]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/powerpc/platforms/pseries/iommu.c
pinctrl: sirf: move sgpio lock into state container
[mirror_ubuntu-zesty-kernel.git] / arch / powerpc / platforms / pseries / iommu.c
1 /*
2 * Copyright (C) 2001 Mike Corrigan & Dave Engebretsen, IBM Corporation
3 *
4 * Rewrite, cleanup:
5 *
6 * Copyright (C) 2004 Olof Johansson <olof@lixom.net>, IBM Corporation
7 * Copyright (C) 2006 Olof Johansson <olof@lixom.net>
8 *
9 * Dynamic DMA mapping support, pSeries-specific parts, both SMP and LPAR.
10 *
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License, or
15 * (at your option) any later version.
16 *
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
21 *
22 * You should have received a copy of the GNU General Public License
23 * along with this program; if not, write to the Free Software
24 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
25 */
26
27 #include <linux/init.h>
28 #include <linux/types.h>
29 #include <linux/slab.h>
30 #include <linux/mm.h>
31 #include <linux/memblock.h>
32 #include <linux/spinlock.h>
33 #include <linux/string.h>
34 #include <linux/pci.h>
35 #include <linux/dma-mapping.h>
36 #include <linux/crash_dump.h>
37 #include <linux/memory.h>
38 #include <linux/of.h>
39 #include <asm/io.h>
40 #include <asm/prom.h>
41 #include <asm/rtas.h>
42 #include <asm/iommu.h>
43 #include <asm/pci-bridge.h>
44 #include <asm/machdep.h>
45 #include <asm/firmware.h>
46 #include <asm/tce.h>
47 #include <asm/ppc-pci.h>
48 #include <asm/udbg.h>
49 #include <asm/mmzone.h>
50 #include <asm/plpar_wrappers.h>
51
52
53 static void tce_invalidate_pSeries_sw(struct iommu_table *tbl,
54 __be64 *startp, __be64 *endp)
55 {
56 u64 __iomem *invalidate = (u64 __iomem *)tbl->it_index;
57 unsigned long start, end, inc;
58
59 start = __pa(startp);
60 end = __pa(endp);
61 inc = L1_CACHE_BYTES; /* invalidate a cacheline of TCEs at a time */
62
63 /* If this is non-zero, change the format. We shift the
64 * address and or in the magic from the device tree. */
65 if (tbl->it_busno) {
66 start <<= 12;
67 end <<= 12;
68 inc <<= 12;
69 start |= tbl->it_busno;
70 end |= tbl->it_busno;
71 }
72
73 end |= inc - 1; /* round up end to be different than start */
74
75 mb(); /* Make sure TCEs in memory are written */
76 while (start <= end) {
77 out_be64(invalidate, start);
78 start += inc;
79 }
80 }
81
82 static int tce_build_pSeries(struct iommu_table *tbl, long index,
83 long npages, unsigned long uaddr,
84 enum dma_data_direction direction,
85 struct dma_attrs *attrs)
86 {
87 u64 proto_tce;
88 __be64 *tcep, *tces;
89 u64 rpn;
90
91 proto_tce = TCE_PCI_READ; // Read allowed
92
93 if (direction != DMA_TO_DEVICE)
94 proto_tce |= TCE_PCI_WRITE;
95
96 tces = tcep = ((__be64 *)tbl->it_base) + index;
97
98 while (npages--) {
99 /* can't move this out since we might cross MEMBLOCK boundary */
100 rpn = __pa(uaddr) >> TCE_SHIFT;
101 *tcep = cpu_to_be64(proto_tce | (rpn & TCE_RPN_MASK) << TCE_RPN_SHIFT);
102
103 uaddr += TCE_PAGE_SIZE;
104 tcep++;
105 }
106
107 if (tbl->it_type & TCE_PCI_SWINV_CREATE)
108 tce_invalidate_pSeries_sw(tbl, tces, tcep - 1);
109 return 0;
110 }
111
112
113 static void tce_free_pSeries(struct iommu_table *tbl, long index, long npages)
114 {
115 __be64 *tcep, *tces;
116
117 tces = tcep = ((__be64 *)tbl->it_base) + index;
118
119 while (npages--)
120 *(tcep++) = 0;
121
122 if (tbl->it_type & TCE_PCI_SWINV_FREE)
123 tce_invalidate_pSeries_sw(tbl, tces, tcep - 1);
124 }
125
126 static unsigned long tce_get_pseries(struct iommu_table *tbl, long index)
127 {
128 __be64 *tcep;
129
130 tcep = ((__be64 *)tbl->it_base) + index;
131
132 return be64_to_cpu(*tcep);
133 }
134
135 static void tce_free_pSeriesLP(struct iommu_table*, long, long);
136 static void tce_freemulti_pSeriesLP(struct iommu_table*, long, long);
137
138 static int tce_build_pSeriesLP(struct iommu_table *tbl, long tcenum,
139 long npages, unsigned long uaddr,
140 enum dma_data_direction direction,
141 struct dma_attrs *attrs)
142 {
143 u64 rc = 0;
144 u64 proto_tce, tce;
145 u64 rpn;
146 int ret = 0;
147 long tcenum_start = tcenum, npages_start = npages;
148
149 rpn = __pa(uaddr) >> TCE_SHIFT;
150 proto_tce = TCE_PCI_READ;
151 if (direction != DMA_TO_DEVICE)
152 proto_tce |= TCE_PCI_WRITE;
153
154 while (npages--) {
155 tce = proto_tce | (rpn & TCE_RPN_MASK) << TCE_RPN_SHIFT;
156 rc = plpar_tce_put((u64)tbl->it_index, (u64)tcenum << 12, tce);
157
158 if (unlikely(rc == H_NOT_ENOUGH_RESOURCES)) {
159 ret = (int)rc;
160 tce_free_pSeriesLP(tbl, tcenum_start,
161 (npages_start - (npages + 1)));
162 break;
163 }
164
165 if (rc && printk_ratelimit()) {
166 printk("tce_build_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc);
167 printk("\tindex = 0x%llx\n", (u64)tbl->it_index);
168 printk("\ttcenum = 0x%llx\n", (u64)tcenum);
169 printk("\ttce val = 0x%llx\n", tce );
170 dump_stack();
171 }
172
173 tcenum++;
174 rpn++;
175 }
176 return ret;
177 }
178
179 static DEFINE_PER_CPU(__be64 *, tce_page);
180
181 static int tce_buildmulti_pSeriesLP(struct iommu_table *tbl, long tcenum,
182 long npages, unsigned long uaddr,
183 enum dma_data_direction direction,
184 struct dma_attrs *attrs)
185 {
186 u64 rc = 0;
187 u64 proto_tce;
188 __be64 *tcep;
189 u64 rpn;
190 long l, limit;
191 long tcenum_start = tcenum, npages_start = npages;
192 int ret = 0;
193 unsigned long flags;
194
195 if (npages == 1) {
196 return tce_build_pSeriesLP(tbl, tcenum, npages, uaddr,
197 direction, attrs);
198 }
199
200 local_irq_save(flags); /* to protect tcep and the page behind it */
201
202 tcep = __this_cpu_read(tce_page);
203
204 /* This is safe to do since interrupts are off when we're called
205 * from iommu_alloc{,_sg}()
206 */
207 if (!tcep) {
208 tcep = (__be64 *)__get_free_page(GFP_ATOMIC);
209 /* If allocation fails, fall back to the loop implementation */
210 if (!tcep) {
211 local_irq_restore(flags);
212 return tce_build_pSeriesLP(tbl, tcenum, npages, uaddr,
213 direction, attrs);
214 }
215 __this_cpu_write(tce_page, tcep);
216 }
217
218 rpn = __pa(uaddr) >> TCE_SHIFT;
219 proto_tce = TCE_PCI_READ;
220 if (direction != DMA_TO_DEVICE)
221 proto_tce |= TCE_PCI_WRITE;
222
223 /* We can map max one pageful of TCEs at a time */
224 do {
225 /*
226 * Set up the page with TCE data, looping through and setting
227 * the values.
