform dependent initialization on pseries.
95 */
96 static int pseries_eeh_init(void)
97 {
98 /* figure out EEH RTAS function call tokens */
99 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
100 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
101 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
102 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
103 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
104 ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
105 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
106 ibm_configure_pe = rtas_token("ibm,configure-pe");
107
108 /*
109 * ibm,configure-pe and ibm,configure-bridge have the same semantics,
110 * however ibm,configure-pe can be faster. If we can't find
111 * ibm,configure-pe then fall back to using ibm,configure-bridge.
112 */
113 if (ibm_configure_pe == RTAS_UNKNOWN_SERVICE)
114 ibm_configure_pe = rtas_token("ibm,configure-bridge");
115
116 /*
117 * Necessary sanity check. We needn't check "get-config-addr-info"
118 * and its variant since the old firmware probably support address
119 * of domain/bus/slot/function for EEH RTAS operations.
120 */
121 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE ||
122 ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE ||
123 (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
124 ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) ||
125 ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE ||
126 ibm_configure_pe == RTAS_UNKNOWN_SERVICE) {
127 pr_info("EEH functionality not supported\n");
128 return -EINVAL;
129 }
130
131 /* Initialize error log lock and size */
132 spin_lock_init(&slot_errbuf_lock);
133 eeh_error_buf_size = rtas_token("rtas-error-log-max");
134 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
135 pr_info("%s: unknown EEH error log size\n",
136 __func__);
137 eeh_error_buf_size = 1024;
138 } else if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
139 pr_info("%s: EEH error log size %d exceeds the maximal %d\n",
140 __func__, eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
141 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
142 }
143
144 /* Set EEH probe mode */
145 eeh_add_flag(EEH_PROBE_MODE_DEVTREE | EEH_ENABLE_IO_FOR_LOG);
146
147 #ifdef CONFIG_PCI_IOV
148 /* Set EEH machine dependent code */
149 ppc_md.pcibios_bus_add_device = pseries_pcibios_bus_add_device;
150 #endif
151
152 return 0;
153 }
154
155 static int pseries_eeh_cap_start(struct pci_dn *pdn)
156 {
157 u32 status;
158
159 if (!pdn)
160 return 0;
161
162 rtas_read_config(pdn, PCI_STATUS, 2, &status);
163 if (!(status & PCI_STATUS_CAP_LIST))
164 return 0;
165
166 return PCI_CAPABILITY_LIST;
167 }
168
169
170 static int pseries_eeh_find_cap(struct pci_dn *pdn, int cap)
171 {
172 int pos = pseries_eeh_cap_start(pdn);
173 int cnt = 48; /* Maximal number of capabilities */
174 u32 id;
175
176 if (!pos)
177 return 0;
178
179 while (cnt--) {
180 rtas_read_config(pdn, pos, 1, &pos);
181 if (pos < 0x40)
182 break;
183 pos &= ~3;
184 rtas_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
185 if (id == 0xff)
186 break;
187 if (id == cap)
188 return pos;
189 pos += PCI_CAP_LIST_NEXT;
190 }
191
192 return 0;
193 }
194
195 static int pseries_eeh_find_ecap(struct pci_dn *pdn, int cap)
196 {
197 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
198 u32 header;
199 int pos = 256;
200 int ttl = (4096 - 256) / 8;
201
202 if (!edev || !edev->pcie_cap)
203 return 0;
204 if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
205 return 0;
206 else if (!header)
207 return 0;
208
209 while (ttl-- > 0) {
210 if (PCI_EXT_CAP_ID(header) == cap && pos)
211 return pos;
212
213 pos = PCI_EXT_CAP_NEXT(header);
214 if (pos < 256)
215 break;
216
217 if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
218 break;
219 }
220
221 return 0;
222 }
223
224 /**
225 * pseries_eeh_probe - EEH probe on the given device
226 * @pdn: PCI device node
227 * @data: Unused
228 *
229 * When EEH module is installed during system boot, all PCI devices
230 * are checked one by one to see if it supports EEH. The function
231 * is introduced for the purpose.
