]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/powerpc/platforms/pseries/lpar.c
Merge tag 'ceph-for-5.4-rc1' of git://github.com/ceph/ceph-client
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / platforms / pseries / lpar.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * pSeries_lpar.c
4 * Copyright (C) 2001 Todd Inglett, IBM Corporation
5 *
6 * pSeries LPAR support.
7 */
8
9 /* Enables debugging of low-level hash table routines - careful! */
10 #undef DEBUG
11 #define pr_fmt(fmt) "lpar: " fmt
12
13 #include <linux/kernel.h>
14 #include <linux/dma-mapping.h>
15 #include <linux/console.h>
16 #include <linux/export.h>
17 #include <linux/jump_label.h>
18 #include <linux/delay.h>
19 #include <linux/stop_machine.h>
20 #include <linux/spinlock.h>
21 #include <linux/cpuhotplug.h>
22 #include <linux/workqueue.h>
23 #include <linux/proc_fs.h>
24 #include <asm/processor.h>
25 #include <asm/mmu.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/machdep.h>
29 #include <asm/mmu_context.h>
30 #include <asm/iommu.h>
31 #include <asm/tlb.h>
32 #include <asm/prom.h>
33 #include <asm/cputable.h>
34 #include <asm/udbg.h>
35 #include <asm/smp.h>
36 #include <asm/trace.h>
37 #include <asm/firmware.h>
38 #include <asm/plpar_wrappers.h>
39 #include <asm/kexec.h>
40 #include <asm/fadump.h>
41 #include <asm/asm-prototypes.h>
42 #include <asm/debugfs.h>
43
44 #include "pseries.h"
45
46 /* Flag bits for H_BULK_REMOVE */
47 #define HBR_REQUEST 0x4000000000000000UL
48 #define HBR_RESPONSE 0x8000000000000000UL
49 #define HBR_END 0xc000000000000000UL
50 #define HBR_AVPN 0x0200000000000000UL
51 #define HBR_ANDCOND 0x0100000000000000UL
52
53
54 /* in hvCall.S */
55 EXPORT_SYMBOL(plpar_hcall);
56 EXPORT_SYMBOL(plpar_hcall9);
57 EXPORT_SYMBOL(plpar_hcall_norets);
58
59 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
60 static u8 dtl_mask = DTL_LOG_PREEMPT;
61 #else
62 static u8 dtl_mask;
63 #endif
64
65 void alloc_dtl_buffers(unsigned long *time_limit)
66 {
67 int cpu;
68 struct paca_struct *pp;
69 struct dtl_entry *dtl;
70
71 for_each_possible_cpu(cpu) {
72 pp = paca_ptrs[cpu];
73 if (pp->dispatch_log)
74 continue;
75 dtl = kmem_cache_alloc(dtl_cache, GFP_KERNEL);
76 if (!dtl) {
77 pr_warn("Failed to allocate dispatch trace log for cpu %d\n",
78 cpu);
79 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
80 pr_warn("Stolen time statistics will be unreliable\n");
81 #endif
82 break;
83 }
84
85 pp->dtl_ridx = 0;
86 pp->dispatch_log = dtl;
87 pp->dispatch_log_end = dtl + N_DISPATCH_LOG;
88 pp->dtl_curr = dtl;
89
90 if (time_limit && time_after(jiffies, *time_limit)) {
91 cond_resched();
92 *time_limit = jiffies + HZ;
93 }
94 }
95 }
96
97 void register_dtl_buffer(int cpu)
98 {
99 long ret;
100 struct paca_struct *pp;
101 struct dtl_entry *dtl;
102 int hwcpu = get_hard_smp_processor_id(cpu);
103
104 pp = paca_ptrs[cpu];
105 dtl = pp->dispatch_log;
106 if (dtl && dtl_mask) {
107 pp->dtl_ridx = 0;
108 pp->dtl_curr = dtl;
109 lppaca_of(cpu).dtl_idx = 0;
110
111 /* hypervisor reads buffer length from this field */
112 dtl->enqueue_to_dispatch_time = cpu_to_be32(DISPATCH_LOG_BYTES);
113 ret = register_dtl(hwcpu, __pa(dtl));
114 if (ret)
115 pr_err("WARNING: DTL registration of cpu %d (hw %d) failed with %ld\n",
116 cpu, hwcpu, ret);
117
118 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
119 }
120 }
121
122 #ifdef CONFIG_PPC_SPLPAR
123 struct dtl_worker {
124 struct delayed_work work;
125 int cpu;
126 };
127
128 struct vcpu_dispatch_data {
129 int last_disp_cpu;
130
131 int total_disp;
132
133 int same_cpu_disp;
134 int same_chip_disp;
135 int diff_chip_disp;
136 int far_chip_disp;
137
138 int numa_home_disp;
139 int numa_remote_disp;
140 int numa_far_disp;
141 };
142
143 /*
144 * This represents the number of cpus in the hypervisor. Since there is no
145 * architected way to discover the number of processors in the host, we
146 * provision for dealing with NR_CPUS. This is currently 2048 by default, and
147 * is sufficient for our purposes. This will need to be tweaked if
148 * CONFIG_NR_CPUS is changed.
