]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/powerpc/platforms/pseries/lpar.c
mm: introduce include/linux/pgtable.h
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / platforms / pseries / lpar.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * pSeries_lpar.c
4 * Copyright (C) 2001 Todd Inglett, IBM Corporation
5 *
6 * pSeries LPAR support.
7 */
8
9 /* Enables debugging of low-level hash table routines - careful! */
10 #undef DEBUG
11 #define pr_fmt(fmt) "lpar: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/console.h>
16 #include <linux/export.h>
17 #include <linux/jump_label.h>
18 #include <linux/delay.h>
19 #include <linux/stop_machine.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <asm/processor.h>
25 #include <asm/mmu.h>
26 #include <asm/page.h>
27 #include <linux/pgtable.h>
28 #include <asm/machdep.h>
29 #include <asm/mmu_context.h>
30 #include <asm/iommu.h>
31 #include <asm/tlb.h>
32 #include <asm/prom.h>
33 #include <asm/cputable.h>
34 #include <asm/udbg.h>
35 #include <asm/smp.h>
36 #include <asm/trace.h>
37 #include <asm/firmware.h>
38 #include <asm/plpar_wrappers.h>
39 #include <asm/kexec.h>
40 #include <asm/fadump.h>
41 #include <asm/asm-prototypes.h>
42 #include <asm/debugfs.h>
43
44 #include "pseries.h"
45
46 /* Flag bits for H_BULK_REMOVE */
47 #define HBR_REQUEST 0x4000000000000000UL
48 #define HBR_RESPONSE 0x8000000000000000UL
49 #define HBR_END 0xc000000000000000UL
50 #define HBR_AVPN 0x0200000000000000UL
51 #define HBR_ANDCOND 0x0100000000000000UL
52
53
54 /* in hvCall.S */
55 EXPORT_SYMBOL(plpar_hcall);
56 EXPORT_SYMBOL(plpar_hcall9);
57 EXPORT_SYMBOL(plpar_hcall_norets);
58
59 /*
60 * H_BLOCK_REMOVE supported block size for this page size in segment who's base
61 * page size is that page size.
62 *
63 * The first index is the segment base page size, the second one is the actual
64 * page size.
65 */
66 static int hblkrm_size[MMU_PAGE_COUNT][MMU_PAGE_COUNT] __ro_after_init;
67
68 /*
69 * Due to the involved complexity, and that the current hypervisor is only
70 * returning this value or 0, we are limiting the support of the H_BLOCK_REMOVE
71 * buffer size to 8 size block.
72 */
73 #define HBLKRM_SUPPORTED_BLOCK_SIZE 8
74
75 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
76 static u8 dtl_mask = DTL_LOG_PREEMPT;
77 #else
78 static u8 dtl_mask;
79 #endif
80
81 void alloc_dtl_buffers(unsigned long *time_limit)
82 {
83 int cpu;
84 struct paca_struct *pp;
85 struct dtl_entry *dtl;
86
87 for_each_possible_cpu(cpu) {
88 pp = paca_ptrs[cpu];
89 if (pp->dispatch_log)
90 continue;
91 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
92 if (!dtl) {
93 pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
94 cpu);
95 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
96 pr_warn("Stolen time statistics will be unreliable\n");
97 #endif
98 break;
99 }
100
101 pp->dtl_ridx = 0;
102 pp->dispatch_log = dtl;
103 pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
104 pp->dtl_curr = dtl;
105
106 if (time_limit && time_after(jiffies, *time_limit)) {
107 cond_resched();
108 *time_limit = jiffies + HZ;
109 }
110 }
111 }
112
113 void register_dtl_buffer(int cpu)
114 {
115 long ret;
116 struct paca_struct *pp;
117 struct dtl_entry *dtl;
118 int hwcpu = get_hard_smp_processor_id(cpu);
119
120 pp = paca_ptrs[cpu];
121 dtl = pp->dispatch_log;
122 if (dtl && dtl_mask) {
123 pp->dtl_ridx = 0;
124 pp->dtl_curr = dtl;
125 lppaca_of(cpu).dtl_idx = 0;
126
127 /* hypervisor reads buffer length from this field */
128 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
129 ret = register_dtl(hwcpu, __pa(dtl));
130 if (ret)
131 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
132 cpu, hwcpu, ret);
133
134 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
135 }
136 }
137
138 #ifdef CONFIG_PPC_SPLPAR
139 struct dtl_worker {
140 struct delayed_work work;
141 int cpu;
142 };
143
144 struct vcpu_dispatch_data {
145 int last_disp_cpu;
146
147 int total_disp;
148
149 int same_cpu_disp;
150 int same_chip_disp;
151 int diff_chip_disp;
152 int far_chip_disp;
153
154 int numa_home_disp;
155 int numa_remote_disp;
156 int numa_far_disp;
157 };
158
159 /*
160 * This represents the number of cpus in the hypervisor. Since there is no
161 * architected way to discover the number of processors in the host, we
162 * provision for dealing with NR_CPUS. This is currently 2048 by default, and
163 * is sufficient for our purposes. This will need to be tweaked if
164 * CONFIG_NR_CPUS is changed.
165 */
166 #define NR_CPUS_H NR_CPUS
167
168 DEFINE_RWLOCK(dtl_access_lock);
169 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
170 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
171 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
172 static enum cpuhp_state dtl_worker_state;
173 static DEFINE_MUTEX(dtl_enable_mutex);
174 static int vcpudispatch_stats_on __read_mostly;
175 static int vcpudispatch_stats_freq = 50;
176 static __be32 *vcpu_associativity, *pcpu_associativity;
177
178
179 static void free_dtl_buffers(unsigned long *time_limit)
180 {
181 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
182 int cpu;
183 struct paca_struct *pp;
184
185 for_each_possible_cpu(cpu) {
186 pp = paca_ptrs[cpu];
187 if (!pp->dispatch_log)
188 continue;
189 kmem_cache_free(dtl_cache, pp->dispatch_log);
190 pp->dtl_ridx = 0;
191 pp->dispatch_log = 0;
192 pp->dispatch_log_end = 0;
193 pp->dtl_curr = 0;
194
195 if (time_limit && time_after(jiffies, *time_limit)) {
196 cond_resched();
197 *time_limit = jiffies + HZ;
198 }
199 }
200 #endif
201 }
202
203 static int init_cpu_associativity(void)
204 {
205 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
206 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
207 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
208 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
209
210 if (!vcpu_associativity || !pcpu_associativity) {
211 pr_err("error allocating memory for associativity information\n");
212 return -ENOMEM;
213 }
214
215 return 0;
216 }
217
218 static void destroy_cpu_associativity(void)
219 {
220 kfree(vcpu_associativity);
221 kfree(pcpu_associativity);
222 vcpu_associativity = pcpu_associativity = 0;
223 }
224
225 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
226 {
227 __be32 *assoc;
228 int rc = 0;
229
230 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
231 if (!assoc[0]) {
232 rc = hcall_vphn(cpu, flag, &assoc[0]);
233 if (rc)
234 return NULL;
235 }
236
237 return assoc;
238 }
239
240 static __be32 *get_pcpu_associativity(int cpu)
241 {
242 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
243 }
244
245 static __be32 *get_vcpu_associativity(int cpu)
246 {
247 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
248 }
249
250 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
251 {
252 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
253
254 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
255 return -EINVAL;
256
257 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
258 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
