]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/powerpc/platforms/pseries/eeh_pseries.c
Merge tag 'remoteproc-4.1-next' of git://git.kernel.org/pub/scm/linux/kernel/git...
[mirror_ubuntu-bionic-kernel.git] / arch / powerpc / platforms / pseries / eeh_pseries.c
1 /*
2 * The file intends to implement the platform dependent EEH operations on pseries.
3 * Actually, the pseries platform is built based on RTAS heavily. That means the
4 * pseries platform dependent EEH operations will be built on RTAS calls. The functions
5 * are devired from arch/powerpc/platforms/pseries/eeh.c and necessary cleanup has
6 * been done.
7 *
8 * Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2011.
9 * Copyright IBM Corporation 2001, 2005, 2006
10 * Copyright Dave Engebretsen & Todd Inglett 2001
11 * Copyright Linas Vepstas 2005, 2006
12 *
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
17 *
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
22 *
23 * You should have received a copy of the GNU General Public License
24 * along with this program; if not, write to the Free Software
25 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
26 */
27
28 #include <linux/atomic.h>
29 #include <linux/delay.h>
30 #include <linux/export.h>
31 #include <linux/init.h>
32 #include <linux/list.h>
33 #include <linux/of.h>
34 #include <linux/pci.h>
35 #include <linux/proc_fs.h>
36 #include <linux/rbtree.h>
37 #include <linux/sched.h>
38 #include <linux/seq_file.h>
39 #include <linux/spinlock.h>
40
41 #include <asm/eeh.h>
42 #include <asm/eeh_event.h>
43 #include <asm/io.h>
44 #include <asm/machdep.h>
45 #include <asm/ppc-pci.h>
46 #include <asm/rtas.h>
47
48 /* RTAS tokens */
49 static int ibm_set_eeh_option;
50 static int ibm_set_slot_reset;
51 static int ibm_read_slot_reset_state;
52 static int ibm_read_slot_reset_state2;
53 static int ibm_slot_error_detail;
54 static int ibm_get_config_addr_info;
55 static int ibm_get_config_addr_info2;
56 static int ibm_configure_bridge;
57 static int ibm_configure_pe;
58
59 /*
60 * Buffer for reporting slot-error-detail rtas calls. Its here
61 * in BSS, and not dynamically alloced, so that it ends up in
62 * RMO where RTAS can access it.
63 */
64 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
65 static DEFINE_SPINLOCK(slot_errbuf_lock);
66 static int eeh_error_buf_size;
67
68 /**
69 * pseries_eeh_init - EEH platform dependent initialization
70 *
71 * EEH platform dependent initialization on pseries.
72 */
73 static int pseries_eeh_init(void)
74 {
75 /* figure out EEH RTAS function call tokens */
76 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
77 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
78 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
79 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
80 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
81 ibm_get_config_addr_info2 = rtas_token("ibm,get-config-addr-info2");
82 ibm_get_config_addr_info = rtas_token("ibm,get-config-addr-info");
83 ibm_configure_pe = rtas_token("ibm,configure-pe");
84 ibm_configure_bridge = rtas_token("ibm,configure-bridge");
85
86 /*
87 * Necessary sanity check. We needn't check "get-config-addr-info"
88 * and its variant since the old firmware probably support address
89 * of domain/bus/slot/function for EEH RTAS operations.