232 */
233 static void *pseries_eeh_probe(struct pci_dn *pdn, void *data)
234 {
235 struct eeh_dev *edev;
236 struct eeh_pe pe;
237 u32 pcie_flags;
238 int enable = 0;
239 int ret;
240
241 /* Retrieve OF node and eeh device */
242 edev = pdn_to_eeh_dev(pdn);
243 if (!edev || edev->pe)
244 return NULL;
245
246 /* Check class/vendor/device IDs */
247 if (!pdn->vendor_id || !pdn->device_id || !pdn->class_code)
248 return NULL;
249
250 /* Skip for PCI-ISA bridge */
251 if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
252 return NULL;
253
254 /*
255 * Update class code and mode of eeh device. We need
256 * correctly reflects that current device is root port
257 * or PCIe switch downstream port.
258 */
259 edev->class_code = pdn->class_code;
260 edev->pcix_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
261 edev->pcie_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
262 edev->aer_cap = pseries_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
263 edev->mode &= 0xFFFFFF00;
264 if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
265 edev->mode |= EEH_DEV_BRIDGE;
266 if (edev->pcie_cap) {
267 rtas_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
268 2, &pcie_flags);
269 pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
270 if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
271 edev->mode |= EEH_DEV_ROOT_PORT;
272 else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
273 edev->mode |= EEH_DEV_DS_PORT;
274 }
275 }
276
277 /* Initialize the fake PE */
278 memset(&pe, 0, sizeof(struct eeh_pe));
279 pe.phb = pdn->phb;
280 pe.config_addr = (pdn->busno << 16) | (pdn->devfn << 8);
281
282 /* Enable EEH on the device */
283 ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
284 if (!ret) {
285 /* Retrieve PE address */
286 edev->pe_config_addr = eeh_ops->get_pe_addr(&pe);
287 pe.addr = edev->pe_config_addr;
288
289 /* Some older systems (Power4) allow the ibm,set-eeh-option
290 * call to succeed even on nodes where EEH is not supported.
291 * Verify support explicitly.
292 */
293 ret = eeh_ops->get_state(&pe, NULL);
294 if (ret > 0 && ret != EEH_STATE_NOT_SUPPORT)
295 enable = 1;
296
297 if (enable) {
298 eeh_add_flag(EEH_ENABLED);
299 eeh_add_to_parent_pe(edev);
300
301 pr_debug("%s: EEH enabled on %02x:%02x.%01x PHB#%x-PE#%x\n",
302 __func__, pdn->busno, PCI_SLOT(pdn->devfn),
303 PCI_FUNC(pdn->devfn), pe.phb->global_number,
304 pe.addr);
305 } else if (pdn->parent && pdn_to_eeh_dev(pdn->parent) &&
306 (pdn_to_eeh_dev(pdn->parent))->pe) {
307 /* This device doesn't support EEH, but it may have an
308 * EEH parent, in which case we mark it as supported.
309 */
310 edev->pe_config_addr = pdn_to_eeh_dev(pdn->parent)->pe_config_addr;
311 eeh_add_to_parent_pe(edev);
312 }
313 }
314
315 /* Save memory bars */
316 eeh_save_bars(edev);
317
318 return NULL;
319 }
320
321 /**
322 * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
323 * @pe: EEH PE
324 * @option: operation to be issued
325 *
326 * The function is used to control the EEH functionality globally.
327 * Currently, following options are support according to PAPR:
328 * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
329 */
330 static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
331 {
332 int ret = 0;
333 int config_addr;
334
335 /*
336 * When we're enabling or disabling EEH functioality on
337 * the particular PE, the PE config address is possibly
338 * unavailable. Therefore, we have to figure it out from
339 * the FDT node.