259
260 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
261 return -EIO;
262
263 return cpu_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
264 }
265
266 static int cpu_home_node_dispatch_distance(int disp_cpu)
267 {
268 __be32 *disp_cpu_assoc, *vcpu_assoc;
269 int vcpu_id = smp_processor_id();
270
271 if (disp_cpu >= NR_CPUS_H) {
272 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
273 disp_cpu, NR_CPUS_H);
274 return -EINVAL;
275 }
276
277 disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
278 vcpu_assoc = get_vcpu_associativity(vcpu_id);
279
280 if (!disp_cpu_assoc || !vcpu_assoc)
281 return -EIO;
282
283 return cpu_distance(disp_cpu_assoc, vcpu_assoc);
284 }
285
286 static void update_vcpu_disp_stat(int disp_cpu)
287 {
288 struct vcpu_dispatch_data *disp;
289 int distance;
290
291 disp = this_cpu_ptr(&vcpu_disp_data);
292 if (disp->last_disp_cpu == -1) {
293 disp->last_disp_cpu = disp_cpu;
294 return;
295 }
296
297 disp->total_disp++;
298
299 if (disp->last_disp_cpu == disp_cpu ||
300 (cpu_first_thread_sibling(disp->last_disp_cpu) ==
301 cpu_first_thread_sibling(disp_cpu)))
302 disp->same_cpu_disp++;
303 else {
304 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
305 disp_cpu);
306 if (distance < 0)
307 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
308 smp_processor_id());
309 else {
310 switch (distance) {
311 case 0:
312 disp->same_chip_disp++;
313 break;
314 case 1:
315 disp->diff_chip_disp++;
316 break;
317 case 2:
318 disp->far_chip_disp++;
319 break;
320 default:
321 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
322 smp_processor_id(),
323 disp->last_disp_cpu,
324 disp_cpu,
325 distance);
326 }
327 }
328 }
329
330 distance = cpu_home_node_dispatch_distance(disp_cpu);
331 if (distance < 0)
332 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
333 smp_processor_id());
334 else {
335 switch (distance) {
336 case 0:
337 disp->numa_home_disp++;
338 break;
339 case 1:
340 disp->numa_remote_disp++;
341 break;
342 case 2:
343 disp->numa_far_disp++;
344 break;
345 default:
346 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
347 smp_processor_id(),
348 disp_cpu,
349 distance);
350 }
351 }
352
353 disp->last_disp_cpu = disp_cpu;
354 }
355
356 static void process_dtl_buffer(struct work_struct *work)
357 {
358 struct dtl_entry dtle;
359 u64 i = __this_cpu_read(dtl_entry_ridx);
360 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
361 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
362 struct lppaca *vpa = local_paca->lppaca_ptr;
363 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
364
365 if (!local_paca->dispatch_log)
366 return;
367
368 /* if we have been migrated away, we cancel ourself */
369 if (d->cpu != smp_processor_id()) {
370 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
371 smp_processor_id());
372 return;
373 }
374
375 if (i == be64_to_cpu(vpa->dtl_idx))
376 goto out;
377
378 while (i < be64_to_cpu(vpa->dtl_idx)) {
379 dtle = *dtl;
380 barrier();
381 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
382 /* buffer has overflowed */
383 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
384 d->cpu,
385 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
386 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
387 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
388 continue;
389 }
390 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
391 ++i;
392 ++dtl;
393 if (dtl == dtl_end)
394 dtl = local_paca->dispatch_log;
395 }
396
397 __this_cpu_write(dtl_entry_ridx, i);
398
399 out:
400 schedule_delayed_work_on(d->cpu, to_delayed_work(work),
401 HZ / vcpudispatch_stats_freq);
402 }
403
404 static int dtl_worker_online(unsigned int cpu)
405 {
406 struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
407
408 memset(d, 0, sizeof(*d));
409 INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
410 d->cpu = cpu;
411
412 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
413 per_cpu(dtl_entry_ridx, cpu) = 0;
414 register_dtl_buffer(cpu);
415 #else
416 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
417 #endif
418
419 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
420 return 0;
421 }
422
423 static int dtl_worker_offline(unsigned int cpu)
424 {
425 struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
426
427 cancel_delayed_work_sync(&d->work);
428
429 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
430 unregister_dtl(get_hard_smp_processor_id(cpu));
431 #endif
432
433 return 0;
434 }
435
436 static void set_global_dtl_mask(u8 mask)
437 {
438 int cpu;
439
440 dtl_mask = mask;
441 for_each_present_cpu(cpu)
442 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
443 }
444
445 static void reset_global_dtl_mask(void)
446 {
447 int cpu;
448
449 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
450 dtl_mask = DTL_LOG_PREEMPT;
451 #else
452 dtl_mask = 0;
453 #endif
454 for_each_present_cpu(cpu)
455 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
456 }
457
458 static int dtl_worker_enable(unsigned long *time_limit)
459 {
460 int rc = 0, state;
461
462 if (!write_trylock(&dtl_access_lock)) {
463 rc = -EBUSY;
464 goto out;
465 }
466
467 set_global_dtl_mask(DTL_LOG_ALL);
468
469 /* Setup dtl buffers and register those */
470 alloc_dtl_buffers(time_limit);
471
472 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
473 dtl_worker_online, dtl_worker_offline);
474 if (state < 0) {
475 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
476 free_dtl_buffers(time_limit);
477 reset_global_dtl_mask();
478 write_unlock(&dtl_access_lock);
479 rc = -EINVAL;
480 goto out;
481 }
482 dtl_worker_state = state;
483
484 out:
485 return rc;
486 }
487
488 static void dtl_worker_disable(unsigned long *time_limit)
489 {
490 cpuhp_remove_state(dtl_worker_state);
491 free_dtl_buffers(time_limit);
492 reset_global_dtl_mask();
493 write_unlock(&dtl_access_lock);
494 }
495
496 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
497 size_t count, loff_t *ppos)
498 {
499 unsigned long time_limit = jiffies + HZ;
500 struct vcpu_dispatch_data *disp;
501 int rc, cmd, cpu;
502 char buf[16];
503
504 if (count > 15)
505 return -EINVAL;
506
507 if (copy_from_user(buf, p, count))
508 return -EFAULT;
509
510 buf[count] = 0;
511 rc = kstrtoint(buf, 0, &cmd);
512 if (rc || cmd < 0 || cmd > 1) {
513 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
514 return rc ? rc : -EINVAL;
515 }
516
517 mutex_lock(&dtl_enable_mutex);
518
519 if ((cmd == 0 && !vcpudispatch_stats_on) ||
520 (cmd == 1 && vcpudispatch_stats_on))
521 goto out;
522
523 if (cmd) {
524 rc = init_cpu_associativity();
525 if (rc)
526 goto out;
527
528 for_each_possible_cpu(cpu) {
529 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
530 memset(disp, 0, sizeof(*disp));
531 disp->last_disp_cpu = -1;
532 }
533
534 rc = dtl_worker_enable(&time_limit);
535 if (rc) {
536 destroy_cpu_associativity();
537 goto out;
538 }
539 } else {
540 dtl_worker_disable(&time_limit);
541 destroy_cpu_associativity();
542 }
543
544 vcpudispatch_stats_on = cmd;