149 */
150 #define NR_CPUS_H NR_CPUS
151
152 DEFINE_RWLOCK(dtl_access_lock);
153 static DEFINE_PER_CPU(struct vcpu_dispatch_data, vcpu_disp_data);
154 static DEFINE_PER_CPU(u64, dtl_entry_ridx);
155 static DEFINE_PER_CPU(struct dtl_worker, dtl_workers);
156 static enum cpuhp_state dtl_worker_state;
157 static DEFINE_MUTEX(dtl_enable_mutex);
158 static int vcpudispatch_stats_on __read_mostly;
159 static int vcpudispatch_stats_freq = 50;
160 static __be32 *vcpu_associativity, *pcpu_associativity;
161
162
163 static void free_dtl_buffers(unsigned long *time_limit)
164 {
165 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
166 int cpu;
167 struct paca_struct *pp;
168
169 for_each_possible_cpu(cpu) {
170 pp = paca_ptrs[cpu];
171 if (!pp->dispatch_log)
172 continue;
173 kmem_cache_free(dtl_cache, pp->dispatch_log);
174 pp->dtl_ridx = 0;
175 pp->dispatch_log = 0;
176 pp->dispatch_log_end = 0;
177 pp->dtl_curr = 0;
178
179 if (time_limit && time_after(jiffies, *time_limit)) {
180 cond_resched();
181 *time_limit = jiffies + HZ;
182 }
183 }
184 #endif
185 }
186
187 static int init_cpu_associativity(void)
188 {
189 vcpu_associativity = kcalloc(num_possible_cpus() / threads_per_core,
190 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
191 pcpu_associativity = kcalloc(NR_CPUS_H / threads_per_core,
192 VPHN_ASSOC_BUFSIZE * sizeof(__be32), GFP_KERNEL);
193
194 if (!vcpu_associativity || !pcpu_associativity) {
195 pr_err("error allocating memory for associativity information\n");
196 return -ENOMEM;
197 }
198
199 return 0;
200 }
201
202 static void destroy_cpu_associativity(void)
203 {
204 kfree(vcpu_associativity);
205 kfree(pcpu_associativity);
206 vcpu_associativity = pcpu_associativity = 0;
207 }
208
209 static __be32 *__get_cpu_associativity(int cpu, __be32 *cpu_assoc, int flag)
210 {
211 __be32 *assoc;
212 int rc = 0;
213
214 assoc = &cpu_assoc[(int)(cpu / threads_per_core) * VPHN_ASSOC_BUFSIZE];
215 if (!assoc[0]) {
216 rc = hcall_vphn(cpu, flag, &assoc[0]);
217 if (rc)
218 return NULL;
219 }
220
221 return assoc;
222 }
223
224 static __be32 *get_pcpu_associativity(int cpu)
225 {
226 return __get_cpu_associativity(cpu, pcpu_associativity, VPHN_FLAG_PCPU);
227 }
228
229 static __be32 *get_vcpu_associativity(int cpu)
230 {
231 return __get_cpu_associativity(cpu, vcpu_associativity, VPHN_FLAG_VCPU);
232 }
233
234 static int cpu_relative_dispatch_distance(int last_disp_cpu, int cur_disp_cpu)
235 {
236 __be32 *last_disp_cpu_assoc, *cur_disp_cpu_assoc;
237
238 if (last_disp_cpu >= NR_CPUS_H || cur_disp_cpu >= NR_CPUS_H)
239 return -EINVAL;
240
241 last_disp_cpu_assoc = get_pcpu_associativity(last_disp_cpu);
242 cur_disp_cpu_assoc = get_pcpu_associativity(cur_disp_cpu);
243
244 if (!last_disp_cpu_assoc || !cur_disp_cpu_assoc)
245 return -EIO;
246
247 return cpu_distance(last_disp_cpu_assoc, cur_disp_cpu_assoc);
248 }
249
250 static int cpu_home_node_dispatch_distance(int disp_cpu)
251 {
252 __be32 *disp_cpu_assoc, *vcpu_assoc;
253 int vcpu_id = smp_processor_id();
254
255 if (disp_cpu >= NR_CPUS_H) {
256 pr_debug_ratelimited("vcpu dispatch cpu %d > %d\n",
257 disp_cpu, NR_CPUS_H);
258 return -EINVAL;
259 }
260
261 disp_cpu_assoc = get_pcpu_associativity(disp_cpu);
262 vcpu_assoc = get_vcpu_associativity(vcpu_id);
263
264 if (!disp_cpu_assoc || !vcpu_assoc)
265 return -EIO;
266
267 return cpu_distance(disp_cpu_assoc, vcpu_assoc);
268 }
269
270 static void update_vcpu_disp_stat(int disp_cpu)
271 {
272 struct vcpu_dispatch_data *disp;
273 int distance;
274
275 disp = this_cpu_ptr(&vcpu_disp_data);
276 if (disp->last_disp_cpu == -1) {
277 disp->last_disp_cpu = disp_cpu;
278 return;
279 }
280
281 disp->total_disp++;
282
283 if (disp->last_disp_cpu == disp_cpu ||
284 (cpu_first_thread_sibling(disp->last_disp_cpu) ==
285 cpu_first_thread_sibling(disp_cpu)))
286 disp->same_cpu_disp++;
287 else {
288 distance = cpu_relative_dispatch_distance(disp->last_disp_cpu,
289 disp_cpu);
290 if (distance < 0)
291 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
292 smp_processor_id());
293 else {
294 switch (distance) {
295 case 0:
296 disp->same_chip_disp++;
297 break;
298 case 1:
299 disp->diff_chip_disp++;
300 break;
301 case 2:
302 disp->far_chip_disp++;
303 break;
304 default:
305 pr_debug_ratelimited("vcpudispatch_stats: cpu %d (%d -> %d): unexpected relative dispatch distance %d\n",
306 smp_processor_id(),
307 disp->last_disp_cpu,
308 disp_cpu,
309 distance);
310 }
311 }
312 }
313