228 */
229 limit = min_t(long, npages, 4096/TCE_ENTRY_SIZE);
230
231 for (l = 0; l < limit; l++) {
232 tcep[l] = cpu_to_be64(proto_tce | (rpn & TCE_RPN_MASK) << TCE_RPN_SHIFT);
233 rpn++;
234 }
235
236 rc = plpar_tce_put_indirect((u64)tbl->it_index,
237 (u64)tcenum << 12,
238 (u64)__pa(tcep),
239 limit);
240
241 npages -= limit;
242 tcenum += limit;
243 } while (npages > 0 && !rc);
244
245 local_irq_restore(flags);
246
247 if (unlikely(rc == H_NOT_ENOUGH_RESOURCES)) {
248 ret = (int)rc;
249 tce_freemulti_pSeriesLP(tbl, tcenum_start,
250 (npages_start - (npages + limit)));
251 return ret;
252 }
253
254 if (rc && printk_ratelimit()) {
255 printk("tce_buildmulti_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc);
256 printk("\tindex = 0x%llx\n", (u64)tbl->it_index);
257 printk("\tnpages = 0x%llx\n", (u64)npages);
258 printk("\ttce[0] val = 0x%llx\n", tcep[0]);
259 dump_stack();
260 }
261 return ret;
262 }
263
264 static void tce_free_pSeriesLP(struct iommu_table *tbl, long tcenum, long npages)
265 {
266 u64 rc;
267
268 while (npages--) {
269 rc = plpar_tce_put((u64)tbl->it_index, (u64)tcenum << 12, 0);
270
271 if (rc && printk_ratelimit()) {
272 printk("tce_free_pSeriesLP: plpar_tce_put failed. rc=%lld\n", rc);
273 printk("\tindex = 0x%llx\n", (u64)tbl->it_index);
274 printk("\ttcenum = 0x%llx\n", (u64)tcenum);
275 dump_stack();
276 }
277
278 tcenum++;
279 }
280 }
281
282
283 static void tce_freemulti_pSeriesLP(struct iommu_table *tbl, long tcenum, long npages)
284 {
285 u64 rc;
286
287 rc = plpar_tce_stuff((u64)tbl->it_index, (u64)tcenum << 12, 0, npages);
288
289 if (rc && printk_ratelimit()) {
290 printk("tce_freemulti_pSeriesLP: plpar_tce_stuff failed\n");
291 printk("\trc = %lld\n", rc);
292 printk("\tindex = 0x%llx\n", (u64)tbl->it_index);
293 printk("\tnpages = 0x%llx\n", (u64)npages);
294 dump_stack();
295 }
296 }
297
298 static unsigned long tce_get_pSeriesLP(struct iommu_table *tbl, long tcenum)
299 {
300 u64 rc;
301 unsigned long tce_ret;
302
303 rc = plpar_tce_get((u64)tbl->it_index, (u64)tcenum << 12, &tce_ret);
304
305 if (rc && printk_ratelimit()) {
306 printk("tce_get_pSeriesLP: plpar_tce_get failed. rc=%lld\n", rc);
307 printk("\tindex = 0x%llx\n", (u64)tbl->it_index);
308 printk("\ttcenum = 0x%llx\n", (u64)tcenum);
309 dump_stack();
310 }
311
312 return tce_ret;
313 }
314
315 /* this is compatible with cells for the device tree property */
316 struct dynamic_dma_window_prop {
317 __be32 liobn; /* tce table number */
318 __be64 dma_base; /* address hi,lo */
319 __be32 tce_shift; /* ilog2(tce_page_size) */
320 __be32 window_shift; /* ilog2(tce_window_size) */
321 };
322
323 struct direct_window {
324 struct device_node *device;
325 const struct dynamic_dma_window_prop *prop;
326 struct list_head list;
327 };
328
329 /* Dynamic DMA Window support */
330 struct ddw_query_response {
331 u32 windows_available;
332 u32 largest_available_block;
333 u32 page_size;
334 u32 migration_capable;
335 };
336
337 struct ddw_create_response {
338 u32 liobn;
339 u32 addr_hi;
340 u32 addr_lo;
341 };
342
343 static LIST_HEAD(direct_window_list);
344 /* prevents races between memory on/offline and window creation */
345 static DEFINE_SPINLOCK(direct_window_list_lock);
346 /* protects initializing window twice for same device */
347 static DEFINE_MUTEX(direct_window_init_mutex);
348 #define DIRECT64_PROPNAME "linux,direct64-ddr-window-info"
349
350 static int tce_clearrange_multi_pSeriesLP(unsigned long start_pfn,
351 unsigned long num_pfn, const void *arg)
352 {
353 const struct dynamic_dma_window_prop *maprange = arg;
354 int rc;
355 u64 tce_size, num_tce, dma_offset, next;
356 u32 tce_shift;
357 long limit;
358
359 tce_shift = be32_to_cpu(maprange->tce_shift);
360 tce_size = 1ULL << tce_shift;
361 next = start_pfn << PAGE_SHIFT;
362 num_tce = num_pfn << PAGE_SHIFT;
363
364 /* round back to the beginning of the tce page size */
365 num_tce += next & (tce_size - 1);
366 next &= ~(tce_size - 1);
367
368 /* covert to number of tces */
369 num_tce |= tce_size - 1;
370 num_tce >>= tce_shift;
371
372 do {
373 /*
374 * Set up the page with TCE data, looping through and setting
375 * the values.