545
546 out:
547 mutex_unlock(&dtl_enable_mutex);
548 if (rc)
549 return rc;
550 return count;
551 }
552
553 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
554 {
555 int cpu;
556 struct vcpu_dispatch_data *disp;
557
558 if (!vcpudispatch_stats_on) {
559 seq_puts(p, "off\n");
560 return 0;
561 }
562
563 for_each_online_cpu(cpu) {
564 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
565 seq_printf(p, "cpu%d", cpu);
566 seq_put_decimal_ull(p, " ", disp->total_disp);
567 seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
568 seq_put_decimal_ull(p, " ", disp->same_chip_disp);
569 seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
570 seq_put_decimal_ull(p, " ", disp->far_chip_disp);
571 seq_put_decimal_ull(p, " ", disp->numa_home_disp);
572 seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
573 seq_put_decimal_ull(p, " ", disp->numa_far_disp);
574 seq_puts(p, "\n");
575 }
576
577 return 0;
578 }
579
580 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
581 {
582 return single_open(file, vcpudispatch_stats_display, NULL);
583 }
584
585 static const struct proc_ops vcpudispatch_stats_proc_ops = {
586 .proc_open = vcpudispatch_stats_open,
587 .proc_read = seq_read,
588 .proc_write = vcpudispatch_stats_write,
589 .proc_lseek = seq_lseek,
590 .proc_release = single_release,
591 };
592
593 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
594 const char __user *p, size_t count, loff_t *ppos)
595 {
596 int rc, freq;
597 char buf[16];
598
599 if (count > 15)
600 return -EINVAL;
601
602 if (copy_from_user(buf, p, count))
603 return -EFAULT;
604
605 buf[count] = 0;
606 rc = kstrtoint(buf, 0, &freq);
607 if (rc || freq < 1 || freq > HZ) {
608 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
609 HZ);
610 return rc ? rc : -EINVAL;
611 }
612
613 vcpudispatch_stats_freq = freq;
614
615 return count;
616 }
617
618 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
619 {
620 seq_printf(p, "%d\n", vcpudispatch_stats_freq);
621 return 0;
622 }
623
624 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
625 {
626 return single_open(file, vcpudispatch_stats_freq_display, NULL);
627 }
628
629 static const struct proc_ops vcpudispatch_stats_freq_proc_ops = {
630 .proc_open = vcpudispatch_stats_freq_open,
631 .proc_read = seq_read,
632 .proc_write = vcpudispatch_stats_freq_write,
633 .proc_lseek = seq_lseek,
634 .proc_release = single_release,
635 };
636
637 static int __init vcpudispatch_stats_procfs_init(void)
638 {
639 /*
640 * Avoid smp_processor_id while preemptible. All CPUs should have
641 * the same value for lppaca_shared_proc.
642 */
643 preempt_disable();
644 if (!lppaca_shared_proc(get_lppaca())) {
645 preempt_enable();
646 return 0;
647 }
648 preempt_enable();
649
650 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
651 &vcpudispatch_stats_proc_ops))
652 pr_err("vcpudispatch_stats: error creating procfs file\n");
653 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
654 &vcpudispatch_stats_freq_proc_ops))
655 pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
656
657 return 0;
658 }
659
660 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
661 #endif /* CONFIG_PPC_SPLPAR */
662
663 void vpa_init(int cpu)
664 {
665 int hwcpu = get_hard_smp_processor_id(cpu);
666 unsigned long addr;
667 long ret;
668
669 /*
670 * The spec says it "may be problematic" if CPU x registers the VPA of
671 * CPU y. We should never do that, but wail if we ever do.
672 */
673 WARN_ON(cpu != smp_processor_id());
674
675 if (cpu_has_feature(CPU_FTR_ALTIVEC))
676 lppaca_of(cpu).vmxregs_in_use = 1;
677
678 if (cpu_has_feature(CPU_FTR_ARCH_207S))
679 lppaca_of(cpu).ebb_regs_in_use = 1;
680
681 addr = __pa(&lppaca_of(cpu));
682 ret = register_vpa(hwcpu, addr);
683
684 if (ret) {
685 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
686 "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
687 return;
688 }
689
690 #ifdef CONFIG_PPC_BOOK3S_64
691 /*
692 * PAPR says this feature is SLB-Buffer but firmware never
693 * reports that. All SPLPAR support SLB shadow buffer.
694 */
695 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
696 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
697 ret = register_slb_shadow(hwcpu, addr);
698 if (ret)
699 pr_err("WARNING: SLB shadow buffer registration for "
700 "cpu %d (hw %d) of area %lx failed with %ld\n",
701 cpu, hwcpu, addr, ret);
702 }
703 #endif /* CONFIG_PPC_BOOK3S_64 */
704
705 /*
706 * Register dispatch trace log, if one has been allocated.
707 */
708 register_dtl_buffer(cpu);
709 }
710
711 #ifdef CONFIG_PPC_BOOK3S_64
712
713 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
714 unsigned long vpn, unsigned long pa,
715 unsigned long rflags, unsigned long vflags,
716 int psize, int apsize, int ssize)
717 {
718 unsigned long lpar_rc;
719 unsigned long flags;
720 unsigned long slot;
721 unsigned long hpte_v, hpte_r;
722
723 if (!(vflags & HPTE_V_BOLTED))
724 pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
725 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
726 hpte_group, vpn, pa, rflags, vflags, psize);
727
728 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
729 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
730
731 if (!(vflags & HPTE_V_BOLTED))
732 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
733
734 /* Now fill in the actual HPTE */
735 /* Set CEC cookie to 0 */
736 /* Zero page = 0 */
737 /* I-cache Invalidate = 0 */
738 /* I-cache synchronize = 0 */
739 /* Exact = 0 */
740 flags = 0;
741
742 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
743 flags |= H_COALESCE_CAND;
744
745 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
746 if (unlikely(lpar_rc == H_PTEG_FULL)) {
747 pr_devel("Hash table group is full\n");
748 return -1;
749 }
750
751 /*
752 * Since we try and ioremap PHBs we don't own, the pte insert
753 * will fail. However we must catch the failure in hash_page
754 * or we will loop forever, so return -2 in this case.
755 */
756 if (unlikely(lpar_rc != H_SUCCESS)) {
757 pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
758 return -2;
759 }
760 if (!(vflags & HPTE_V_BOLTED))
761 pr_devel(" -> slot: %lu\n", slot & 7);
762
763 /* Because of iSeries, we have to pass down the secondary
764 * bucket bit here as well
765 */
766 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
767 }
768
769 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
770
771 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
772 {
773 unsigned long slot_offset;
774 unsigned long lpar_rc;
775 int i;
776 unsigned long dummy1, dummy2;
777
778 /* pick a random slot to start at */
779 slot_offset = mftb() & 0x7;
780
781 for (i = 0; i < HPTES_PER_GROUP; i++) {
782
783 /* don't remove a bolted entry */
784 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
785 HPTE_V_BOLTED, &dummy1, &dummy2);
786 if (lpar_rc == H_SUCCESS)
787 return i;
788
789 /*
790 * The test for adjunct partition is performed before the
791 * ANDCOND test. H_RESOURCE may be returned, so we need to
792 * check for that as well.