340 */
341 switch (option) {
342 case EEH_OPT_DISABLE:
343 case EEH_OPT_ENABLE:
344 case EEH_OPT_THAW_MMIO:
345 case EEH_OPT_THAW_DMA:
346 config_addr = pe->config_addr;
347 if (pe->addr)
348 config_addr = pe->addr;
349 break;
350 case EEH_OPT_FREEZE_PE:
351 /* Not support */
352 return 0;
353 default:
354 pr_err("%s: Invalid option %d\n",
355 __func__, option);
356 return -EINVAL;
357 }
358
359 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
360 config_addr, BUID_HI(pe->phb->buid),
361 BUID_LO(pe->phb->buid), option);
362
363 return ret;
364 }
365
366 /**
367 * pseries_eeh_get_pe_addr - Retrieve PE address
368 * @pe: EEH PE
369 *
370 * Retrieve the assocated PE address. Actually, there're 2 RTAS
371 * function calls dedicated for the purpose. We need implement
372 * it through the new function and then the old one. Besides,
373 * you should make sure the config address is figured out from
374 * FDT node before calling the function.
375 *
376 * It's notable that zero'ed return value means invalid PE config
377 * address.
378 */
379 static int pseries_eeh_get_pe_addr(struct eeh_pe *pe)
380 {
381 int ret = 0;
382 int rets[3];
383
384 if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
385 /*
386 * First of all, we need to make sure there has one PE
387 * associated with the device. Otherwise, PE address is
388 * meaningless.
389 */
390 ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
391 pe->config_addr, BUID_HI(pe->phb->buid),
392 BUID_LO(pe->phb->buid), 1);
393 if (ret || (rets[0] == 0))
394 return 0;
395
396 /* Retrieve the associated PE config address */
397 ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
398 pe->config_addr, BUID_HI(pe->phb->buid),
399 BUID_LO(pe->phb->buid), 0);
400 if (ret) {
401 pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
402 __func__, pe->phb->global_number, pe->config_addr);
403 return 0;
404 }
405
406 return rets[0];
407 }
408
409 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
410 ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
411 pe->config_addr, BUID_HI(pe->phb->buid),
412 BUID_LO(pe->phb->buid), 0);
413 if (ret) {
414 pr_warn("%s: Failed to get address for PHB#%x-PE#%x\n",
415 __func__, pe->phb->global_number, pe->config_addr);
416 return 0;
417 }
418
419 return rets[0];
420 }
421
422 return ret;
423 }
424
425 /**
426 * pseries_eeh_get_state - Retrieve PE state
427 * @pe: EEH PE
428 * @delay: suggested time to wait if state is unavailable
429 *
430 * Retrieve the state of the specified PE. On RTAS compliant
431 * pseries platform, there already has one dedicated RTAS function
432 * for the purpose. It's notable that the associated PE config address
433 * might be ready when calling the function. Therefore, endeavour to
434 * use the PE config address if possible. Further more, there're 2
435 * RTAS calls for the purpose, we need to try the new one and back
436 * to the old one if the new one couldn't work properly.