376 */
377 limit = min_t(long, num_tce, 512);
378 dma_offset = next + be64_to_cpu(maprange->dma_base);
379
380 rc = plpar_tce_stuff((u64)be32_to_cpu(maprange->liobn),
381 dma_offset,
382 0, limit);
383 next += limit * tce_size;
384 num_tce -= limit;
385 } while (num_tce > 0 && !rc);
386
387 return rc;
388 }
389
390 static int tce_setrange_multi_pSeriesLP(unsigned long start_pfn,
391 unsigned long num_pfn, const void *arg)
392 {
393 const struct dynamic_dma_window_prop *maprange = arg;
394 u64 tce_size, num_tce, dma_offset, next, proto_tce, liobn;
395 __be64 *tcep;
396 u32 tce_shift;
397 u64 rc = 0;
398 long l, limit;
399
400 local_irq_disable(); /* to protect tcep and the page behind it */
401 tcep = __this_cpu_read(tce_page);
402
403 if (!tcep) {
404 tcep = (__be64 *)__get_free_page(GFP_ATOMIC);
405 if (!tcep) {
406 local_irq_enable();
407 return -ENOMEM;
408 }
409 __this_cpu_write(tce_page, tcep);
410 }
411
412 proto_tce = TCE_PCI_READ | TCE_PCI_WRITE;
413
414 liobn = (u64)be32_to_cpu(maprange->liobn);
415 tce_shift = be32_to_cpu(maprange->tce_shift);
416 tce_size = 1ULL << tce_shift;
417 next = start_pfn << PAGE_SHIFT;
418 num_tce = num_pfn << PAGE_SHIFT;
419
420 /* round back to the beginning of the tce page size */
421 num_tce += next & (tce_size - 1);
422 next &= ~(tce_size - 1);
423
424 /* covert to number of tces */
425 num_tce |= tce_size - 1;
426 num_tce >>= tce_shift;
427
428 /* We can map max one pageful of TCEs at a time */
429 do {
430 /*
431 * Set up the page with TCE data, looping through and setting
432 * the values.
433 */
434 limit = min_t(long, num_tce, 4096/TCE_ENTRY_SIZE);
435 dma_offset = next + be64_to_cpu(maprange->dma_base);
436
437 for (l = 0; l < limit; l++) {
438 tcep[l] = cpu_to_be64(proto_tce | next);
439 next += tce_size;
440 }
441
442 rc = plpar_tce_put_indirect(liobn,
443 dma_offset,
444 (u64)__pa(tcep),
445 limit);
446
447 num_tce -= limit;
448 } while (num_tce > 0 && !rc);
449
450 /* error cleanup: caller will clear whole range */
451
452 local_irq_enable();
453 return rc;
454 }
455
456 static int tce_setrange_multi_pSeriesLP_walk(unsigned long start_pfn,
457 unsigned long num_pfn, void *arg)
458 {
459 return tce_setrange_multi_pSeriesLP(start_pfn, num_pfn, arg);
460 }
461
462
463 #ifdef CONFIG_PCI
464 static void iommu_table_setparms(struct pci_controller *phb,
465 struct device_node *dn,
466 struct iommu_table *tbl)
467 {
468 struct device_node *node;
469 const unsigned long *basep, *sw_inval;
470 const u32 *sizep;
471
472 node = phb->dn;
473
474 basep = of_get_property(node, "linux,tce-base", NULL);
475 sizep = of_get_property(node, "linux,tce-size", NULL);
476 if (basep == NULL || sizep == NULL) {
477 printk(KERN_ERR "PCI_DMA: iommu_table_setparms: %s has "
478 "missing tce entries !\n", dn->full_name);
479 return;
480 }
481
482 tbl->it_base = (unsigned long)__va(*basep);
483
484 if (!is_kdump_kernel())
485 memset((void *)tbl->it_base, 0, *sizep);
486
487 tbl->it_busno = phb->bus->number;
488 tbl->it_page_shift = IOMMU_PAGE_SHIFT_4K;
489
490 /* Units of tce entries */
491 tbl->it_offset = phb->dma_window_base_cur >> tbl->it_page_shift;
492
493 /* Test if we are going over 2GB of DMA space */
494 if (phb->dma_window_base_cur + phb->dma_window_size > 0x80000000ul) {
495 udbg_printf("PCI_DMA: Unexpected number of IOAs under this PHB.\n");
496 panic("PCI_DMA: Unexpected number of IOAs under this PHB.\n");
497 }
498
499 phb->dma_window_base_cur += phb->dma_window_size;
500
501 /* Set the tce table size - measured in entries */
502 tbl->it_size = phb->dma_window_size >> tbl->it_page_shift;
503
504 tbl->it_index = 0;
505 tbl->it_blocksize = 16;
506 tbl->it_type = TCE_PCI;
507
508 sw_inval = of_get_property(node, "linux,tce-sw-invalidate-info", NULL);
509 if (sw_inval) {
510 /*
511 * This property contains information on how to
512 * invalidate the TCE entry. The first property is
513 * the base MMIO address used to invalidate entries.
514 * The second property tells us the format of the TCE
515 * invalidate (whether it needs to be shifted) and
516 * some magic routing info to add to our invalidate
517 * command.
518 */
519 tbl->it_index = (unsigned long) ioremap(sw_inval[0], 8);
520 tbl->it_busno = sw_inval[1]; /* overload this with magic */
521 tbl->it_type = TCE_PCI_SWINV_CREATE | TCE_PCI_SWINV_FREE;
522 }
523 }
524
525 /*
526 * iommu_table_setparms_lpar
527 *
528 * Function: On pSeries LPAR systems, return TCE table info, given a pci bus.