314 distance = cpu_home_node_dispatch_distance(disp_cpu);
315 if (distance < 0)
316 pr_debug_ratelimited("vcpudispatch_stats: cpu %d: error determining associativity\n",
317 smp_processor_id());
318 else {
319 switch (distance) {
320 case 0:
321 disp->numa_home_disp++;
322 break;
323 case 1:
324 disp->numa_remote_disp++;
325 break;
326 case 2:
327 disp->numa_far_disp++;
328 break;
329 default:
330 pr_debug_ratelimited("vcpudispatch_stats: cpu %d on %d: unexpected numa dispatch distance %d\n",
331 smp_processor_id(),
332 disp_cpu,
333 distance);
334 }
335 }
336
337 disp->last_disp_cpu = disp_cpu;
338 }
339
340 static void process_dtl_buffer(struct work_struct *work)
341 {
342 struct dtl_entry dtle;
343 u64 i = __this_cpu_read(dtl_entry_ridx);
344 struct dtl_entry *dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
345 struct dtl_entry *dtl_end = local_paca->dispatch_log_end;
346 struct lppaca *vpa = local_paca->lppaca_ptr;
347 struct dtl_worker *d = container_of(work, struct dtl_worker, work.work);
348
349 if (!local_paca->dispatch_log)
350 return;
351
352 /* if we have been migrated away, we cancel ourself */
353 if (d->cpu != smp_processor_id()) {
354 pr_debug("vcpudispatch_stats: cpu %d worker migrated -- canceling worker\n",
355 smp_processor_id());
356 return;
357 }
358
359 if (i == be64_to_cpu(vpa->dtl_idx))
360 goto out;
361
362 while (i < be64_to_cpu(vpa->dtl_idx)) {
363 dtle = *dtl;
364 barrier();
365 if (i + N_DISPATCH_LOG < be64_to_cpu(vpa->dtl_idx)) {
366 /* buffer has overflowed */
367 pr_debug_ratelimited("vcpudispatch_stats: cpu %d lost %lld DTL samples\n",
368 d->cpu,
369 be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG - i);
370 i = be64_to_cpu(vpa->dtl_idx) - N_DISPATCH_LOG;
371 dtl = local_paca->dispatch_log + (i % N_DISPATCH_LOG);
372 continue;
373 }
374 update_vcpu_disp_stat(be16_to_cpu(dtle.processor_id));
375 ++i;
376 ++dtl;
377 if (dtl == dtl_end)
378 dtl = local_paca->dispatch_log;
379 }
380
381 __this_cpu_write(dtl_entry_ridx, i);
382
383 out:
384 schedule_delayed_work_on(d->cpu, to_delayed_work(work),
385 HZ / vcpudispatch_stats_freq);
386 }
387
388 static int dtl_worker_online(unsigned int cpu)
389 {
390 struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
391
392 memset(d, 0, sizeof(*d));
393 INIT_DELAYED_WORK(&d->work, process_dtl_buffer);
394 d->cpu = cpu;
395
396 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
397 per_cpu(dtl_entry_ridx, cpu) = 0;
398 register_dtl_buffer(cpu);
399 #else
400 per_cpu(dtl_entry_ridx, cpu) = be64_to_cpu(lppaca_of(cpu).dtl_idx);
401 #endif
402
403 schedule_delayed_work_on(cpu, &d->work, HZ / vcpudispatch_stats_freq);
404 return 0;
405 }
406
407 static int dtl_worker_offline(unsigned int cpu)
408 {
409 struct dtl_worker *d = &per_cpu(dtl_workers, cpu);
410
411 cancel_delayed_work_sync(&d->work);
412
413 #ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
414 unregister_dtl(get_hard_smp_processor_id(cpu));
415 #endif
416
417 return 0;
418 }
419
420 static void set_global_dtl_mask(u8 mask)
421 {
422 int cpu;
423
424 dtl_mask = mask;
425 for_each_present_cpu(cpu)
426 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
427 }
428
429 static void reset_global_dtl_mask(void)
430 {
431 int cpu;
432
433 #ifdef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
434 dtl_mask = DTL_LOG_PREEMPT;
435 #else
436 dtl_mask = 0;
437 #endif
438 for_each_present_cpu(cpu)
439 lppaca_of(cpu).dtl_enable_mask = dtl_mask;
440 }
441
442 static int dtl_worker_enable(unsigned long *time_limit)
443 {
444 int rc = 0, state;
445
446 if (!write_trylock(&dtl_access_lock)) {
447 rc = -EBUSY;
448 goto out;
449 }
450
451 set_global_dtl_mask(DTL_LOG_ALL);
452
453 /* Setup dtl buffers and register those */
454 alloc_dtl_buffers(time_limit);
455
456 state = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "powerpc/dtl:online",
457 dtl_worker_online, dtl_worker_offline);
458 if (state < 0) {
459 pr_err("vcpudispatch_stats: unable to setup workqueue for DTL processing\n");
460 free_dtl_buffers(time_limit);
461 reset_global_dtl_mask();
462 write_unlock(&dtl_access_lock);
463 rc = -EINVAL;
464 goto out;
465 }
466 dtl_worker_state = state;
467
468 out:
469 return rc;
470 }
471
472 static void dtl_worker_disable(unsigned long *time_limit)
473 {
474 cpuhp_remove_state(dtl_worker_state);
475 free_dtl_buffers(time_limit);
476 reset_global_dtl_mask();
477 write_unlock(&dtl_access_lock);
478 }
479
480 static ssize_t vcpudispatch_stats_write(struct file *file, const char __user *p,