437 */
438 static int pseries_eeh_get_state(struct eeh_pe *pe, int *delay)
439 {
440 int config_addr;
441 int ret;
442 int rets[4];
443 int result;
444
445 /* Figure out PE config address if possible */
446 config_addr = pe->config_addr;
447 if (pe->addr)
448 config_addr = pe->addr;
449
450 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
451 ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
452 config_addr, BUID_HI(pe->phb->buid),
453 BUID_LO(pe->phb->buid));
454 } else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
455 /* Fake PE unavailable info */
456 rets[2] = 0;
457 ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
458 config_addr, BUID_HI(pe->phb->buid),
459 BUID_LO(pe->phb->buid));
460 } else {
461 return EEH_STATE_NOT_SUPPORT;
462 }
463
464 if (ret)
465 return ret;
466
467 /* Parse the result out */
468 if (!rets[1])
469 return EEH_STATE_NOT_SUPPORT;
470
471 switch(rets[0]) {
472 case 0:
473 result = EEH_STATE_MMIO_ACTIVE |
474 EEH_STATE_DMA_ACTIVE;
475 break;
476 case 1:
477 result = EEH_STATE_RESET_ACTIVE |
478 EEH_STATE_MMIO_ACTIVE |
479 EEH_STATE_DMA_ACTIVE;
480 break;
481 case 2:
482 result = 0;
483 break;
484 case 4:
485 result = EEH_STATE_MMIO_ENABLED;
486 break;
487 case 5:
488 if (rets[2]) {
489 if (delay)
490 *delay = rets[2];
491 result = EEH_STATE_UNAVAILABLE;
492 } else {
493 result = EEH_STATE_NOT_SUPPORT;
494 }
495 break;
496 default:
497 result = EEH_STATE_NOT_SUPPORT;
498 }
499
500 return result;
501 }
502
503 /**
504 * pseries_eeh_reset - Reset the specified PE
505 * @pe: EEH PE
506 * @option: reset option
507 *
508 * Reset the specified PE
509 */
510 static int pseries_eeh_reset(struct eeh_pe *pe, int option)
511 {
512 int config_addr;
513 int ret;
514
515 /* Figure out PE address */
516 config_addr = pe->config_addr;
517 if (pe->addr)
518 config_addr = pe->addr;
519
520 /* Reset PE through RTAS call */
521 ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
522 config_addr, BUID_HI(pe->phb->buid),
523 BUID_LO(pe->phb->buid), option);
524
525 /* If fundamental-reset not supported, try hot-reset */
526 if (option == EEH_RESET_FUNDAMENTAL &&
527 ret == -8) {
528 option = EEH_RESET_HOT;
529 ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
530 config_addr, BUID_HI(pe->phb->buid),
531 BUID_LO(pe->phb->buid), option);
532 }
533
534 /* We need reset hold or settlement delay */
535 if (option == EEH_RESET_FUNDAMENTAL ||
536 option == EEH_RESET_HOT)
537 msleep(EEH_PE_RST_HOLD_TIME);
538 else
539 msleep(EEH_PE_RST_SETTLE_TIME);
540
541 return ret;
542 }
543
544 /**
545 * pseries_eeh_get_log - Retrieve error log
546 * @pe: EEH PE
547 * @severity: temporary or permanent error log
548 * @drv_log: driver log to be combined with retrieved error log
549 * @len: length of driver log
550 *
551 * Retrieve the temporary or permanent error from the PE.
552 * Actually, the error will be retrieved through the dedicated
553 * RTAS call.
554 */
555 static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
556 {
557 int config_addr;
558 unsigned long flags;
559 int ret;
560
561 spin_lock_irqsave(&slot_errbuf_lock, flags);
562 memset(slot_errbuf, 0, eeh_error_buf_size);
563
564 /* Figure out the PE address */
565 config_addr = pe->config_addr;
566 if (pe->addr)
567 config_addr = pe->addr;
568
569 ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, config_addr,
570 BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
571 virt_to_phys(drv_log), len,
572 virt_to_phys(slot_errbuf), eeh_error_buf_size,
573 severity);
574 if (!ret)
575 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
576 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
577
578 return ret;
579 }
580
581 /**
582 * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
583 * @pe: EEH PE
584 *
585 * The function will be called to reconfigure the bridges included
586 * in the specified PE so that the mulfunctional PE would be recovered
587 * again.