793 */
794 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
795
796 slot_offset++;
797 slot_offset &= 0x7;
798 }
799
800 return -1;
801 }
802
803 static void manual_hpte_clear_all(void)
804 {
805 unsigned long size_bytes = 1UL << ppc64_pft_size;
806 unsigned long hpte_count = size_bytes >> 4;
807 struct {
808 unsigned long pteh;
809 unsigned long ptel;
810 } ptes[4];
811 long lpar_rc;
812 unsigned long i, j;
813
814 /* Read in batches of 4,
815 * invalidate only valid entries not in the VRMA
816 * hpte_count will be a multiple of 4
817 */
818 for (i = 0; i < hpte_count; i += 4) {
819 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
820 if (lpar_rc != H_SUCCESS) {
821 pr_info("Failed to read hash page table at %ld err %ld\n",
822 i, lpar_rc);
823 continue;
824 }
825 for (j = 0; j < 4; j++){
826 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
827 HPTE_V_VRMA_MASK)
828 continue;
829 if (ptes[j].pteh & HPTE_V_VALID)
830 plpar_pte_remove_raw(0, i + j, 0,
831 &(ptes[j].pteh), &(ptes[j].ptel));
832 }
833 }
834 }
835
836 static int hcall_hpte_clear_all(void)
837 {
838 int rc;
839
840 do {
841 rc = plpar_hcall_norets(H_CLEAR_HPT);
842 } while (rc == H_CONTINUE);
843
844 return rc;
845 }
846
847 static void pseries_hpte_clear_all(void)
848 {
849 int rc;
850
851 rc = hcall_hpte_clear_all();
852 if (rc != H_SUCCESS)
853 manual_hpte_clear_all();
854
855 #ifdef __LITTLE_ENDIAN__
856 /*
857 * Reset exceptions to big endian.
858 *
859 * FIXME this is a hack for kexec, we need to reset the exception
860 * endian before starting the new kernel and this is a convenient place
861 * to do it.
862 *
863 * This is also called on boot when a fadump happens. In that case we
864 * must not change the exception endian mode.
865 */
866 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
867 pseries_big_endian_exceptions();
868 #endif
869 }
870
871 /*
872 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
873 * the low 3 bits of flags happen to line up. So no transform is needed.
874 * We can probably optimize here and assume the high bits of newpp are
875 * already zero. For now I am paranoid.
876 */
877 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
878 unsigned long newpp,
879 unsigned long vpn,
880 int psize, int apsize,
881 int ssize, unsigned long inv_flags)
882 {
883 unsigned long lpar_rc;
884 unsigned long flags;
885 unsigned long want_v;
886
887 want_v = hpte_encode_avpn(vpn, psize, ssize);
888
889 flags = (newpp & 7) | H_AVPN;
890 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
891 /* Move pp0 into bit 8 (IBM 55) */
892 flags |= (newpp & HPTE_R_PP0) >> 55;
893
894 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
895 want_v, slot, flags, psize);
896
897 lpar_rc = plpar_pte_protect(flags, slot, want_v);
898
899 if (lpar_rc == H_NOT_FOUND) {
900 pr_devel("not found !\n");
901 return -1;
902 }
903
904 pr_devel("ok\n");
905
906 BUG_ON(lpar_rc != H_SUCCESS);
907
908 return 0;
909 }
910
911 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
912 {
913 long lpar_rc;
914 unsigned long i, j;
915 struct {
916 unsigned long pteh;
917 unsigned long ptel;
918 } ptes[4];
919
920 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
921
922 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
923 if (lpar_rc != H_SUCCESS) {
924 pr_info("Failed to read hash page table at %ld err %ld\n",
925 hpte_group, lpar_rc);
926 continue;
927 }
928
929 for (j = 0; j < 4; j++) {
930 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
931 (ptes[j].pteh & HPTE_V_VALID))
932 return i + j;
933 }
934 }
935
936 return -1;
937 }
938
939 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
940 {
941 long slot;
942 unsigned long hash;
943 unsigned long want_v;
944 unsigned long hpte_group;
945
946 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
947 want_v = hpte_encode_avpn(vpn, psize, ssize);
948
949 /*
950 * We try to keep bolted entries always in primary hash
951 * But in some case we can find them in secondary too.
952 */
953 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
954 slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
955 if (slot < 0) {
956 /* Try in secondary */
957 hpte_group = (~hash & htab_hash_mask) * HPTES_PER_GROUP;
958 slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
959 if (slot < 0)
960 return -1;
961 }
962 return hpte_group + slot;
963 }
964
965 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
966 unsigned long ea,
967 int psize, int ssize)
968 {
969 unsigned long vpn;
970 unsigned long lpar_rc, slot, vsid, flags;
971
972 vsid = get_kernel_vsid(ea, ssize);
973 vpn = hpt_vpn(ea, vsid, ssize);
974
975 slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
976 BUG_ON(slot == -1);
977
978 flags = newpp & 7;
979 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
980 /* Move pp0 into bit 8 (IBM 55) */
981 flags |= (newpp & HPTE_R_PP0) >> 55;
982
983 lpar_rc = plpar_pte_protect(flags, slot, 0);
984
985 BUG_ON(lpar_rc != H_SUCCESS);
986 }
987
988 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
989 int psize, int apsize,
990 int ssize, int local)
991 {
992 unsigned long want_v;
993 unsigned long lpar_rc;
994 unsigned long dummy1, dummy2;
995
996 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
997 slot, vpn, psize, local);
998
999 want_v = hpte_encode_avpn(vpn, psize, ssize);
1000 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
1001 if (lpar_rc == H_NOT_FOUND)
1002 return;
1003
1004 BUG_ON(lpar_rc != H_SUCCESS);
1005 }
1006
1007
1008 /*
1009 * As defined in the PAPR's section 14.5.4.1.8
1010 * The control mask doesn't include the returned reference and change bit from
1011 * the processed PTE.
1012 */
1013 #define HBLKR_AVPN 0x0100000000000000UL
1014 #define HBLKR_CTRL_MASK 0xf800000000000000UL
1015 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL
1016 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL
1017 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL
1018
1019 /*
1020 * Returned true if we are supporting this block size for the specified segment
1021 * base page size and actual page size.
1022 *
1023 * Currently, we only support 8 size block.
1024 */
1025 static inline bool is_supported_hlbkrm(int bpsize, int psize)
1026 {
1027 return (hblkrm_size[bpsize][psize] == HBLKRM_SUPPORTED_BLOCK_SIZE);
1028 }
1029
1030 /**
1031 * H_BLOCK_REMOVE caller.
1032 * @idx should point to the latest @param entry set with a PTEX.
1033 * If PTE cannot be processed because another CPUs has already locked that
1034 * group, those entries are put back in @param starting at index 1.
1035 * If entries has to be retried and @retry_busy is set to true, these entries
1036 * are retried until success. If @retry_busy is set to false, the returned
1037 * is the number of entries yet to process.