529 */
530 static void iommu_table_setparms_lpar(struct pci_controller *phb,
531 struct device_node *dn,
532 struct iommu_table *tbl,
533 const __be32 *dma_window)
534 {
535 unsigned long offset, size;
536
537 of_parse_dma_window(dn, dma_window, &tbl->it_index, &offset, &size);
538
539 tbl->it_busno = phb->bus->number;
540 tbl->it_page_shift = IOMMU_PAGE_SHIFT_4K;
541 tbl->it_base = 0;
542 tbl->it_blocksize = 16;
543 tbl->it_type = TCE_PCI;
544 tbl->it_offset = offset >> tbl->it_page_shift;
545 tbl->it_size = size >> tbl->it_page_shift;
546 }
547
548 static void pci_dma_bus_setup_pSeries(struct pci_bus *bus)
549 {
550 struct device_node *dn;
551 struct iommu_table *tbl;
552 struct device_node *isa_dn, *isa_dn_orig;
553 struct device_node *tmp;
554 struct pci_dn *pci;
555 int children;
556
557 dn = pci_bus_to_OF_node(bus);
558
559 pr_debug("pci_dma_bus_setup_pSeries: setting up bus %s\n", dn->full_name);
560
561 if (bus->self) {
562 /* This is not a root bus, any setup will be done for the
563 * device-side of the bridge in iommu_dev_setup_pSeries().
564 */
565 return;
566 }
567 pci = PCI_DN(dn);
568
569 /* Check if the ISA bus on the system is under
570 * this PHB.
571 */
572 isa_dn = isa_dn_orig = of_find_node_by_type(NULL, "isa");
573
574 while (isa_dn && isa_dn != dn)
575 isa_dn = isa_dn->parent;
576
577 of_node_put(isa_dn_orig);
578
579 /* Count number of direct PCI children of the PHB. */
580 for (children = 0, tmp = dn->child; tmp; tmp = tmp->sibling)
581 children++;
582
583 pr_debug("Children: %d\n", children);
584
585 /* Calculate amount of DMA window per slot. Each window must be
586 * a power of two (due to pci_alloc_consistent requirements).
587 *
588 * Keep 256MB aside for PHBs with ISA.
589 */
590
591 if (!isa_dn) {
592 /* No ISA/IDE - just set window size and return */
593 pci->phb->dma_window_size = 0x80000000ul; /* To be divided */
594
595 while (pci->phb->dma_window_size * children > 0x80000000ul)
596 pci->phb->dma_window_size >>= 1;
597 pr_debug("No ISA/IDE, window size is 0x%llx\n",
598 pci->phb->dma_window_size);
599 pci->phb->dma_window_base_cur = 0;
600
601 return;
602 }
603
604 /* If we have ISA, then we probably have an IDE
605 * controller too. Allocate a 128MB table but
606 * skip the first 128MB to avoid stepping on ISA
607 * space.
608 */
609 pci->phb->dma_window_size = 0x8000000ul;
610 pci->phb->dma_window_base_cur = 0x8000000ul;
611
612 tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL,
613 pci->phb->node);
614
615 iommu_table_setparms(pci->phb, dn, tbl);
616 pci->iommu_table = iommu_init_table(tbl, pci->phb->node);
617 iommu_register_group(tbl, pci_domain_nr(bus), 0);
618
619 /* Divide the rest (1.75GB) among the children */
620 pci->phb->dma_window_size = 0x80000000ul;
621 while (pci->phb->dma_window_size * children > 0x70000000ul)
622 pci->phb->dma_window_size >>= 1;
623
624 pr_debug("ISA/IDE, window size is 0x%llx\n", pci->phb->dma_window_size);
625 }
626
627
628 static void pci_dma_bus_setup_pSeriesLP(struct pci_bus *bus)
629 {
630 struct iommu_table *tbl;
631 struct device_node *dn, *pdn;
632 struct pci_dn *ppci;
633 const __be32 *dma_window = NULL;
634
635 dn = pci_bus_to_OF_node(bus);
636
637 pr_debug("pci_dma_bus_setup_pSeriesLP: setting up bus %s\n",
638 dn->full_name);
639
640 /* Find nearest ibm,dma-window, walking up the device tree */
641 for (pdn = dn; pdn != NULL; pdn = pdn->parent) {
642 dma_window = of_get_property(pdn, "ibm,dma-window", NULL);
643 if (dma_window != NULL)
644 break;
645 }
646
647 if (dma_window == NULL) {
648 pr_debug(" no ibm,dma-window property !\n");
649 return;
650 }
651
652 ppci = PCI_DN(pdn);
653
654 pr_debug(" parent is %s, iommu_table: 0x%p\n",
655 pdn->full_name, ppci->iommu_table);
656
657 if (!ppci->iommu_table) {
658 tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL,
659 ppci->phb->node);
660 iommu_table_setparms_lpar(ppci->phb, pdn, tbl, dma_window);
661 ppci->iommu_table = iommu_init_table(tbl, ppci->phb->node);
662 iommu_register_group(tbl, pci_domain_nr(bus), 0);
663 pr_debug(" created table: %p\n", ppci->iommu_table);
664 }
665 }
666
667
668 static void pci_dma_dev_setup_pSeries(struct pci_dev *dev)
669 {
670 struct device_node *dn;
671 struct iommu_table *tbl;
672
673 pr_debug("pci_dma_dev_setup_pSeries: %s\n", pci_name(dev));
674
675 dn = dev->dev.of_node;
676
677 /* If we're the direct child of a root bus, then we need to allocate
678 * an iommu table ourselves. The bus setup code should have setup
679 * the window sizes already.
680 */
681 if (!dev->bus->self) {
682 struct pci_controller *phb = PCI_DN(dn)->phb;
683
684 pr_debug(" --> first child, no bridge. Allocating iommu table.\n");
685 tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL,
686 phb->node);
687 iommu_table_setparms(phb, dn, tbl);
688 PCI_DN(dn)->iommu_table = iommu_init_table(tbl, phb->node);
689 iommu_register_group(tbl, pci_domain_nr(phb->bus), 0);
690 set_iommu_table_base_and_group(&dev->dev,
691 PCI_DN(dn)->iommu_table);
692 return;
693 }
694
695 /* If this device is further down the bus tree, search upwards until
696 * an already allocated iommu table is found and use that.