588 */
589 static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
590 {
591 int config_addr;
592 int ret;
593 /* Waiting 0.2s maximum before skipping configuration */
594 int max_wait = 200;
595
596 /* Figure out the PE address */
597 config_addr = pe->config_addr;
598 if (pe->addr)
599 config_addr = pe->addr;
600
601 while (max_wait > 0) {
602 ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
603 config_addr, BUID_HI(pe->phb->buid),
604 BUID_LO(pe->phb->buid));
605
606 if (!ret)
607 return ret;
608
609 /*
610 * If RTAS returns a delay value that's above 100ms, cut it
611 * down to 100ms in case firmware made a mistake. For more
612 * on how these delay values work see rtas_busy_delay_time
613 */
614 if (ret > RTAS_EXTENDED_DELAY_MIN+2 &&
615 ret <= RTAS_EXTENDED_DELAY_MAX)
616 ret = RTAS_EXTENDED_DELAY_MIN+2;
617
618 max_wait -= rtas_busy_delay_time(ret);
619
620 if (max_wait < 0)
621 break;
622
623 rtas_busy_delay(ret);
624 }
625
626 pr_warn("%s: Unable to configure bridge PHB#%x-PE#%x (%d)\n",
627 __func__, pe->phb->global_number, pe->addr, ret);
628 return ret;
629 }
630
631 /**
632 * pseries_eeh_read_config - Read PCI config space
633 * @pdn: PCI device node
634 * @where: PCI address
635 * @size: size to read
636 * @val: return value
637 *
638 * Read config space from the speicifed device
639 */
640 static int pseries_eeh_read_config(struct pci_dn *pdn, int where, int size, u32 *val)
641 {
642 return rtas_read_config(pdn, where, size, val);
643 }
644
645 /**
646 * pseries_eeh_write_config - Write PCI config space
647 * @pdn: PCI device node
648 * @where: PCI address
649 * @size: size to write
650 * @val: value to be written
651 *
652 * Write config space to the specified device
653 */
654 static int pseries_eeh_write_config(struct pci_dn *pdn, int where, int size, u32 val)
655 {
656 return rtas_write_config(pdn, where, size, val);
657 }
658
659 static int pseries_eeh_restore_config(struct pci_dn *pdn)
660 {
661 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
662 s64 ret = 0;
663
664 if (!edev)
665 return -EEXIST;
666
667 /*
668 * FIXME: The MPS, error routing rules, timeout setting are worthy
669 * to be exported by firmware in extendible way.
670 */
671 if (edev->physfn)
672 ret = eeh_restore_vf_config(pdn);
673
674 if (ret) {
675 pr_warn("%s: Can't reinit PCI dev 0x%x (%lld)\n",
676 __func__, edev->pe_config_addr, ret);
677 return -EIO;
678 }
679
680 return ret;
681 }
682
683 #ifdef CONFIG_PCI_IOV
684 int pseries_send_allow_unfreeze(struct pci_dn *pdn,
685 u16 *vf_pe_array, int cur_vfs)
686 {
687 int rc;
688 int ibm_allow_unfreeze = rtas_token("ibm,open-sriov-allow-unfreeze");
689 unsigned long buid, addr;
690
691 addr = rtas_config_addr(pdn->busno, pdn->devfn, 0);
692 buid = pdn->phb->buid;
693 spin_lock(&rtas_data_buf_lock);
694 memcpy(rtas_data_buf, vf_pe_array, RTAS_DATA_BUF_SIZE);
695 rc = rtas_call(ibm_allow_unfreeze, 5, 1, NULL,
696 addr,
697 BUID_HI(buid),
698 BUID_LO(buid),
699 rtas_data_buf, cur_vfs * sizeof(u16));
700 spin_unlock(&rtas_data_buf_lock);
701 if (rc)
702 pr_warn("%s: Failed to allow unfreeze for PHB#%x-PE#%lx, rc=%x\n",