481 size_t count, loff_t *ppos)
482 {
483 unsigned long time_limit = jiffies + HZ;
484 struct vcpu_dispatch_data *disp;
485 int rc, cmd, cpu;
486 char buf[16];
487
488 if (count > 15)
489 return -EINVAL;
490
491 if (copy_from_user(buf, p, count))
492 return -EFAULT;
493
494 buf[count] = 0;
495 rc = kstrtoint(buf, 0, &cmd);
496 if (rc || cmd < 0 || cmd > 1) {
497 pr_err("vcpudispatch_stats: please use 0 to disable or 1 to enable dispatch statistics\n");
498 return rc ? rc : -EINVAL;
499 }
500
501 mutex_lock(&dtl_enable_mutex);
502
503 if ((cmd == 0 && !vcpudispatch_stats_on) ||
504 (cmd == 1 && vcpudispatch_stats_on))
505 goto out;
506
507 if (cmd) {
508 rc = init_cpu_associativity();
509 if (rc)
510 goto out;
511
512 for_each_possible_cpu(cpu) {
513 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
514 memset(disp, 0, sizeof(*disp));
515 disp->last_disp_cpu = -1;
516 }
517
518 rc = dtl_worker_enable(&time_limit);
519 if (rc) {
520 destroy_cpu_associativity();
521 goto out;
522 }
523 } else {
524 dtl_worker_disable(&time_limit);
525 destroy_cpu_associativity();
526 }
527
528 vcpudispatch_stats_on = cmd;
529
530 out:
531 mutex_unlock(&dtl_enable_mutex);
532 if (rc)
533 return rc;
534 return count;
535 }
536
537 static int vcpudispatch_stats_display(struct seq_file *p, void *v)
538 {
539 int cpu;
540 struct vcpu_dispatch_data *disp;
541
542 if (!vcpudispatch_stats_on) {
543 seq_puts(p, "off\n");
544 return 0;
545 }
546
547 for_each_online_cpu(cpu) {
548 disp = per_cpu_ptr(&vcpu_disp_data, cpu);
549 seq_printf(p, "cpu%d", cpu);
550 seq_put_decimal_ull(p, " ", disp->total_disp);
551 seq_put_decimal_ull(p, " ", disp->same_cpu_disp);
552 seq_put_decimal_ull(p, " ", disp->same_chip_disp);
553 seq_put_decimal_ull(p, " ", disp->diff_chip_disp);
554 seq_put_decimal_ull(p, " ", disp->far_chip_disp);
555 seq_put_decimal_ull(p, " ", disp->numa_home_disp);
556 seq_put_decimal_ull(p, " ", disp->numa_remote_disp);
557 seq_put_decimal_ull(p, " ", disp->numa_far_disp);
558 seq_puts(p, "\n");
559 }
560
561 return 0;
562 }
563
564 static int vcpudispatch_stats_open(struct inode *inode, struct file *file)
565 {
566 return single_open(file, vcpudispatch_stats_display, NULL);
567 }
568
569 static const struct file_operations vcpudispatch_stats_proc_ops = {
570 .open = vcpudispatch_stats_open,
571 .read = seq_read,
572 .write = vcpudispatch_stats_write,
573 .llseek = seq_lseek,
574 .release = single_release,
575 };
576
577 static ssize_t vcpudispatch_stats_freq_write(struct file *file,
578 const char __user *p, size_t count, loff_t *ppos)
579 {
580 int rc, freq;
581 char buf[16];
582
583 if (count > 15)
584 return -EINVAL;
585
586 if (copy_from_user(buf, p, count))
587 return -EFAULT;
588
589 buf[count] = 0;
590 rc = kstrtoint(buf, 0, &freq);
591 if (rc || freq < 1 || freq > HZ) {
592 pr_err("vcpudispatch_stats_freq: please specify a frequency between 1 and %d\n",
593 HZ);
594 return rc ? rc : -EINVAL;
595 }
596
597 vcpudispatch_stats_freq = freq;
598
599 return count;
600 }
601
602 static int vcpudispatch_stats_freq_display(struct seq_file *p, void *v)
603 {
604 seq_printf(p, "%d\n", vcpudispatch_stats_freq);
605 return 0;
606 }
607
608 static int vcpudispatch_stats_freq_open(struct inode *inode, struct file *file)
609 {
610 return single_open(file, vcpudispatch_stats_freq_display, NULL);
611 }
612
613 static const struct file_operations vcpudispatch_stats_freq_proc_ops = {
614 .open = vcpudispatch_stats_freq_open,
615 .read = seq_read,
616 .write = vcpudispatch_stats_freq_write,
617 .llseek = seq_lseek,
618 .release = single_release,
619 };
620
621 static int __init vcpudispatch_stats_procfs_init(void)
622 {
623 if (!lppaca_shared_proc(get_lppaca()))
624 return 0;
625
626 if (!proc_create("powerpc/vcpudispatch_stats", 0600, NULL,
627 &vcpudispatch_stats_proc_ops))
628 pr_err("vcpudispatch_stats: error creating procfs file\n");
629 else if (!proc_create("powerpc/vcpudispatch_stats_freq", 0600, NULL,
630 &vcpudispatch_stats_freq_proc_ops))
631 pr_err("vcpudispatch_stats_freq: error creating procfs file\n");
632
633 return 0;
634 }
635
636 machine_device_initcall(pseries, vcpudispatch_stats_procfs_init);
637 #endif /* CONFIG_PPC_SPLPAR */
638
639 void vpa_init(int cpu)
640 {
641 int hwcpu = get_hard_smp_processor_id(cpu);
642 unsigned long addr;
643 long ret;
644
645 /*
646 * The spec says it "may be problematic" if CPU x registers the VPA of
647 * CPU y. We should never do that, but wail if we ever do.