697 */
698
699 while (dn && PCI_DN(dn) && PCI_DN(dn)->iommu_table == NULL)
700 dn = dn->parent;
701
702 if (dn && PCI_DN(dn))
703 set_iommu_table_base_and_group(&dev->dev,
704 PCI_DN(dn)->iommu_table);
705 else
706 printk(KERN_WARNING "iommu: Device %s has no iommu table\n",
707 pci_name(dev));
708 }
709
710 static int __read_mostly disable_ddw;
711
712 static int __init disable_ddw_setup(char *str)
713 {
714 disable_ddw = 1;
715 printk(KERN_INFO "ppc iommu: disabling ddw.\n");
716
717 return 0;
718 }
719
720 early_param("disable_ddw", disable_ddw_setup);
721
722 static void remove_ddw(struct device_node *np, bool remove_prop)
723 {
724 struct dynamic_dma_window_prop *dwp;
725 struct property *win64;
726 u32 ddw_avail[3];
727 u64 liobn;
728 int ret = 0;
729
730 ret = of_property_read_u32_array(np, "ibm,ddw-applicable",
731 &ddw_avail[0], 3);
732
733 win64 = of_find_property(np, DIRECT64_PROPNAME, NULL);
734 if (!win64)
735 return;
736
737 if (ret || win64->length < sizeof(*dwp))
738 goto delprop;
739
740 dwp = win64->value;
741 liobn = (u64)be32_to_cpu(dwp->liobn);
742
743 /* clear the whole window, note the arg is in kernel pages */
744 ret = tce_clearrange_multi_pSeriesLP(0,
745 1ULL << (be32_to_cpu(dwp->window_shift) - PAGE_SHIFT), dwp);
746 if (ret)
747 pr_warning("%s failed to clear tces in window.\n",
748 np->full_name);
749 else
750 pr_debug("%s successfully cleared tces in window.\n",
751 np->full_name);
752
753 ret = rtas_call(ddw_avail[2], 1, 1, NULL, liobn);
754 if (ret)
755 pr_warning("%s: failed to remove direct window: rtas returned "
756 "%d to ibm,remove-pe-dma-window(%x) %llx\n",
757 np->full_name, ret, ddw_avail[2], liobn);
758 else
759 pr_debug("%s: successfully removed direct window: rtas returned "
760 "%d to ibm,remove-pe-dma-window(%x) %llx\n",
761 np->full_name, ret, ddw_avail[2], liobn);
762
763 delprop:
764 if (remove_prop)
765 ret = of_remove_property(np, win64);
766 if (ret)
767 pr_warning("%s: failed to remove direct window property: %d\n",
768 np->full_name, ret);
769 }
770
771 static u64 find_existing_ddw(struct device_node *pdn)
772 {
773 struct direct_window *window;
774 const struct dynamic_dma_window_prop *direct64;
775 u64 dma_addr = 0;
776
777 spin_lock(&direct_window_list_lock);
778 /* check if we already created a window and dupe that config if so */
779 list_for_each_entry(window, &direct_window_list, list) {
780 if (window->device == pdn) {
781 direct64 = window->prop;
782 dma_addr = be64_to_cpu(direct64->dma_base);
783 break;
784 }
785 }
786 spin_unlock(&direct_window_list_lock);
787
788 return dma_addr;
789 }
790
791 static int find_existing_ddw_windows(void)
792 {
793 int len;
794 struct device_node *pdn;
795 struct direct_window *window;
796 const struct dynamic_dma_window_prop *direct64;
797
798 if (!firmware_has_feature(FW_FEATURE_LPAR))
799 return 0;
800
801 for_each_node_with_property(pdn, DIRECT64_PROPNAME) {
802 direct64 = of_get_property(pdn, DIRECT64_PROPNAME, &len);
803 if (!direct64)
804 continue;
805
806 window = kzalloc(sizeof(*window), GFP_KERNEL);
807 if (!window || len < sizeof(struct dynamic_dma_window_prop)) {
808 kfree(window);
809 remove_ddw(pdn, true);
810 continue;
811 }
812
813 window->device = pdn;
814 window->prop = direct64;
815 spin_lock(&direct_window_list_lock);
816 list_add(&window->list, &direct_window_list);
817 spin_unlock(&direct_window_list_lock);
818 }
819
820 return 0;
821 }
822 machine_arch_initcall(pseries, find_existing_ddw_windows);
823
824 static int query_ddw(struct pci_dev *dev, const u32 *ddw_avail,
825 struct ddw_query_response *query)
826 {
827 struct eeh_dev *edev;
828 u32 cfg_addr;
829 u64 buid;
830 int ret;
831
832 /*
833 * Get the config address and phb buid of the PE window.
834 * Rely on eeh to retrieve this for us.
835 * Retrieve them from the pci device, not the node with the
836 * dma-window property
837 */
838 edev = pci_dev_to_eeh_dev(dev);
839 cfg_addr = edev->config_addr;
840 if (edev->pe_config_addr)
841 cfg_addr = edev->pe_config_addr;
842 buid = edev->phb->buid;
843
844 ret = rtas_call(ddw_avail[0], 3, 5, (u32 *)query,
845 cfg_addr, BUID_HI(buid), BUID_LO(buid));
846 dev_info(&dev->dev, "ibm,query-pe-dma-windows(%x) %x %x %x"
847 " returned %d\n", ddw_avail[0], cfg_addr, BUID_HI(buid),
848 BUID_LO(buid), ret);
849 return ret;
850 }
851
852 static int create_ddw(struct pci_dev *dev, const u32 *ddw_avail,
853 struct ddw_create_response *create, int page_shift,
854 int window_shift)
855 {
856 struct eeh_dev *edev;
857 u32 cfg_addr;
858 u64 buid;
859 int ret;
860
861 /*
862 * Get the config address and phb buid of the PE window.
863 * Rely on eeh to retrieve this for us.