90 */
91 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE ||
92 ibm_set_slot_reset == RTAS_UNKNOWN_SERVICE ||
93 (ibm_read_slot_reset_state2 == RTAS_UNKNOWN_SERVICE &&
94 ibm_read_slot_reset_state == RTAS_UNKNOWN_SERVICE) ||
95 ibm_slot_error_detail == RTAS_UNKNOWN_SERVICE ||
96 (ibm_configure_pe == RTAS_UNKNOWN_SERVICE &&
97 ibm_configure_bridge == RTAS_UNKNOWN_SERVICE)) {
98 pr_info("EEH functionality not supported\n");
99 return -EINVAL;
100 }
101
102 /* Initialize error log lock and size */
103 spin_lock_init(&slot_errbuf_lock);
104 eeh_error_buf_size = rtas_token("rtas-error-log-max");
105 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
106 pr_info("%s: unknown EEH error log size\n",
107 __func__);
108 eeh_error_buf_size = 1024;
109 } else if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
110 pr_info("%s: EEH error log size %d exceeds the maximal %d\n",
111 __func__, eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
112 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
113 }
114
115 /* Set EEH probe mode */
116 eeh_add_flag(EEH_PROBE_MODE_DEVTREE | EEH_ENABLE_IO_FOR_LOG);
117
118 return 0;
119 }
120
121 static int pseries_eeh_cap_start(struct pci_dn *pdn)
122 {
123 u32 status;
124
125 if (!pdn)
126 return 0;
127
128 rtas_read_config(pdn, PCI_STATUS, 2, &status);
129 if (!(status & PCI_STATUS_CAP_LIST))
130 return 0;
131
132 return PCI_CAPABILITY_LIST;
133 }
134
135
136 static int pseries_eeh_find_cap(struct pci_dn *pdn, int cap)
137 {
138 int pos = pseries_eeh_cap_start(pdn);
139 int cnt = 48; /* Maximal number of capabilities */
140 u32 id;
141
142 if (!pos)
143 return 0;
144
145 while (cnt--) {
146 rtas_read_config(pdn, pos, 1, &pos);
147 if (pos < 0x40)
148 break;
149 pos &= ~3;
150 rtas_read_config(pdn, pos + PCI_CAP_LIST_ID, 1, &id);
151 if (id == 0xff)
152 break;
153 if (id == cap)
154 return pos;
155 pos += PCI_CAP_LIST_NEXT;
156 }
157
158 return 0;
159 }
160
161 static int pseries_eeh_find_ecap(struct pci_dn *pdn, int cap)
162 {
163 struct eeh_dev *edev = pdn_to_eeh_dev(pdn);
164 u32 header;
165 int pos = 256;
166 int ttl = (4096 - 256) / 8;
167
168 if (!edev || !edev->pcie_cap)
169 return 0;
170 if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
171 return 0;
172 else if (!header)
173 return 0;
174
175 while (ttl-- > 0) {
176 if (PCI_EXT_CAP_ID(header) == cap && pos)
177 return pos;
178
179 pos = PCI_EXT_CAP_NEXT(header);
180 if (pos < 256)
181 break;
182
183 if (rtas_read_config(pdn, pos, 4, &header) != PCIBIOS_SUCCESSFUL)
184 break;
185 }
186
187 return 0;
188 }
189
190 /**
191 * pseries_eeh_probe - EEH probe on the given device
192 * @pdn: PCI device node
193 * @data: Unused
194 *
195 * When EEH module is installed during system boot, all PCI devices
196 * are checked one by one to see if it supports EEH. The function
197 * is introduced for the purpose.
198 */
199 static void *pseries_eeh_probe(struct pci_dn *pdn, void *data)
200 {
201 struct eeh_dev *edev;
202 struct eeh_pe pe;
203 u32 pcie_flags;
204 int enable = 0;
205 int ret;
206
207 /* Retrieve OF node and eeh device */
208 edev = pdn_to_eeh_dev(pdn);
209 if (!edev || edev->pe)
210 return NULL;
211
212 /* Check class/vendor/device IDs */
213 if (!pdn->vendor_id || !pdn->device_id || !pdn->class_code)
214 return NULL;
215
216 /* Skip for PCI-ISA bridge */
217 if ((pdn->class_code >> 8) == PCI_CLASS_BRIDGE_ISA)
218 return NULL;
219
220 /*
221 * Update class code and mode of eeh device. We need
222 * correctly reflects that current device is root port
223 * or PCIe switch downstream port.