648 */
649 WARN_ON(cpu != smp_processor_id());
650
651 if (cpu_has_feature(CPU_FTR_ALTIVEC))
652 lppaca_of(cpu).vmxregs_in_use = 1;
653
654 if (cpu_has_feature(CPU_FTR_ARCH_207S))
655 lppaca_of(cpu).ebb_regs_in_use = 1;
656
657 addr = __pa(&lppaca_of(cpu));
658 ret = register_vpa(hwcpu, addr);
659
660 if (ret) {
661 pr_err("WARNING: VPA registration for cpu %d (hw %d) of area "
662 "%lx failed with %ld\n", cpu, hwcpu, addr, ret);
663 return;
664 }
665
666 #ifdef CONFIG_PPC_BOOK3S_64
667 /*
668 * PAPR says this feature is SLB-Buffer but firmware never
669 * reports that. All SPLPAR support SLB shadow buffer.
670 */
671 if (!radix_enabled() && firmware_has_feature(FW_FEATURE_SPLPAR)) {
672 addr = __pa(paca_ptrs[cpu]->slb_shadow_ptr);
673 ret = register_slb_shadow(hwcpu, addr);
674 if (ret)
675 pr_err("WARNING: SLB shadow buffer registration for "
676 "cpu %d (hw %d) of area %lx failed with %ld\n",
677 cpu, hwcpu, addr, ret);
678 }
679 #endif /* CONFIG_PPC_BOOK3S_64 */
680
681 /*
682 * Register dispatch trace log, if one has been allocated.
683 */
684 register_dtl_buffer(cpu);
685 }
686
687 #ifdef CONFIG_PPC_BOOK3S_64
688
689 static long pSeries_lpar_hpte_insert(unsigned long hpte_group,
690 unsigned long vpn, unsigned long pa,
691 unsigned long rflags, unsigned long vflags,
692 int psize, int apsize, int ssize)
693 {
694 unsigned long lpar_rc;
695 unsigned long flags;
696 unsigned long slot;
697 unsigned long hpte_v, hpte_r;
698
699 if (!(vflags & HPTE_V_BOLTED))
700 pr_devel("hpte_insert(group=%lx, vpn=%016lx, "
701 "pa=%016lx, rflags=%lx, vflags=%lx, psize=%d)\n",
702 hpte_group, vpn, pa, rflags, vflags, psize);
703
704 hpte_v = hpte_encode_v(vpn, psize, apsize, ssize) | vflags | HPTE_V_VALID;
705 hpte_r = hpte_encode_r(pa, psize, apsize) | rflags;
706
707 if (!(vflags & HPTE_V_BOLTED))
708 pr_devel(" hpte_v=%016lx, hpte_r=%016lx\n", hpte_v, hpte_r);
709
710 /* Now fill in the actual HPTE */
711 /* Set CEC cookie to 0 */
712 /* Zero page = 0 */
713 /* I-cache Invalidate = 0 */
714 /* I-cache synchronize = 0 */
715 /* Exact = 0 */
716 flags = 0;
717
718 if (firmware_has_feature(FW_FEATURE_XCMO) && !(hpte_r & HPTE_R_N))
719 flags |= H_COALESCE_CAND;
720
721 lpar_rc = plpar_pte_enter(flags, hpte_group, hpte_v, hpte_r, &slot);
722 if (unlikely(lpar_rc == H_PTEG_FULL)) {
723 pr_devel("Hash table group is full\n");
724 return -1;
725 }
726
727 /*
728 * Since we try and ioremap PHBs we don't own, the pte insert
729 * will fail. However we must catch the failure in hash_page
730 * or we will loop forever, so return -2 in this case.