864 * Retrieve them from the pci device, not the node with the
865 * dma-window property
866 */
867 edev = pci_dev_to_eeh_dev(dev);
868 cfg_addr = edev->config_addr;
869 if (edev->pe_config_addr)
870 cfg_addr = edev->pe_config_addr;
871 buid = edev->phb->buid;
872
873 do {
874 /* extra outputs are LIOBN and dma-addr (hi, lo) */
875 ret = rtas_call(ddw_avail[1], 5, 4, (u32 *)create,
876 cfg_addr, BUID_HI(buid), BUID_LO(buid),
877 page_shift, window_shift);
878 } while (rtas_busy_delay(ret));
879 dev_info(&dev->dev,
880 "ibm,create-pe-dma-window(%x) %x %x %x %x %x returned %d "
881 "(liobn = 0x%x starting addr = %x %x)\n", ddw_avail[1],
882 cfg_addr, BUID_HI(buid), BUID_LO(buid), page_shift,
883 window_shift, ret, create->liobn, create->addr_hi, create->addr_lo);
884
885 return ret;
886 }
887
888 struct failed_ddw_pdn {
889 struct device_node *pdn;
890 struct list_head list;
891 };
892
893 static LIST_HEAD(failed_ddw_pdn_list);
894
895 /*
896 * If the PE supports dynamic dma windows, and there is space for a table
897 * that can map all pages in a linear offset, then setup such a table,
898 * and record the dma-offset in the struct device.
899 *
900 * dev: the pci device we are checking
901 * pdn: the parent pe node with the ibm,dma_window property
902 * Future: also check if we can remap the base window for our base page size
903 *
904 * returns the dma offset for use by dma_set_mask
905 */
906 static u64 enable_ddw(struct pci_dev *dev, struct device_node *pdn)
907 {
908 int len, ret;
909 struct ddw_query_response query;
910 struct ddw_create_response create;
911 int page_shift;
912 u64 dma_addr, max_addr;
913 struct device_node *dn;
914 u32 ddw_avail[3];
915 struct direct_window *window;
916 struct property *win64;
917 struct dynamic_dma_window_prop *ddwprop;
918 struct failed_ddw_pdn *fpdn;
919
920 mutex_lock(&direct_window_init_mutex);
921
922 dma_addr = find_existing_ddw(pdn);
923 if (dma_addr != 0)
924 goto out_unlock;
925
926 /*
927 * If we already went through this for a previous function of
928 * the same device and failed, we don't want to muck with the
929 * DMA window again, as it will race with in-flight operations
930 * and can lead to EEHs. The above mutex protects access to the
931 * list.
932 */
933 list_for_each_entry(fpdn, &failed_ddw_pdn_list, list) {
934 if (!strcmp(fpdn->pdn->full_name, pdn->full_name))
935 goto out_unlock;
936 }
937
938 /*
939 * the ibm,ddw-applicable property holds the tokens for:
940 * ibm,query-pe-dma-window
941 * ibm,create-pe-dma-window
942 * ibm,remove-pe-dma-window
943 * for the given node in that order.
944 * the property is actually in the parent, not the PE
945 */
946 ret = of_property_read_u32_array(pdn, "ibm,ddw-applicable",
947 &ddw_avail[0], 3);
948 if (ret)
949 goto out_failed;
950
951 /*
952 * Query if there is a second window of size to map the
953 * whole partition. Query returns number of windows, largest
954 * block assigned to PE (partition endpoint), and two bitmasks
955 * of page sizes: supported and supported for migrate-dma.
956 */
957 dn = pci_device_to_OF_node(dev);
958 ret = query_ddw(dev, ddw_avail, &query);
959 if (ret != 0)
960 goto out_failed;
961
962 if (query.windows_available == 0) {
963 /*
964 * no additional windows are available for this device.
965 * We might be able to reallocate the existing window,
966 * trading in for a larger page size.
967 */
968 dev_dbg(&dev->dev, "no free dynamic windows");
969 goto out_failed;
970 }
971 if (query.page_size & 4) {
972 page_shift = 24; /* 16MB */
973 } else if (query.page_size & 2) {
974 page_shift = 16; /* 64kB */
975 } else if (query.page_size & 1) {
976 page_shift = 12; /* 4kB */
977 } else {
978 dev_dbg(&dev->dev, "no supported direct page size in mask %x",
979 query.page_size);
980 goto out_failed;
981 }
982 /* verify the window * number of ptes will map the partition */
983 /* check largest block * page size > max memory hotplug addr */
984 max_addr = memory_hotplug_max();
985 if (query.largest_available_block < (max_addr >> page_shift)) {
986 dev_dbg(&dev->dev, "can't map partiton max 0x%llx with %u "
987 "%llu-sized pages\n", max_addr, query.largest_available_block,
988 1ULL << page_shift);
989 goto out_failed;
990 }
991 len = order_base_2(max_addr);
992 win64 = kzalloc(sizeof(struct property), GFP_KERNEL);
993 if (!win64) {
994 dev_info(&dev->dev,
995 "couldn't allocate property for 64bit dma window\n");
996 goto out_failed;
997 }
998 win64->name = kstrdup(DIRECT64_PROPNAME, GFP_KERNEL);
999 win64->value = ddwprop = kmalloc(sizeof(*ddwprop), GFP_KERNEL);
1000 win64->length = sizeof(*ddwprop);
1001 if (!win64->name || !win64->value) {
1002 dev_info(&dev->dev,
1003 "couldn't allocate property name and value\n");
1004 goto out_free_prop;
1005 }
1006
1007 ret = create_ddw(dev, ddw_avail, &create, page_shift, len);
1008 if (ret != 0)
1009 goto out_free_prop;
1010
1011 ddwprop->liobn = cpu_to_be32(create.liobn);
1012 ddwprop->dma_base = cpu_to_be64(((u64)create.addr_hi << 32) |
1013 create.addr_lo);
1014 ddwprop->tce_shift = cpu_to_be32(page_shift);
1015 ddwprop->window_shift = cpu_to_be32(len);
1016
1017 dev_dbg(&dev->dev, "created tce table LIOBN 0x%x for %s\n",
1018 create.liobn, dn->full_name);
1019
1020 window = kzalloc(sizeof(*window), GFP_KERNEL);
1021 if (!window)
1022 goto out_clear_window;
1023
1024 ret = walk_system_ram_range(0, memblock_end_of_DRAM() >> PAGE_SHIFT,
1025 win64->value, tce_setrange_multi_pSeriesLP_walk);
1026 if (ret) {
1027 dev_info(&dev->dev, "failed to map direct window for %s: %d\n",
1028 dn->full_name, ret);
1029 goto out_free_window;
1030 }
1031
1032 ret = of_add_property(pdn, win64);
1033 if (ret) {
1034 dev_err(&dev->dev, "unable to add dma window property for %s: %d",
1035 pdn->full_name, ret);
1036 goto out_free_window;
1037 }
1038
1039 window->device = pdn;
1040 window->prop = ddwprop;
1041 spin_lock(&direct_window_list_lock);
1042 list_add(&window->list, &direct_window_list);
1043 spin_unlock(&direct_window_list_lock);
1044
1045 dma_addr = be64_to_cpu(ddwprop->dma_base);
1046 goto out_unlock;
1047
1048 out_free_window:
1049 kfree(window);
1050
1051 out_clear_window:
1052 remove_ddw(pdn, true);
1053
1054 out_free_prop:
1055 kfree(win64->name);
1056 kfree(win64->value);
1057 kfree(win64);
1058
1059 out_failed:
1060
1061 fpdn = kzalloc(sizeof(*fpdn), GFP_KERNEL);
1062 if (!fpdn)
1063 goto out_unlock;
1064 fpdn->pdn = pdn;
1065 list_add(&fpdn->list, &failed_ddw_pdn_list);
1066
1067 out_unlock:
1068 mutex_unlock(&direct_window_init_mutex);
1069 return dma_addr;
1070 }
1071
1072 static void pci_dma_dev_setup_pSeriesLP(struct pci_dev *dev)
1073 {
1074 struct device_node *pdn, *dn;
1075 struct iommu_table *tbl;
1076 const __be32 *dma_window = NULL;
1077 struct pci_dn *pci;
1078
1079 pr_debug("pci_dma_dev_setup_pSeriesLP: %s\n", pci_name(dev));
1080
1081 /* dev setup for LPAR is a little tricky, since the device tree might
1082 * contain the dma-window properties per-device and not necessarily
1083 * for the bus. So we need to search upwards in the tree until we
1084 * either hit a dma-window property, OR find a parent with a table
1085 * already allocated.