1038 */
1039 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
1040 bool retry_busy)
1041 {
1042 unsigned long i, rc, new_idx;
1043 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1044
1045 if (idx < 2) {
1046 pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1047 return 0;
1048 }
1049 again:
1050 new_idx = 0;
1051 if (idx > PLPAR_HCALL9_BUFSIZE) {
1052 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1053 idx = PLPAR_HCALL9_BUFSIZE;
1054 } else if (idx < PLPAR_HCALL9_BUFSIZE)
1055 param[idx] = HBR_END;
1056
1057 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1058 param[0], /* AVA */
1059 param[1], param[2], param[3], param[4], /* TS0-7 */
1060 param[5], param[6], param[7], param[8]);
1061 if (rc == H_SUCCESS)
1062 return 0;
1063
1064 BUG_ON(rc != H_PARTIAL);
1065
1066 /* Check that the unprocessed entries were 'not found' or 'busy' */
1067 for (i = 0; i < idx-1; i++) {
1068 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1069
1070 if (ctrl == HBLKR_CTRL_ERRBUSY) {
1071 param[++new_idx] = param[i+1];
1072 continue;
1073 }
1074
1075 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1076 && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1077 }
1078
1079 /*
1080 * If there were entries found busy, retry these entries if requested,
1081 * of if all the entries have to be retried.
1082 */
1083 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1084 idx = new_idx + 1;
1085 goto again;
1086 }
1087
1088 return new_idx;
1089 }
1090
1091 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1092 /*
1093 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1094 * to make sure that we avoid bouncing the hypervisor tlbie lock.
1095 */
1096 #define PPC64_HUGE_HPTE_BATCH 12
1097
1098 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1099 int count, int psize, int ssize)
1100 {
1101 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1102 unsigned long shift, current_vpgb, vpgb;
1103 int i, pix = 0;
1104
1105 shift = mmu_psize_defs[psize].shift;
1106
1107 for (i = 0; i < count; i++) {
1108 /*
1109 * Shifting 3 bits more on the right to get a
1110 * 8 pages aligned virtual addresse.
1111 */
1112 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1113 if (!pix || vpgb != current_vpgb) {
1114 /*
1115 * Need to start a new 8 pages block, flush
1116 * the current one if needed.
1117 */
1118 if (pix)
1119 (void)call_block_remove(pix, param, true);
1120 current_vpgb = vpgb;
1121 param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1122 pix = 1;
1123 }
1124
1125 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1126 if (pix == PLPAR_HCALL9_BUFSIZE) {
1127 pix = call_block_remove(pix, param, false);
1128 /*
1129 * pix = 0 means that all the entries were
1130 * removed, we can start a new block.
1131 * Otherwise, this means that there are entries
1132 * to retry, and pix points to latest one, so
1133 * we should increment it and try to continue
1134 * the same block.
1135 */
1136 if (pix)
1137 pix++;
1138 }
1139 }
1140 if (pix)
1141 (void)call_block_remove(pix, param, true);
1142 }
1143
1144 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1145 int count, int psize, int ssize)
1146 {
1147 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1148 int i = 0, pix = 0, rc;
1149
1150 for (i = 0; i < count; i++) {
1151
1152 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1153 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1154 ssize, 0);
1155 } else {
1156 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1157 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1158 pix += 2;
1159 if (pix == 8) {
1160 rc = plpar_hcall9(H_BULK_REMOVE, param,
1161 param[0], param[1], param[2],
1162 param[3], param[4], param[5],
1163 param[6], param[7]);
1164 BUG_ON(rc != H_SUCCESS);
1165 pix = 0;
1166 }
1167 }
1168 }
1169 if (pix) {
1170 param[pix] = HBR_END;
1171 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1172 param[2], param[3], param[4], param[5],
1173 param[6], param[7]);
1174 BUG_ON(rc != H_SUCCESS);
1175 }
1176 }
1177
1178 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1179 unsigned long *vpn,
1180 int count, int psize,
1181 int ssize)
1182 {
1183 unsigned long flags = 0;
1184 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1185
1186 if (lock_tlbie)
1187 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1188
1189 /* Assuming THP size is 16M */
1190 if (is_supported_hlbkrm(psize, MMU_PAGE_16M))
1191 hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1192 else
1193 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1194
1195 if (lock_tlbie)
1196 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1197 }
1198
1199 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1200 unsigned long addr,
1201 unsigned char *hpte_slot_array,
1202 int psize, int ssize, int local)
1203 {
1204 int i, index = 0;
1205 unsigned long s_addr = addr;
1206 unsigned int max_hpte_count, valid;
1207 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1208 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1209 unsigned long shift, hidx, vpn = 0, hash, slot;
1210
1211 shift = mmu_psize_defs[psize].shift;
1212 max_hpte_count = 1U << (PMD_SHIFT - shift);
1213
1214 for (i = 0; i < max_hpte_count; i++) {
1215 valid = hpte_valid(hpte_slot_array, i);
1216 if (!valid)
1217 continue;
1218 hidx = hpte_hash_index(hpte_slot_array, i);
1219
1220 /* get the vpn */
1221 addr = s_addr + (i * (1ul << shift));
1222 vpn = hpt_vpn(addr, vsid, ssize);
1223 hash = hpt_hash(vpn, shift, ssize);
1224 if (hidx & _PTEIDX_SECONDARY)
1225 hash = ~hash;
1226
1227 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1228 slot += hidx & _PTEIDX_GROUP_IX;
1229
1230 slot_array[index] = slot;
1231 vpn_array[index] = vpn;
1232 if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1233 /*
1234 * Now do a bluk invalidate
1235 */
1236 __pSeries_lpar_hugepage_invalidate(slot_array,
1237 vpn_array,
1238 PPC64_HUGE_HPTE_BATCH,
1239 psize, ssize);
1240 index = 0;
1241 } else
1242 index++;
1243 }
1244 if (index)
1245 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1246 index, psize, ssize);
1247 }
1248 #else
1249 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1250 unsigned long addr,
1251 unsigned char *hpte_slot_array,
1252 int psize, int ssize, int local)
1253 {
1254 WARN(1, "%s called without THP support\n", __func__);
1255 }
1256 #endif
1257
1258 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1259 int psize, int ssize)
1260 {
1261 unsigned long vpn;
1262 unsigned long slot, vsid;
1263
1264 vsid = get_kernel_vsid(ea, ssize);
1265 vpn = hpt_vpn(ea, vsid, ssize);
1266
1267 slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1268 if (slot == -1)
1269 return -ENOENT;
1270
1271 /*
1272 * lpar doesn't use the passed actual page size
1273 */
1274 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1275 return 0;
1276 }
1277
1278
1279 static inline unsigned long compute_slot(real_pte_t pte,
1280 unsigned long vpn,
1281 unsigned long index,
1282 unsigned long shift,
1283 int ssize)
1284 {
1285 unsigned long slot, hash, hidx;
1286
1287 hash = hpt_hash(vpn, shift, ssize);
1288 hidx = __rpte_to_hidx(pte, index);
1289 if (hidx & _PTEIDX_SECONDARY)
1290 hash = ~hash;
1291 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1292 slot += hidx & _PTEIDX_GROUP_IX;
1293 return slot;
1294 }
1295
1296 /**
1297 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1298 * "all within the same naturally aligned 8 page virtual address block".
1299 */
1300 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1301 unsigned long *param)
1302 {
1303 unsigned long vpn;
1304 unsigned long i, pix = 0;
1305 unsigned long index, shift, slot, current_vpgb, vpgb;
1306 real_pte_t pte;
1307 int psize, ssize;
1308
1309 psize = batch->psize;
1310 ssize = batch->ssize;
1311
1312 for (i = 0; i < number; i++) {
1313 vpn = batch->vpn[i];
1314 pte = batch->pte[i];
1315 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1316 /*
1317 * Shifting 3 bits more on the right to get a
1318 * 8 pages aligned virtual addresse.