731 */
732 if (unlikely(lpar_rc != H_SUCCESS)) {
733 pr_err("Failed hash pte insert with error %ld\n", lpar_rc);
734 return -2;
735 }
736 if (!(vflags & HPTE_V_BOLTED))
737 pr_devel(" -> slot: %lu\n", slot & 7);
738
739 /* Because of iSeries, we have to pass down the secondary
740 * bucket bit here as well
741 */
742 return (slot & 7) | (!!(vflags & HPTE_V_SECONDARY) << 3);
743 }
744
745 static DEFINE_SPINLOCK(pSeries_lpar_tlbie_lock);
746
747 static long pSeries_lpar_hpte_remove(unsigned long hpte_group)
748 {
749 unsigned long slot_offset;
750 unsigned long lpar_rc;
751 int i;
752 unsigned long dummy1, dummy2;
753
754 /* pick a random slot to start at */
755 slot_offset = mftb() & 0x7;
756
757 for (i = 0; i < HPTES_PER_GROUP; i++) {
758
759 /* don't remove a bolted entry */
760 lpar_rc = plpar_pte_remove(H_ANDCOND, hpte_group + slot_offset,
761 (0x1UL << 4), &dummy1, &dummy2);
762 if (lpar_rc == H_SUCCESS)
763 return i;
764
765 /*
766 * The test for adjunct partition is performed before the
767 * ANDCOND test. H_RESOURCE may be returned, so we need to
768 * check for that as well.
769 */
770 BUG_ON(lpar_rc != H_NOT_FOUND && lpar_rc != H_RESOURCE);
771
772 slot_offset++;
773 slot_offset &= 0x7;
774 }
775
776 return -1;
777 }
778
779 static void manual_hpte_clear_all(void)
780 {
781 unsigned long size_bytes = 1UL << ppc64_pft_size;
782 unsigned long hpte_count = size_bytes >> 4;
783 struct {
784 unsigned long pteh;
785 unsigned long ptel;
786 } ptes[4];
787 long lpar_rc;
788 unsigned long i, j;
789
790 /* Read in batches of 4,
791 * invalidate only valid entries not in the VRMA
792 * hpte_count will be a multiple of 4
793 */
794 for (i = 0; i < hpte_count; i += 4) {
795 lpar_rc = plpar_pte_read_4_raw(0, i, (void *)ptes);
796 if (lpar_rc != H_SUCCESS) {
797 pr_info("Failed to read hash page table at %ld err %ld\n",
798 i, lpar_rc);
799 continue;
800 }
801 for (j = 0; j < 4; j++){
802 if ((ptes[j].pteh & HPTE_V_VRMA_MASK) ==
803 HPTE_V_VRMA_MASK)
804 continue;
805 if (ptes[j].pteh & HPTE_V_VALID)
806 plpar_pte_remove_raw(0, i + j, 0,
807 &(ptes[j].pteh), &(ptes[j].ptel));
808 }
809 }
810 }
811
812 static int hcall_hpte_clear_all(void)
813 {
814 int rc;
815
816 do {
817 rc = plpar_hcall_norets(H_CLEAR_HPT);
818 } while (rc == H_CONTINUE);
819
820 return rc;
821 }
822
823 static void pseries_hpte_clear_all(void)
824 {
825 int rc;
826
827 rc = hcall_hpte_clear_all();
828 if (rc != H_SUCCESS)
829 manual_hpte_clear_all();
830
831 #ifdef __LITTLE_ENDIAN__
832 /*
833 * Reset exceptions to big endian.
834 *
835 * FIXME this is a hack for kexec, we need to reset the exception
836 * endian before starting the new kernel and this is a convenient place
837 * to do it.
838 *
839 * This is also called on boot when a fadump happens. In that case we
840 * must not change the exception endian mode.
841 */
842 if (firmware_has_feature(FW_FEATURE_SET_MODE) && !is_fadump_active())
843 pseries_big_endian_exceptions();
844 #endif
845 }
846
847 /*
848 * NOTE: for updatepp ops we are fortunate that the linux "newpp" bits and
849 * the low 3 bits of flags happen to line up. So no transform is needed.
850 * We can probably optimize here and assume the high bits of newpp are
851 * already zero. For now I am paranoid.
852 */
853 static long pSeries_lpar_hpte_updatepp(unsigned long slot,
854 unsigned long newpp,
855 unsigned long vpn,
856 int psize, int apsize,
857 int ssize, unsigned long inv_flags)
858 {
859 unsigned long lpar_rc;
860 unsigned long flags;
861 unsigned long want_v;
862
863 want_v = hpte_encode_avpn(vpn, psize, ssize);
864
865 flags = (newpp & 7) | H_AVPN;
866 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
867 /* Move pp0 into bit 8 (IBM 55) */
868 flags |= (newpp & HPTE_R_PP0) >> 55;
869
870 pr_devel(" update: avpnv=%016lx, hash=%016lx, f=%lx, psize: %d ...",
871 want_v, slot, flags, psize);
872
873 lpar_rc = plpar_pte_protect(flags, slot, want_v);
874
875 if (lpar_rc == H_NOT_FOUND) {
876 pr_devel("not found !\n");
877 return -1;
878 }
879
880 pr_devel("ok\n");
881
882 BUG_ON(lpar_rc != H_SUCCESS);
883
884 return 0;
885 }
886
887 static long __pSeries_lpar_hpte_find(unsigned long want_v, unsigned long hpte_group)
888 {
889 long lpar_rc;
890 unsigned long i, j;
891 struct {
892 unsigned long pteh;
893 unsigned long ptel;
894 } ptes[4];
895