224 */
225 edev->class_code = pdn->class_code;
226 edev->pcix_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_PCIX);
227 edev->pcie_cap = pseries_eeh_find_cap(pdn, PCI_CAP_ID_EXP);
228 edev->aer_cap = pseries_eeh_find_ecap(pdn, PCI_EXT_CAP_ID_ERR);
229 edev->mode &= 0xFFFFFF00;
230 if ((edev->class_code >> 8) == PCI_CLASS_BRIDGE_PCI) {
231 edev->mode |= EEH_DEV_BRIDGE;
232 if (edev->pcie_cap) {
233 rtas_read_config(pdn, edev->pcie_cap + PCI_EXP_FLAGS,
234 2, &pcie_flags);
235 pcie_flags = (pcie_flags & PCI_EXP_FLAGS_TYPE) >> 4;
236 if (pcie_flags == PCI_EXP_TYPE_ROOT_PORT)
237 edev->mode |= EEH_DEV_ROOT_PORT;
238 else if (pcie_flags == PCI_EXP_TYPE_DOWNSTREAM)
239 edev->mode |= EEH_DEV_DS_PORT;
240 }
241 }
242
243 /* Initialize the fake PE */
244 memset(&pe, 0, sizeof(struct eeh_pe));
245 pe.phb = edev->phb;
246 pe.config_addr = (pdn->busno << 16) | (pdn->devfn << 8);
247
248 /* Enable EEH on the device */
249 ret = eeh_ops->set_option(&pe, EEH_OPT_ENABLE);
250 if (!ret) {
251 /* Retrieve PE address */
252 edev->config_addr = (pdn->busno << 16) | (pdn->devfn << 8);
253 edev->pe_config_addr = eeh_ops->get_pe_addr(&pe);
254 pe.addr = edev->pe_config_addr;
255
256 /* Some older systems (Power4) allow the ibm,set-eeh-option
257 * call to succeed even on nodes where EEH is not supported.
258 * Verify support explicitly.
259 */
260 ret = eeh_ops->get_state(&pe, NULL);
261 if (ret > 0 && ret != EEH_STATE_NOT_SUPPORT)
262 enable = 1;
263
264 if (enable) {
265 eeh_add_flag(EEH_ENABLED);
266 eeh_add_to_parent_pe(edev);
267
268 pr_debug("%s: EEH enabled on %02x:%02x.%01x PHB#%d-PE#%x\n",
269 __func__, pdn->busno, PCI_SLOT(pdn->devfn),
270 PCI_FUNC(pdn->devfn), pe.phb->global_number,
271 pe.addr);
272 } else if (pdn->parent && pdn_to_eeh_dev(pdn->parent) &&
273 (pdn_to_eeh_dev(pdn->parent))->pe) {
274 /* This device doesn't support EEH, but it may have an
275 * EEH parent, in which case we mark it as supported.
276 */
277 edev->config_addr = pdn_to_eeh_dev(pdn->parent)->config_addr;
278 edev->pe_config_addr = pdn_to_eeh_dev(pdn->parent)->pe_config_addr;
279 eeh_add_to_parent_pe(edev);
280 }
281 }
282
283 /* Save memory bars */
284 eeh_save_bars(edev);
285
286 return NULL;
287 }
288
289 /**
290 * pseries_eeh_set_option - Initialize EEH or MMIO/DMA reenable
291 * @pe: EEH PE
292 * @option: operation to be issued
293 *
294 * The function is used to control the EEH functionality globally.
295 * Currently, following options are support according to PAPR:
296 * Enable EEH, Disable EEH, Enable MMIO and Enable DMA
297 */
298 static int pseries_eeh_set_option(struct eeh_pe *pe, int option)
299 {
300 int ret = 0;
301 int config_addr;
302
303 /*
304 * When we're enabling or disabling EEH functioality on
305 * the particular PE, the PE config address is possibly
306 * unavailable. Therefore, we have to figure it out from
307 * the FDT node.
308 */
309 switch (option) {
310 case EEH_OPT_DISABLE:
311 case EEH_OPT_ENABLE:
312 case EEH_OPT_THAW_MMIO:
313 case EEH_OPT_THAW_DMA:
314 config_addr = pe->config_addr;
315 if (pe->addr)
316 config_addr = pe->addr;
317 break;
318 case EEH_OPT_FREEZE_PE:
319 /* Not support */
320 return 0;
321 default:
322 pr_err("%s: Invalid option %d\n",
323 __func__, option);
324 return -EINVAL;
325 }
326
327 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
328 config_addr, BUID_HI(pe->phb->buid),
329 BUID_LO(pe->phb->buid), option);
330
331 return ret;
332 }
333
334 /**
335 * pseries_eeh_get_pe_addr - Retrieve PE address
336 * @pe: EEH PE
337 *
338 * Retrieve the assocated PE address. Actually, there're 2 RTAS
339 * function calls dedicated for the purpose. We need implement
340 * it through the new function and then the old one. Besides,
341 * you should make sure the config address is figured out from
342 * FDT node before calling the function.
343 *
344 * It's notable that zero'ed return value means invalid PE config
345 * address.