1319 */
1320 vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1321 if (!pix || vpgb != current_vpgb) {
1322 /*
1323 * Need to start a new 8 pages block, flush
1324 * the current one if needed.
1325 */
1326 if (pix)
1327 (void)call_block_remove(pix, param,
1328 true);
1329 current_vpgb = vpgb;
1330 param[0] = hpte_encode_avpn(vpn, psize,
1331 ssize);
1332 pix = 1;
1333 }
1334
1335 slot = compute_slot(pte, vpn, index, shift, ssize);
1336 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1337
1338 if (pix == PLPAR_HCALL9_BUFSIZE) {
1339 pix = call_block_remove(pix, param, false);
1340 /*
1341 * pix = 0 means that all the entries were
1342 * removed, we can start a new block.
1343 * Otherwise, this means that there are entries
1344 * to retry, and pix points to latest one, so
1345 * we should increment it and try to continue
1346 * the same block.
1347 */
1348 if (pix)
1349 pix++;
1350 }
1351 } pte_iterate_hashed_end();
1352 }
1353
1354 if (pix)
1355 (void)call_block_remove(pix, param, true);
1356 }
1357
1358 /*
1359 * TLB Block Invalidate Characteristics
1360 *
1361 * These characteristics define the size of the block the hcall H_BLOCK_REMOVE
1362 * is able to process for each couple segment base page size, actual page size.
1363 *
1364 * The ibm,get-system-parameter properties is returning a buffer with the
1365 * following layout:
1366 *
1367 * [ 2 bytes size of the RTAS buffer (excluding these 2 bytes) ]
1368 * -----------------
1369 * TLB Block Invalidate Specifiers:
1370 * [ 1 byte LOG base 2 of the TLB invalidate block size being specified ]
1371 * [ 1 byte Number of page sizes (N) that are supported for the specified
1372 * TLB invalidate block size ]
1373 * [ 1 byte Encoded segment base page size and actual page size
1374 * MSB=0 means 4k segment base page size and actual page size
1375 * MSB=1 the penc value in mmu_psize_def ]
1376 * ...
1377 * -----------------
1378 * Next TLB Block Invalidate Specifiers...
1379 * -----------------
1380 * [ 0 ]
1381 */
1382 static inline void set_hblkrm_bloc_size(int bpsize, int psize,
1383 unsigned int block_size)
1384 {
1385 if (block_size > hblkrm_size[bpsize][psize])
1386 hblkrm_size[bpsize][psize] = block_size;
1387 }
1388
1389 /*
1390 * Decode the Encoded segment base page size and actual page size.
1391 * PAPR specifies:
1392 * - bit 7 is the L bit
1393 * - bits 0-5 are the penc value
1394 * If the L bit is 0, this means 4K segment base page size and actual page size
1395 * otherwise the penc value should be read.
1396 */
1397 #define HBLKRM_L_MASK 0x80
1398 #define HBLKRM_PENC_MASK 0x3f
1399 static inline void __init check_lp_set_hblkrm(unsigned int lp,
1400 unsigned int block_size)
1401 {
1402 unsigned int bpsize, psize;
1403
1404 /* First, check the L bit, if not set, this means 4K */
1405 if ((lp & HBLKRM_L_MASK) == 0) {
1406 set_hblkrm_bloc_size(MMU_PAGE_4K, MMU_PAGE_4K, block_size);
1407 return;
1408 }
1409
1410 lp &= HBLKRM_PENC_MASK;
1411 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++) {
1412 struct mmu_psize_def *def = &mmu_psize_defs[bpsize];
1413
1414 for (psize = 0; psize < MMU_PAGE_COUNT; psize++) {
1415 if (def->penc[psize] == lp) {
1416 set_hblkrm_bloc_size(bpsize, psize, block_size);
1417 return;
1418 }
1419 }
1420 }
1421 }
1422
1423 #define SPLPAR_TLB_BIC_TOKEN 50
1424
1425 /*
1426 * The size of the TLB Block Invalidate Characteristics is variable. But at the
1427 * maximum it will be the number of possible page sizes *2 + 10 bytes.
1428 * Currently MMU_PAGE_COUNT is 16, which means 42 bytes. Use a cache line size
1429 * (128 bytes) for the buffer to get plenty of space.
1430 */
1431 #define SPLPAR_TLB_BIC_MAXLENGTH 128
1432
1433 void __init pseries_lpar_read_hblkrm_characteristics(void)
1434 {
1435 unsigned char local_buffer[SPLPAR_TLB_BIC_MAXLENGTH];
1436 int call_status, len, idx, bpsize;
1437
1438 if (!firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1439 return;
1440
1441 spin_lock(&rtas_data_buf_lock);
1442 memset(rtas_data_buf, 0, RTAS_DATA_BUF_SIZE);
1443 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
1444 NULL,
1445 SPLPAR_TLB_BIC_TOKEN,
1446 __pa(rtas_data_buf),
1447 RTAS_DATA_BUF_SIZE);
1448 memcpy(local_buffer, rtas_data_buf, SPLPAR_TLB_BIC_MAXLENGTH);
1449 local_buffer[SPLPAR_TLB_BIC_MAXLENGTH - 1] = '\0';
1450 spin_unlock(&rtas_data_buf_lock);
1451
1452 if (call_status != 0) {
1453 pr_warn("%s %s Error calling get-system-parameter (0x%x)\n",
1454 __FILE__, __func__, call_status);
1455 return;
1456 }
1457
1458 /*
1459 * The first two (2) bytes of the data in the buffer are the length of
1460 * the returned data, not counting these first two (2) bytes.
1461 */
1462 len = be16_to_cpu(*((u16 *)local_buffer)) + 2;
1463 if (len > SPLPAR_TLB_BIC_MAXLENGTH) {
1464 pr_warn("%s too large returned buffer %d", __func__, len);
1465 return;
1466 }
1467
1468 idx = 2;
1469 while (idx < len) {
1470 u8 block_shift = local_buffer[idx++];
1471 u32 block_size;
1472 unsigned int npsize;
1473
1474 if (!block_shift)
1475 break;
1476
1477 block_size = 1 << block_shift;
1478
1479 for (npsize = local_buffer[idx++];
1480 npsize > 0 && idx < len; npsize--)
1481 check_lp_set_hblkrm((unsigned int) local_buffer[idx++],
1482 block_size);
1483 }
1484
1485 for (bpsize = 0; bpsize < MMU_PAGE_COUNT; bpsize++)
1486 for (idx = 0; idx < MMU_PAGE_COUNT; idx++)
1487 if (hblkrm_size[bpsize][idx])
1488 pr_info("H_BLOCK_REMOVE supports base psize:%d psize:%d block size:%d",
1489 bpsize, idx, hblkrm_size[bpsize][idx]);
1490 }
1491
1492 /*
1493 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1494 * lock.