1086 */
1087 dn = pci_device_to_OF_node(dev);
1088 pr_debug(" node is %s\n", dn->full_name);
1089
1090 for (pdn = dn; pdn && PCI_DN(pdn) && !PCI_DN(pdn)->iommu_table;
1091 pdn = pdn->parent) {
1092 dma_window = of_get_property(pdn, "ibm,dma-window", NULL);
1093 if (dma_window)
1094 break;
1095 }
1096
1097 if (!pdn || !PCI_DN(pdn)) {
1098 printk(KERN_WARNING "pci_dma_dev_setup_pSeriesLP: "
1099 "no DMA window found for pci dev=%s dn=%s\n",
1100 pci_name(dev), of_node_full_name(dn));
1101 return;
1102 }
1103 pr_debug(" parent is %s\n", pdn->full_name);
1104
1105 pci = PCI_DN(pdn);
1106 if (!pci->iommu_table) {
1107 tbl = kzalloc_node(sizeof(struct iommu_table), GFP_KERNEL,
1108 pci->phb->node);
1109 iommu_table_setparms_lpar(pci->phb, pdn, tbl, dma_window);
1110 pci->iommu_table = iommu_init_table(tbl, pci->phb->node);
1111 iommu_register_group(tbl, pci_domain_nr(pci->phb->bus), 0);
1112 pr_debug(" created table: %p\n", pci->iommu_table);
1113 } else {
1114 pr_debug(" found DMA window, table: %p\n", pci->iommu_table);
1115 }
1116
1117 set_iommu_table_base_and_group(&dev->dev, pci->iommu_table);
1118 }
1119
1120 static int dma_set_mask_pSeriesLP(struct device *dev, u64 dma_mask)
1121 {
1122 bool ddw_enabled = false;
1123 struct device_node *pdn, *dn;
1124 struct pci_dev *pdev;
1125 const __be32 *dma_window = NULL;
1126 u64 dma_offset;
1127
1128 if (!dev->dma_mask)
1129 return -EIO;
1130
1131 if (!dev_is_pci(dev))
1132 goto check_mask;
1133
1134 pdev = to_pci_dev(dev);
1135
1136 /* only attempt to use a new window if 64-bit DMA is requested */
1137 if (!disable_ddw && dma_mask == DMA_BIT_MASK(64)) {
1138 dn = pci_device_to_OF_node(pdev);
1139 dev_dbg(dev, "node is %s\n", dn->full_name);
1140
1141 /*
1142 * the device tree might contain the dma-window properties
1143 * per-device and not necessarily for the bus. So we need to
1144 * search upwards in the tree until we either hit a dma-window
1145 * property, OR find a parent with a table already allocated.