346 */
347 static int pseries_eeh_get_pe_addr(struct eeh_pe *pe)
348 {
349 int ret = 0;
350 int rets[3];
351
352 if (ibm_get_config_addr_info2 != RTAS_UNKNOWN_SERVICE) {
353 /*
354 * First of all, we need to make sure there has one PE
355 * associated with the device. Otherwise, PE address is
356 * meaningless.
357 */
358 ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
359 pe->config_addr, BUID_HI(pe->phb->buid),
360 BUID_LO(pe->phb->buid), 1);
361 if (ret || (rets[0] == 0))
362 return 0;
363
364 /* Retrieve the associated PE config address */
365 ret = rtas_call(ibm_get_config_addr_info2, 4, 2, rets,
366 pe->config_addr, BUID_HI(pe->phb->buid),
367 BUID_LO(pe->phb->buid), 0);
368 if (ret) {
369 pr_warn("%s: Failed to get address for PHB#%d-PE#%x\n",
370 __func__, pe->phb->global_number, pe->config_addr);
371 return 0;
372 }
373
374 return rets[0];
375 }
376
377 if (ibm_get_config_addr_info != RTAS_UNKNOWN_SERVICE) {
378 ret = rtas_call(ibm_get_config_addr_info, 4, 2, rets,
379 pe->config_addr, BUID_HI(pe->phb->buid),
380 BUID_LO(pe->phb->buid), 0);
381 if (ret) {
382 pr_warn("%s: Failed to get address for PHB#%d-PE#%x\n",
383 __func__, pe->phb->global_number, pe->config_addr);
384 return 0;
385 }
386
387 return rets[0];
388 }
389
390 return ret;
391 }
392
393 /**
394 * pseries_eeh_get_state - Retrieve PE state
395 * @pe: EEH PE
396 * @state: return value
397 *
398 * Retrieve the state of the specified PE. On RTAS compliant
399 * pseries platform, there already has one dedicated RTAS function
400 * for the purpose. It's notable that the associated PE config address
401 * might be ready when calling the function. Therefore, endeavour to
402 * use the PE config address if possible. Further more, there're 2
403 * RTAS calls for the purpose, we need to try the new one and back
404 * to the old one if the new one couldn't work properly.
405 */
406 static int pseries_eeh_get_state(struct eeh_pe *pe, int *state)
407 {
408 int config_addr;
409 int ret;
410 int rets[4];
411 int result;
412
413 /* Figure out PE config address if possible */
414 config_addr = pe->config_addr;
415 if (pe->addr)
416 config_addr = pe->addr;
417
418 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
419 ret = rtas_call(ibm_read_slot_reset_state2, 3, 4, rets,
420 config_addr, BUID_HI(pe->phb->buid),
421 BUID_LO(pe->phb->buid));
422 } else if (ibm_read_slot_reset_state != RTAS_UNKNOWN_SERVICE) {
423 /* Fake PE unavailable info */
424 rets[2] = 0;
425 ret = rtas_call(ibm_read_slot_reset_state, 3, 3, rets,
426 config_addr, BUID_HI(pe->phb->buid),
427 BUID_LO(pe->phb->buid));
428 } else {
429 return EEH_STATE_NOT_SUPPORT;
430 }
431
432 if (ret)
433 return ret;
434
435 /* Parse the result out */
436 result = 0;
437 if (rets[1]) {
438 switch(rets[0]) {
439 case 0:
440 result &= ~EEH_STATE_RESET_ACTIVE;
441 result |= EEH_STATE_MMIO_ACTIVE;
442 result |= EEH_STATE_DMA_ACTIVE;
443 break;
444 case 1:
445 result |= EEH_STATE_RESET_ACTIVE;
446 result |= EEH_STATE_MMIO_ACTIVE;
447 result |= EEH_STATE_DMA_ACTIVE;
448 break;
449 case 2:
450 result &= ~EEH_STATE_RESET_ACTIVE;
451 result &= ~EEH_STATE_MMIO_ACTIVE;
452 result &= ~EEH_STATE_DMA_ACTIVE;
453 break;
454 case 4:
455 result &= ~EEH_STATE_RESET_ACTIVE;
456 result &= ~EEH_STATE_MMIO_ACTIVE;
457 result &= ~EEH_STATE_DMA_ACTIVE;
458 result |= EEH_STATE_MMIO_ENABLED;
459 break;
460 case 5:
461 if (rets[2]) {