1495 */
1496 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1497 {
1498 unsigned long vpn;
1499 unsigned long i, pix, rc;
1500 unsigned long flags = 0;
1501 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1502 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1503 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1504 unsigned long index, shift, slot;
1505 real_pte_t pte;
1506 int psize, ssize;
1507
1508 if (lock_tlbie)
1509 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1510
1511 if (is_supported_hlbkrm(batch->psize, batch->psize)) {
1512 do_block_remove(number, batch, param);
1513 goto out;
1514 }
1515
1516 psize = batch->psize;
1517 ssize = batch->ssize;
1518 pix = 0;
1519 for (i = 0; i < number; i++) {
1520 vpn = batch->vpn[i];
1521 pte = batch->pte[i];
1522 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1523 slot = compute_slot(pte, vpn, index, shift, ssize);
1524 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1525 /*
1526 * lpar doesn't use the passed actual page size
1527 */
1528 pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1529 0, ssize, local);
1530 } else {
1531 param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1532 param[pix+1] = hpte_encode_avpn(vpn, psize,
1533 ssize);
1534 pix += 2;
1535 if (pix == 8) {
1536 rc = plpar_hcall9(H_BULK_REMOVE, param,
1537 param[0], param[1], param[2],
1538 param[3], param[4], param[5],
1539 param[6], param[7]);
1540 BUG_ON(rc != H_SUCCESS);
1541 pix = 0;
1542 }
1543 }
1544 } pte_iterate_hashed_end();
1545 }
1546 if (pix) {
1547 param[pix] = HBR_END;
1548 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1549 param[2], param[3], param[4], param[5],
1550 param[6], param[7]);
1551 BUG_ON(rc != H_SUCCESS);
1552 }
1553
1554 out:
1555 if (lock_tlbie)
1556 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1557 }
1558
1559 static int __init disable_bulk_remove(char *str)
1560 {
1561 if (strcmp(str, "off") == 0 &&
1562 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1563 pr_info("Disabling BULK_REMOVE firmware feature");
1564 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1565 }
1566 return 1;
1567 }
1568
1569 __setup("bulk_remove=", disable_bulk_remove);
1570
1571 #define HPT_RESIZE_TIMEOUT 10000 /* ms */
1572
1573 struct hpt_resize_state {
1574 unsigned long shift;
1575 int commit_rc;
1576 };
1577
1578 static int pseries_lpar_resize_hpt_commit(void *data)
1579 {
1580 struct hpt_resize_state *state = data;
1581
1582 state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1583 if (state->commit_rc != H_SUCCESS)
1584 return -EIO;
1585
1586 /* Hypervisor has transitioned the HTAB, update our globals */
1587 ppc64_pft_size = state->shift;
1588 htab_size_bytes = 1UL << ppc64_pft_size;
1589 htab_hash_mask = (htab_size_bytes >> 7) - 1;
1590
1591 return 0;
1592 }
1593
1594 /*
1595 * Must be called in process context. The caller must hold the
1596 * cpus_lock.
1597 */
1598 static int pseries_lpar_resize_hpt(unsigned long shift)
1599 {
1600 struct hpt_resize_state state = {
1601 .shift = shift,
1602 .commit_rc = H_FUNCTION,
1603 };
1604 unsigned int delay, total_delay = 0;
1605 int rc;
1606 ktime_t t0, t1, t2;
1607
1608 might_sleep();
1609
1610 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1611 return -ENODEV;
1612
1613 pr_info("Attempting to resize HPT to shift %lu\n", shift);
1614
1615 t0 = ktime_get();
1616
1617 rc = plpar_resize_hpt_prepare(0, shift);
1618 while (H_IS_LONG_BUSY(rc)) {
1619 delay = get_longbusy_msecs(rc);
1620 total_delay += delay;
1621 if (total_delay > HPT_RESIZE_TIMEOUT) {
1622 /* prepare with shift==0 cancels an in-progress resize */
1623 rc = plpar_resize_hpt_prepare(0, 0);
1624 if (rc != H_SUCCESS)
1625 pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1626 rc);
1627 return -ETIMEDOUT;
1628 }
1629 msleep(delay);
1630 rc = plpar_resize_hpt_prepare(0, shift);
1631 };
1632
1633 switch (rc) {
1634 case H_SUCCESS:
1635 /* Continue on */
1636 break;
1637
1638 case H_PARAMETER:
1639 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1640 return -EINVAL;
1641 case H_RESOURCE:
1642 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1643 return -EPERM;
1644 default:
1645 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1646 return -EIO;
1647 }
1648
1649 t1 = ktime_get();
1650
1651 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1652 &state, NULL);
1653
1654 t2 = ktime_get();
1655
1656 if (rc != 0) {
1657 switch (state.commit_rc) {
1658 case H_PTEG_FULL:
1659 return -ENOSPC;
1660
1661 default:
1662 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1663 state.commit_rc);
1664 return -EIO;
1665 };
1666 }
1667
1668 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1669 shift, (long long) ktime_ms_delta(t1, t0),
1670 (long long) ktime_ms_delta(t2, t1));
1671
1672 return 0;
1673 }
1674
1675 static int pseries_lpar_register_process_table(unsigned long base,
1676 unsigned long page_size, unsigned long table_size)
1677 {
1678 long rc;
1679 unsigned long flags = 0;
1680
1681 if (table_size)
1682 flags |= PROC_TABLE_NEW;
1683 if (radix_enabled())
1684 flags |= PROC_TABLE_RADIX | PROC_TABLE_GTSE;
1685 else
1686 flags |= PROC_TABLE_HPT_SLB;
1687 for (;;) {
1688 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
1689 page_size, table_size);
1690 if (!H_IS_LONG_BUSY(rc))
1691 break;
1692 mdelay(get_longbusy_msecs(rc));
1693 }
1694 if (rc != H_SUCCESS) {
1695 pr_err("Failed to register process table (rc=%ld)\n", rc);
1696 BUG();
1697 }
1698 return rc;
1699 }
1700
1701 void __init hpte_init_pseries(void)
1702 {
1703 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate;
1704 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp;
1705 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1706 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert;
1707 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove;
1708 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted;
1709 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range;
1710 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all;
1711 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1712
1713 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1714 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1715
1716 /*
1717 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1718 * to inform the hypervisor that we wish to use the HPT.
1719 */
1720 if (cpu_has_feature(CPU_FTR_ARCH_300))
1721 pseries_lpar_register_process_table(0, 0, 0);
1722 }
1723
1724 void radix_init_pseries(void)
1725 {
1726 pr_info("Using radix MMU under hypervisor\n");
1727
1728 pseries_lpar_register_process_table(__pa(process_tb),
1729 0, PRTB_SIZE_SHIFT - 12);
1730 }
1731
1732 #ifdef CONFIG_PPC_SMLPAR
1733 #define CMO_FREE_HINT_DEFAULT 1
1734 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1735
1736 static int __init cmo_free_hint(char *str)
1737 {
1738 char *parm;
1739 parm = strstrip(str);
1740
1741 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1742 pr_info("%s: CMO free page hinting is not active.\n", __func__);
1743 cmo_free_hint_flag = 0;
1744 return 1;
1745 }
1746
1747 cmo_free_hint_flag = 1;
1748 pr_info("%s: CMO free page hinting is active.\n", __func__);
1749
1750 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1751 return 1;
1752
1753 return 0;
1754 }
1755
1756 __setup("cmo_free_hint=", cmo_free_hint);
1757
1758 static void pSeries_set_page_state(struct page *page, int order,
1759 unsigned long state)
1760 {
1761 int i, j;
1762 unsigned long cmo_page_sz, addr;
1763
1764 cmo_page_sz = cmo_get_page_size();
1765 addr = __pa((unsigned long)page_address(page));
1766
1767 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1768 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1769 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1770 }
1771 }
1772
1773 void arch_free_page(struct page *page, int order)
1774 {
1775 if (radix_enabled())
1776 return;
1777 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1778 return;
1779
1780 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1781 }
1782 EXPORT_SYMBOL(arch_free_page);
1783
1784 #endif /* CONFIG_PPC_SMLPAR */
1785 #endif /* CONFIG_PPC_BOOK3S_64 */
1786
1787 #ifdef CONFIG_TRACEPOINTS
1788 #ifdef CONFIG_JUMP_LABEL
1789 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1790
1791 int hcall_tracepoint_regfunc(void)
1792 {
1793 static_key_slow_inc(&hcall_tracepoint_key);
1794 return 0;
1795 }
1796
1797 void hcall_tracepoint_unregfunc(void)
1798 {
1799 static_key_slow_dec(&hcall_tracepoint_key);
1800 }
1801 #else
1802 /*
1803 * We optimise our hcall path by placing hcall_tracepoint_refcount
1804 * directly in the TOC so we can check if the hcall tracepoints are
1805 * enabled via a single load.