896 for (i = 0; i < HPTES_PER_GROUP; i += 4, hpte_group += 4) {
897
898 lpar_rc = plpar_pte_read_4(0, hpte_group, (void *)ptes);
899 if (lpar_rc != H_SUCCESS) {
900 pr_info("Failed to read hash page table at %ld err %ld\n",
901 hpte_group, lpar_rc);
902 continue;
903 }
904
905 for (j = 0; j < 4; j++) {
906 if (HPTE_V_COMPARE(ptes[j].pteh, want_v) &&
907 (ptes[j].pteh & HPTE_V_VALID))
908 return i + j;
909 }
910 }
911
912 return -1;
913 }
914
915 static long pSeries_lpar_hpte_find(unsigned long vpn, int psize, int ssize)
916 {
917 long slot;
918 unsigned long hash;
919 unsigned long want_v;
920 unsigned long hpte_group;
921
922 hash = hpt_hash(vpn, mmu_psize_defs[psize].shift, ssize);
923 want_v = hpte_encode_avpn(vpn, psize, ssize);
924
925 /* Bolted entries are always in the primary group */
926 hpte_group = (hash & htab_hash_mask) * HPTES_PER_GROUP;
927 slot = __pSeries_lpar_hpte_find(want_v, hpte_group);
928 if (slot < 0)
929 return -1;
930 return hpte_group + slot;
931 }
932
933 static void pSeries_lpar_hpte_updateboltedpp(unsigned long newpp,
934 unsigned long ea,
935 int psize, int ssize)
936 {
937 unsigned long vpn;
938 unsigned long lpar_rc, slot, vsid, flags;
939
940 vsid = get_kernel_vsid(ea, ssize);
941 vpn = hpt_vpn(ea, vsid, ssize);
942
943 slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
944 BUG_ON(slot == -1);
945
946 flags = newpp & 7;
947 if (mmu_has_feature(MMU_FTR_KERNEL_RO))
948 /* Move pp0 into bit 8 (IBM 55) */
949 flags |= (newpp & HPTE_R_PP0) >> 55;
950
951 lpar_rc = plpar_pte_protect(flags, slot, 0);
952
953 BUG_ON(lpar_rc != H_SUCCESS);
954 }
955
956 static void pSeries_lpar_hpte_invalidate(unsigned long slot, unsigned long vpn,
957 int psize, int apsize,
958 int ssize, int local)
959 {
960 unsigned long want_v;
961 unsigned long lpar_rc;
962 unsigned long dummy1, dummy2;
963
964 pr_devel(" inval : slot=%lx, vpn=%016lx, psize: %d, local: %d\n",
965 slot, vpn, psize, local);
966
967 want_v = hpte_encode_avpn(vpn, psize, ssize);
968 lpar_rc = plpar_pte_remove(H_AVPN, slot, want_v, &dummy1, &dummy2);
969 if (lpar_rc == H_NOT_FOUND)
970 return;
971
972 BUG_ON(lpar_rc != H_SUCCESS);
973 }
974
975
976 /*
977 * As defined in the PAPR's section 14.5.4.1.8
978 * The control mask doesn't include the returned reference and change bit from
979 * the processed PTE.
980 */
981 #define HBLKR_AVPN 0x0100000000000000UL
982 #define HBLKR_CTRL_MASK 0xf800000000000000UL
983 #define HBLKR_CTRL_SUCCESS 0x8000000000000000UL
984 #define HBLKR_CTRL_ERRNOTFOUND 0x8800000000000000UL
985 #define HBLKR_CTRL_ERRBUSY 0xa000000000000000UL
986
987 /**
988 * H_BLOCK_REMOVE caller.
989 * @idx should point to the latest @param entry set with a PTEX.
990 * If PTE cannot be processed because another CPUs has already locked that
991 * group, those entries are put back in @param starting at index 1.
992 * If entries has to be retried and @retry_busy is set to true, these entries
993 * are retried until success. If @retry_busy is set to false, the returned
994 * is the number of entries yet to process.
995 */
996 static unsigned long call_block_remove(unsigned long idx, unsigned long *param,
997 bool retry_busy)
998 {
999 unsigned long i, rc, new_idx;
1000 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1001
1002 if (idx < 2) {
1003 pr_warn("Unexpected empty call to H_BLOCK_REMOVE");
1004 return 0;
1005 }
1006 again:
1007 new_idx = 0;
1008 if (idx > PLPAR_HCALL9_BUFSIZE) {
1009 pr_err("Too many PTEs (%lu) for H_BLOCK_REMOVE", idx);
1010 idx = PLPAR_HCALL9_BUFSIZE;
1011 } else if (idx < PLPAR_HCALL9_BUFSIZE)
1012 param[idx] = HBR_END;
1013
1014 rc = plpar_hcall9(H_BLOCK_REMOVE, retbuf,
1015 param[0], /* AVA */
1016 param[1], param[2], param[3], param[4], /* TS0-7 */
1017 param[5], param[6], param[7], param[8]);
1018 if (rc == H_SUCCESS)
1019 return 0;
1020
1021 BUG_ON(rc != H_PARTIAL);
1022
1023 /* Check that the unprocessed entries were 'not found' or 'busy' */
1024 for (i = 0; i < idx-1; i++) {
1025 unsigned long ctrl = retbuf[i] & HBLKR_CTRL_MASK;
1026
1027 if (ctrl == HBLKR_CTRL_ERRBUSY) {
1028 param[++new_idx] = param[i+1];
1029 continue;
1030 }
1031
1032 BUG_ON(ctrl != HBLKR_CTRL_SUCCESS
1033 && ctrl != HBLKR_CTRL_ERRNOTFOUND);
1034 }
1035
1036 /*
1037 * If there were entries found busy, retry these entries if requested,
1038 * of if all the entries have to be retried.