462 if (state) *state = rets[2];
463 result = EEH_STATE_UNAVAILABLE;
464 } else {
465 result = EEH_STATE_NOT_SUPPORT;
466 }
467 break;
468 default:
469 result = EEH_STATE_NOT_SUPPORT;
470 }
471 } else {
472 result = EEH_STATE_NOT_SUPPORT;
473 }
474
475 return result;
476 }
477
478 /**
479 * pseries_eeh_reset - Reset the specified PE
480 * @pe: EEH PE
481 * @option: reset option
482 *
483 * Reset the specified PE
484 */
485 static int pseries_eeh_reset(struct eeh_pe *pe, int option)
486 {
487 int config_addr;
488 int ret;
489
490 /* Figure out PE address */
491 config_addr = pe->config_addr;
492 if (pe->addr)
493 config_addr = pe->addr;
494
495 /* Reset PE through RTAS call */
496 ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
497 config_addr, BUID_HI(pe->phb->buid),
498 BUID_LO(pe->phb->buid), option);
499
500 /* If fundamental-reset not supported, try hot-reset */
501 if (option == EEH_RESET_FUNDAMENTAL &&
502 ret == -8) {
503 option = EEH_RESET_HOT;
504 ret = rtas_call(ibm_set_slot_reset, 4, 1, NULL,
505 config_addr, BUID_HI(pe->phb->buid),
506 BUID_LO(pe->phb->buid), option);
507 }
508
509 /* We need reset hold or settlement delay */
510 if (option == EEH_RESET_FUNDAMENTAL ||
511 option == EEH_RESET_HOT)
512 msleep(EEH_PE_RST_HOLD_TIME);
513 else
514 msleep(EEH_PE_RST_SETTLE_TIME);
515
516 return ret;
517 }
518
519 /**
520 * pseries_eeh_wait_state - Wait for PE state
521 * @pe: EEH PE
522 * @max_wait: maximal period in microsecond
523 *
524 * Wait for the state of associated PE. It might take some time
525 * to retrieve the PE's state.
526 */
527 static int pseries_eeh_wait_state(struct eeh_pe *pe, int max_wait)
528 {
529 int ret;
530 int mwait;
531
532 /*
533 * According to PAPR, the state of PE might be temporarily
534 * unavailable. Under the circumstance, we have to wait
535 * for indicated time determined by firmware. The maximal
536 * wait time is 5 minutes, which is acquired from the original
537 * EEH implementation. Also, the original implementation
538 * also defined the minimal wait time as 1 second.
539 */
540 #define EEH_STATE_MIN_WAIT_TIME (1000)
541 #define EEH_STATE_MAX_WAIT_TIME (300 * 1000)
542
543 while (1) {
544 ret = pseries_eeh_get_state(pe, &mwait);
545
546 /*
547 * If the PE's state is temporarily unavailable,
548 * we have to wait for the specified time. Otherwise,
549 * the PE's state will be returned immediately.
550 */
551 if (ret != EEH_STATE_UNAVAILABLE)
552 return ret;
553
554 if (max_wait <= 0) {
555 pr_warn("%s: Timeout when getting PE's state (%d)\n",
556 __func__, max_wait);
557 return EEH_STATE_NOT_SUPPORT;
558 }
559
560 if (mwait <= 0) {
561 pr_warn("%s: Firmware returned bad wait value %d\n",
562 __func__, mwait);
563 mwait = EEH_STATE_MIN_WAIT_TIME;
564 } else if (mwait > EEH_STATE_MAX_WAIT_TIME) {
565 pr_warn("%s: Firmware returned too long wait value %d\n",
566 __func__, mwait);
567 mwait = EEH_STATE_MAX_WAIT_TIME;
568 }
569
570 max_wait -= mwait;
571 msleep(mwait);
572 }
573
574 return EEH_STATE_NOT_SUPPORT;
575 }
576
577 /**
578 * pseries_eeh_get_log - Retrieve error log
579 * @pe: EEH PE
580 * @severity: temporary or permanent error log
581 * @drv_log: driver log to be combined with retrieved error log
582 * @len: length of driver log
583 *
584 * Retrieve the temporary or permanent error from the PE.
585 * Actually, the error will be retrieved through the dedicated
586 * RTAS call.