1806 */
1807
1808 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1809 extern long hcall_tracepoint_refcount;
1810
1811 int hcall_tracepoint_regfunc(void)
1812 {
1813 hcall_tracepoint_refcount++;
1814 return 0;
1815 }
1816
1817 void hcall_tracepoint_unregfunc(void)
1818 {
1819 hcall_tracepoint_refcount--;
1820 }
1821 #endif
1822
1823 /*
1824 * Since the tracing code might execute hcalls we need to guard against
1825 * recursion. One example of this are spinlocks calling H_YIELD on
1826 * shared processor partitions.
1827 */
1828 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1829
1830
1831 void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1832 {
1833 unsigned long flags;
1834 unsigned int *depth;
1835
1836 /*
1837 * We cannot call tracepoints inside RCU idle regions which
1838 * means we must not trace H_CEDE.
1839 */
1840 if (opcode == H_CEDE)
1841 return;
1842
1843 local_irq_save(flags);
1844
1845 depth = this_cpu_ptr(&hcall_trace_depth);
1846
1847 if (*depth)
1848 goto out;
1849
1850 (*depth)++;
1851 preempt_disable();
1852 trace_hcall_entry(opcode, args);
1853 (*depth)--;
1854
1855 out:
1856 local_irq_restore(flags);
1857 }
1858
1859 void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1860 {
1861 unsigned long flags;
1862 unsigned int *depth;
1863
1864 if (opcode == H_CEDE)
1865 return;
1866
1867 local_irq_save(flags);
1868
1869 depth = this_cpu_ptr(&hcall_trace_depth);
1870
1871 if (*depth)
1872 goto out;
1873
1874 (*depth)++;
1875 trace_hcall_exit(opcode, retval, retbuf);
1876 preempt_enable();
1877 (*depth)--;
1878
1879 out:
1880 local_irq_restore(flags);
1881 }
1882 #endif
1883
1884 /**
1885 * h_get_mpp
1886 * H_GET_MPP hcall returns info in 7 parms
1887 */
1888 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
1889 {
1890 int rc;
1891 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1892
1893 rc = plpar_hcall9(H_GET_MPP, retbuf);
1894
1895 mpp_data->entitled_mem = retbuf[0];
1896 mpp_data->mapped_mem = retbuf[1];
1897
1898 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1899 mpp_data->pool_num = retbuf[2] & 0xffff;
1900
1901 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1902 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1903 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1904
1905 mpp_data->pool_size = retbuf[4];
1906 mpp_data->loan_request = retbuf[5];
1907 mpp_data->backing_mem = retbuf[6];
1908
1909 return rc;
1910 }
1911 EXPORT_SYMBOL(h_get_mpp);
1912
1913 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1914 {
1915 int rc;
1916 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1917
1918 rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1919
1920 mpp_x_data->coalesced_bytes = retbuf[0];
1921 mpp_x_data->pool_coalesced_bytes = retbuf[1];
1922 mpp_x_data->pool_purr_cycles = retbuf[2];
1923 mpp_x_data->pool_spurr_cycles = retbuf[3];
1924
1925 return rc;
1926 }
1927
1928 static unsigned long vsid_unscramble(unsigned long vsid, int ssize)
1929 {
1930 unsigned long protovsid;
1931 unsigned long va_bits = VA_BITS;
1932 unsigned long modinv, vsid_modulus;
1933 unsigned long max_mod_inv, tmp_modinv;
1934
1935 if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1936 va_bits = 65;
1937
1938 if (ssize == MMU_SEGSIZE_256M) {
1939 modinv = VSID_MULINV_256M;
1940 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1941 } else {
1942 modinv = VSID_MULINV_1T;
1943 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1944 }
1945
1946 /*
1947 * vsid outside our range.
1948 */
1949 if (vsid >= vsid_modulus)
1950 return 0;
1951
1952 /*
1953 * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1954 * and vsid = (protovsid * x) % vsid_modulus, then we say:
1955 * protovsid = (vsid * modinv) % vsid_modulus
1956 */
1957
1958 /* Check if (vsid * modinv) overflow (63 bits) */
1959 max_mod_inv = 0x7fffffffffffffffull / vsid;
1960 if (modinv < max_mod_inv)
1961 return (vsid * modinv) % vsid_modulus;
1962
1963 tmp_modinv = modinv/max_mod_inv;
1964 modinv %= max_mod_inv;
1965
1966 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1967 protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1968
1969 return protovsid;
1970 }
1971
1972 static int __init reserve_vrma_context_id(void)
1973 {
1974 unsigned long protovsid;
1975
1976 /*
1977 * Reserve context ids which map to reserved virtual addresses. For now
1978 * we only reserve the context id which maps to the VRMA VSID. We ignore
1979 * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1980 * enable adjunct support via the "ibm,client-architecture-support"
1981 * interface.
1982 */
1983 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1984 hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1985 return 0;
1986 }
1987 machine_device_initcall(pseries, reserve_vrma_context_id);
1988
1989 #ifdef CONFIG_DEBUG_FS
1990 /* debugfs file interface for vpa data */
1991 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1992 loff_t *pos)
1993 {
1994 int cpu = (long)filp->private_data;
1995 struct lppaca *lppaca = &lppaca_of(cpu);
1996
1997 return simple_read_from_buffer(buf, len, pos, lppaca,
1998 sizeof(struct lppaca));
1999 }
2000
2001 static const struct file_operations vpa_fops = {
2002 .open = simple_open,
2003 .read = vpa_file_read,
2004 .llseek = default_llseek,
2005 };
2006
2007 static int __init vpa_debugfs_init(void)
2008 {
2009 char name[16];
2010 long i;
2011 struct dentry *vpa_dir;
2012
2013 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
2014 return 0;
2015
2016 vpa_dir = debugfs_create_dir("vpa", powerpc_debugfs_root);
2017
2018 /* set up the per-cpu vpa file*/
2019 for_each_possible_cpu(i) {
2020 sprintf(name, "cpu-%ld", i);
2021 debugfs_create_file(name, 0400, vpa_dir, (void *)i, &vpa_fops);
2022 }
2023
2024 return 0;
2025 }
2026 machine_arch_initcall(pseries, vpa_debugfs_init);
2027 #endif /* CONFIG_DEBUG_FS */