703 __func__,
704 pdn->phb->global_number, addr, rc);
705 return rc;
706 }
707
708 static int pseries_call_allow_unfreeze(struct eeh_dev *edev)
709 {
710 struct pci_dn *pdn, *tmp, *parent, *physfn_pdn;
711 int cur_vfs = 0, rc = 0, vf_index, bus, devfn;
712 u16 *vf_pe_array;
713
714 vf_pe_array = kzalloc(RTAS_DATA_BUF_SIZE, GFP_KERNEL);
715 if (!vf_pe_array)
716 return -ENOMEM;
717 if (pci_num_vf(edev->physfn ? edev->physfn : edev->pdev)) {
718 if (edev->pdev->is_physfn) {
719 cur_vfs = pci_num_vf(edev->pdev);
720 pdn = eeh_dev_to_pdn(edev);
721 parent = pdn->parent;
722 for (vf_index = 0; vf_index < cur_vfs; vf_index++)
723 vf_pe_array[vf_index] =
724 cpu_to_be16(pdn->pe_num_map[vf_index]);
725 rc = pseries_send_allow_unfreeze(pdn, vf_pe_array,
726 cur_vfs);
727 pdn->last_allow_rc = rc;
728 for (vf_index = 0; vf_index < cur_vfs; vf_index++) {
729 list_for_each_entry_safe(pdn, tmp,
730 &parent->child_list,
731 list) {
732 bus = pci_iov_virtfn_bus(edev->pdev,
733 vf_index);
734 devfn = pci_iov_virtfn_devfn(edev->pdev,
735 vf_index);
736 if (pdn->busno != bus ||
737 pdn->devfn != devfn)
738 continue;
739 pdn->last_allow_rc = rc;
740 }
741 }
742 } else {
743 pdn = pci_get_pdn(edev->pdev);
744 vf_pe_array[0] = cpu_to_be16(pdn->pe_number);
745 physfn_pdn = pci_get_pdn(edev->physfn);
746 rc = pseries_send_allow_unfreeze(physfn_pdn,
747 vf_pe_array, 1);
748 pdn->last_allow_rc = rc;
749 }
750 }
751
752 kfree(vf_pe_array);
753 return rc;
754 }
755
756 static int pseries_notify_resume(struct pci_dn *pdn)
757 {
758 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
759
760 if (!edev)
761 return -EEXIST;
762
763 if (rtas_token("ibm,open-sriov-allow-unfreeze")
764 == RTAS_UNKNOWN_SERVICE)
765 return -EINVAL;
766
767 if (edev->pdev->is_physfn || edev->pdev->is_virtfn)
768 return pseries_call_allow_unfreeze(edev);
769
770 return 0;
771 }
772 #endif
773
774 static struct eeh_ops pseries_eeh_ops = {
775 .name = "pseries",
776 .init = pseries_eeh_init,
777 .probe = pseries_eeh_probe,
778 .set_option = pseries_eeh_set_option,
779 .get_pe_addr = pseries_eeh_get_pe_addr,
780 .get_state = pseries_eeh_get_state,
781 .reset = pseries_eeh_reset,
782 .get_log = pseries_eeh_get_log,
783 .configure_bridge = pseries_eeh_configure_bridge,
784 .err_inject = NULL,
785 .read_config = pseries_eeh_read_config,
786 .write_config = pseries_eeh_write_config,
787 .next_error = NULL,
788 .restore_config = pseries_eeh_restore_config,
789 #ifdef CONFIG_PCI_IOV
790 .notify_resume = pseries_notify_resume
791 #endif
792 };
793
794 /**
795 * eeh_pseries_init - Register platform dependent EEH operations
796 *
797 * EEH initialization on pseries platform. This function should be
798 * called before any EEH related functions.
799 */
800 static int __init eeh_pseries_init(void)
801 {
802 int ret;
803
804 ret = eeh_ops_register(&pseries_eeh_ops);
805 if (!ret)
806 pr_info("EEH: pSeries platform initialized\n");
807 else
808 pr_info("EEH: pSeries platform initialization failure (%d)\n",
809 ret);
810
811 return ret;
812 }
813 machine_early_initcall(pseries, eeh_pseries_init);