587 */
588 static int pseries_eeh_get_log(struct eeh_pe *pe, int severity, char *drv_log, unsigned long len)
589 {
590 int config_addr;
591 unsigned long flags;
592 int ret;
593
594 spin_lock_irqsave(&slot_errbuf_lock, flags);
595 memset(slot_errbuf, 0, eeh_error_buf_size);
596
597 /* Figure out the PE address */
598 config_addr = pe->config_addr;
599 if (pe->addr)
600 config_addr = pe->addr;
601
602 ret = rtas_call(ibm_slot_error_detail, 8, 1, NULL, config_addr,
603 BUID_HI(pe->phb->buid), BUID_LO(pe->phb->buid),
604 virt_to_phys(drv_log), len,
605 virt_to_phys(slot_errbuf), eeh_error_buf_size,
606 severity);
607 if (!ret)
608 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
609 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
610
611 return ret;
612 }
613
614 /**
615 * pseries_eeh_configure_bridge - Configure PCI bridges in the indicated PE
616 * @pe: EEH PE
617 *
618 * The function will be called to reconfigure the bridges included
619 * in the specified PE so that the mulfunctional PE would be recovered
620 * again.
621 */
622 static int pseries_eeh_configure_bridge(struct eeh_pe *pe)
623 {
624 int config_addr;
625 int ret;
626
627 /* Figure out the PE address */
628 config_addr = pe->config_addr;
629 if (pe->addr)
630 config_addr = pe->addr;
631
632 /* Use new configure-pe function, if supported */
633 if (ibm_configure_pe != RTAS_UNKNOWN_SERVICE) {
634 ret = rtas_call(ibm_configure_pe, 3, 1, NULL,
635 config_addr, BUID_HI(pe->phb->buid),
636 BUID_LO(pe->phb->buid));
637 } else if (ibm_configure_bridge != RTAS_UNKNOWN_SERVICE) {
638 ret = rtas_call(ibm_configure_bridge, 3, 1, NULL,
639 config_addr, BUID_HI(pe->phb->buid),
640 BUID_LO(pe->phb->buid));
641 } else {
642 return -EFAULT;
643 }
644
645 if (ret)
646 pr_warn("%s: Unable to configure bridge PHB#%d-PE#%x (%d)\n",
647 __func__, pe->phb->global_number, pe->addr, ret);
648
649 return ret;
650 }
651
652 /**
653 * pseries_eeh_read_config - Read PCI config space
654 * @pdn: PCI device node
655 * @where: PCI address
656 * @size: size to read
657 * @val: return value
658 *
659 * Read config space from the speicifed device
660 */
661 static int pseries_eeh_read_config(struct pci_dn *pdn, int where, int size, u32 *val)
662 {
663 return rtas_read_config(pdn, where, size, val);
664 }
665
666 /**
667 * pseries_eeh_write_config - Write PCI config space
668 * @pdn: PCI device node
669 * @where: PCI address
670 * @size: size to write
671 * @val: value to be written
672 *
673 * Write config space to the specified device
674 */
675 static int pseries_eeh_write_config(struct pci_dn *pdn, int where, int size, u32 val)
676 {
677 return rtas_write_config(pdn, where, size, val);
678 }
679
680 static struct eeh_ops pseries_eeh_ops = {
681 .name = "pseries",
682 .init = pseries_eeh_init,
683 .probe = pseries_eeh_probe,
684 .set_option = pseries_eeh_set_option,
685 .get_pe_addr = pseries_eeh_get_pe_addr,
686 .get_state = pseries_eeh_get_state,
687 .reset = pseries_eeh_reset,
688 .wait_state = pseries_eeh_wait_state,
689 .get_log = pseries_eeh_get_log,
690 .configure_bridge = pseries_eeh_configure_bridge,
691 .err_inject = NULL,
692 .read_config = pseries_eeh_read_config,
693 .write_config = pseries_eeh_write_config,
694 .next_error = NULL,
695 .restore_config = NULL
696 };
697
698 /**
699 * eeh_pseries_init - Register platform dependent EEH operations
700 *
701 * EEH initialization on pseries platform. This function should be
702 * called before any EEH related functions.
703 */
704 static int __init eeh_pseries_init(void)
705 {
706 int ret;
707
708 ret = eeh_ops_register(&pseries_eeh_ops);
709 if (!ret)
710 pr_info("EEH: pSeries platform initialized\n");
711 else
712 pr_info("EEH: pSeries platform initialization failure (%d)\n",
713 ret);
714
715 return ret;
716 }
717 machine_early_initcall(pseries, eeh_pseries_init);