1146 */
1147 for (pdn = dn; pdn && PCI_DN(pdn) && !PCI_DN(pdn)->iommu_table;
1148 pdn = pdn->parent) {
1149 dma_window = of_get_property(pdn, "ibm,dma-window", NULL);
1150 if (dma_window)
1151 break;
1152 }
1153 if (pdn && PCI_DN(pdn)) {
1154 dma_offset = enable_ddw(pdev, pdn);
1155 if (dma_offset != 0) {
1156 dev_info(dev, "Using 64-bit direct DMA at offset %llx\n", dma_offset);
1157 set_dma_offset(dev, dma_offset);
1158 set_dma_ops(dev, &dma_direct_ops);
1159 ddw_enabled = true;
1160 }
1161 }
1162 }
1163
1164 /* fall back on iommu ops, restore table pointer with ops */
1165 if (!ddw_enabled && get_dma_ops(dev) != &dma_iommu_ops) {
1166 dev_info(dev, "Restoring 32-bit DMA via iommu\n");
1167 set_dma_ops(dev, &dma_iommu_ops);
1168 pci_dma_dev_setup_pSeriesLP(pdev);
1169 }
1170
1171 check_mask:
1172 if (!dma_supported(dev, dma_mask))
1173 return -EIO;
1174
1175 *dev->dma_mask = dma_mask;
1176 return 0;
1177 }
1178
1179 static u64 dma_get_required_mask_pSeriesLP(struct device *dev)
1180 {
1181 if (!dev->dma_mask)
1182 return 0;
1183
1184 if (!disable_ddw && dev_is_pci(dev)) {
1185 struct pci_dev *pdev = to_pci_dev(dev);
1186 struct device_node *dn;
1187
1188 dn = pci_device_to_OF_node(pdev);
1189
1190 /* search upwards for ibm,dma-window */
1191 for (; dn && PCI_DN(dn) && !PCI_DN(dn)->iommu_table;
1192 dn = dn->parent)
1193 if (of_get_property(dn, "ibm,dma-window", NULL))
1194 break;
1195 /* if there is a ibm,ddw-applicable property require 64 bits */
1196 if (dn && PCI_DN(dn) &&
1197 of_get_property(dn, "ibm,ddw-applicable", NULL))
1198 return DMA_BIT_MASK(64);
1199 }
1200
1201 return dma_iommu_ops.get_required_mask(dev);
1202 }
1203
1204 #else /* CONFIG_PCI */
1205 #define pci_dma_bus_setup_pSeries NULL
1206 #define pci_dma_dev_setup_pSeries NULL
1207 #define pci_dma_bus_setup_pSeriesLP NULL
1208 #define pci_dma_dev_setup_pSeriesLP NULL
1209 #define dma_set_mask_pSeriesLP NULL
1210 #define dma_get_required_mask_pSeriesLP NULL
1211 #endif /* !CONFIG_PCI */
1212
1213 static int iommu_mem_notifier(struct notifier_block *nb, unsigned long action,
1214 void *data)
1215 {
1216 struct direct_window *window;
1217 struct memory_notify *arg = data;
1218 int ret = 0;
1219
1220 switch (action) {
1221 case MEM_GOING_ONLINE:
1222 spin_lock(&direct_window_list_lock);
1223 list_for_each_entry(window, &direct_window_list, list) {
1224 ret |= tce_setrange_multi_pSeriesLP(arg->start_pfn,
1225 arg->nr_pages, window->prop);
1226 /* XXX log error */
1227 }
1228 spin_unlock(&direct_window_list_lock);
1229 break;
1230 case MEM_CANCEL_ONLINE:
1231 case MEM_OFFLINE:
1232 spin_lock(&direct_window_list_lock);
1233 list_for_each_entry(window, &direct_window_list, list) {
1234 ret |= tce_clearrange_multi_pSeriesLP(arg->start_pfn,
1235 arg->nr_pages, window->prop);
1236 /* XXX log error */
1237 }
1238 spin_unlock(&direct_window_list_lock);
1239 break;
1240 default:
1241 break;
1242 }
1243 if (ret && action != MEM_CANCEL_ONLINE)
1244 return NOTIFY_BAD;
1245
1246 return NOTIFY_OK;
1247 }
1248
1249 static struct notifier_block iommu_mem_nb = {
1250 .notifier_call = iommu_mem_notifier,
1251 };
1252
1253 static int iommu_reconfig_notifier(struct notifier_block *nb, unsigned long action, void *data)
1254 {
1255 int err = NOTIFY_OK;
1256 struct of_reconfig_data *rd = data;
1257 struct device_node *np = rd->dn;
1258 struct pci_dn *pci = PCI_DN(np);
1259 struct direct_window *window;
1260
1261 switch (action) {
1262 case OF_RECONFIG_DETACH_NODE:
1263 /*
1264 * Removing the property will invoke the reconfig
1265 * notifier again, which causes dead-lock on the
1266 * read-write semaphore of the notifier chain. So
1267 * we have to remove the property when releasing
1268 * the device node.
1269 */
1270 remove_ddw(np, false);
1271 if (pci && pci->iommu_table)
1272 iommu_free_table(pci->iommu_table, np->full_name);
1273
1274 spin_lock(&direct_window_list_lock);
1275 list_for_each_entry(window, &direct_window_list, list) {
1276 if (window->device == np) {
1277 list_del(&window->list);
1278 kfree(window);
1279 break;
1280 }
1281 }
1282 spin_unlock(&direct_window_list_lock);
1283 break;
1284 default:
1285 err = NOTIFY_DONE;
1286 break;
1287 }
1288 return err;
1289 }
1290
1291 static struct notifier_block iommu_reconfig_nb = {
1292 .notifier_call = iommu_reconfig_notifier,
1293 };
1294
1295 /* These are called very early. */
1296 void iommu_init_early_pSeries(void)
1297 {
1298 if (of_chosen && of_get_property(of_chosen, "linux,iommu-off", NULL))
1299 return;
1300
1301 if (firmware_has_feature(FW_FEATURE_LPAR)) {
1302 if (firmware_has_feature(FW_FEATURE_MULTITCE)) {
1303 ppc_md.tce_build = tce_buildmulti_pSeriesLP;
1304 ppc_md.tce_free = tce_freemulti_pSeriesLP;
1305 } else {
1306 ppc_md.tce_build = tce_build_pSeriesLP;
1307 ppc_md.tce_free = tce_free_pSeriesLP;
1308 }
1309 ppc_md.tce_get = tce_get_pSeriesLP;
1310 ppc_md.pci_dma_bus_setup = pci_dma_bus_setup_pSeriesLP;
1311 ppc_md.pci_dma_dev_setup = pci_dma_dev_setup_pSeriesLP;
1312 ppc_md.dma_set_mask = dma_set_mask_pSeriesLP;
1313 ppc_md.dma_get_required_mask = dma_get_required_mask_pSeriesLP;
1314 } else {
1315 ppc_md.tce_build = tce_build_pSeries;
1316 ppc_md.tce_free = tce_free_pSeries;
1317 ppc_md.tce_get = tce_get_pseries;
1318 ppc_md.pci_dma_bus_setup = pci_dma_bus_setup_pSeries;
1319 ppc_md.pci_dma_dev_setup = pci_dma_dev_setup_pSeries;
1320 }
1321
1322
1323 of_reconfig_notifier_register(&iommu_reconfig_nb);
1324 register_memory_notifier(&iommu_mem_nb);
1325
1326 set_pci_dma_ops(&dma_iommu_ops);
1327 }
1328
1329 static int __init disable_multitce(char *str)
1330 {
1331 if (strcmp(str, "off") == 0 &&
1332 firmware_has_feature(FW_FEATURE_LPAR) &&
1333 firmware_has_feature(FW_FEATURE_MULTITCE)) {
1334 printk(KERN_INFO "Disabling MULTITCE firmware feature\n");
1335 ppc_md.tce_build = tce_build_pSeriesLP;
1336 ppc_md.tce_free = tce_free_pSeriesLP;
1337 powerpc_firmware_features &= ~FW_FEATURE_MULTITCE;
1338 }
1339 return 1;
1340 }
1341
1342 __setup("multitce=", disable_multitce);