1039 */
1040 if (new_idx && (retry_busy || new_idx == (PLPAR_HCALL9_BUFSIZE-1))) {
1041 idx = new_idx + 1;
1042 goto again;
1043 }
1044
1045 return new_idx;
1046 }
1047
1048 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1049 /*
1050 * Limit iterations holding pSeries_lpar_tlbie_lock to 3. We also need
1051 * to make sure that we avoid bouncing the hypervisor tlbie lock.
1052 */
1053 #define PPC64_HUGE_HPTE_BATCH 12
1054
1055 static void hugepage_block_invalidate(unsigned long *slot, unsigned long *vpn,
1056 int count, int psize, int ssize)
1057 {
1058 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1059 unsigned long shift, current_vpgb, vpgb;
1060 int i, pix = 0;
1061
1062 shift = mmu_psize_defs[psize].shift;
1063
1064 for (i = 0; i < count; i++) {
1065 /*
1066 * Shifting 3 bits more on the right to get a
1067 * 8 pages aligned virtual addresse.
1068 */
1069 vpgb = (vpn[i] >> (shift - VPN_SHIFT + 3));
1070 if (!pix || vpgb != current_vpgb) {
1071 /*
1072 * Need to start a new 8 pages block, flush
1073 * the current one if needed.
1074 */
1075 if (pix)
1076 (void)call_block_remove(pix, param, true);
1077 current_vpgb = vpgb;
1078 param[0] = hpte_encode_avpn(vpn[i], psize, ssize);
1079 pix = 1;
1080 }
1081
1082 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot[i];
1083 if (pix == PLPAR_HCALL9_BUFSIZE) {
1084 pix = call_block_remove(pix, param, false);
1085 /*
1086 * pix = 0 means that all the entries were
1087 * removed, we can start a new block.
1088 * Otherwise, this means that there are entries
1089 * to retry, and pix points to latest one, so
1090 * we should increment it and try to continue
1091 * the same block.
1092 */
1093 if (pix)
1094 pix++;
1095 }
1096 }
1097 if (pix)
1098 (void)call_block_remove(pix, param, true);
1099 }
1100
1101 static void hugepage_bulk_invalidate(unsigned long *slot, unsigned long *vpn,
1102 int count, int psize, int ssize)
1103 {
1104 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1105 int i = 0, pix = 0, rc;
1106
1107 for (i = 0; i < count; i++) {
1108
1109 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1110 pSeries_lpar_hpte_invalidate(slot[i], vpn[i], psize, 0,
1111 ssize, 0);
1112 } else {
1113 param[pix] = HBR_REQUEST | HBR_AVPN | slot[i];
1114 param[pix+1] = hpte_encode_avpn(vpn[i], psize, ssize);
1115 pix += 2;
1116 if (pix == 8) {
1117 rc = plpar_hcall9(H_BULK_REMOVE, param,
1118 param[0], param[1], param[2],
1119 param[3], param[4], param[5],
1120 param[6], param[7]);
1121 BUG_ON(rc != H_SUCCESS);
1122 pix = 0;
1123 }
1124 }
1125 }
1126 if (pix) {
1127 param[pix] = HBR_END;
1128 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1129 param[2], param[3], param[4], param[5],
1130 param[6], param[7]);
1131 BUG_ON(rc != H_SUCCESS);
1132 }
1133 }
1134
1135 static inline void __pSeries_lpar_hugepage_invalidate(unsigned long *slot,
1136 unsigned long *vpn,
1137 int count, int psize,
1138 int ssize)
1139 {
1140 unsigned long flags = 0;
1141 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1142
1143 if (lock_tlbie)
1144 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1145
1146 if (firmware_has_feature(FW_FEATURE_BLOCK_REMOVE))
1147 hugepage_block_invalidate(slot, vpn, count, psize, ssize);
1148 else
1149 hugepage_bulk_invalidate(slot, vpn, count, psize, ssize);
1150
1151 if (lock_tlbie)
1152 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1153 }
1154
1155 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1156 unsigned long addr,
1157 unsigned char *hpte_slot_array,
1158 int psize, int ssize, int local)
1159 {
1160 int i, index = 0;
1161 unsigned long s_addr = addr;
1162 unsigned int max_hpte_count, valid;
1163 unsigned long vpn_array[PPC64_HUGE_HPTE_BATCH];
1164 unsigned long slot_array[PPC64_HUGE_HPTE_BATCH];
1165 unsigned long shift, hidx, vpn = 0, hash, slot;
1166
1167 shift = mmu_psize_defs[psize].shift;
1168 max_hpte_count = 1U << (PMD_SHIFT - shift);
1169
1170 for (i = 0; i < max_hpte_count; i++) {
1171 valid = hpte_valid(hpte_slot_array, i);
1172 if (!valid)
1173 continue;
1174 hidx = hpte_hash_index(hpte_slot_array, i);
1175
1176 /* get the vpn */
1177 addr = s_addr + (i * (1ul << shift));
1178 vpn = hpt_vpn(addr, vsid, ssize);
1179 hash = hpt_hash(vpn, shift, ssize);
1180 if (hidx & _PTEIDX_SECONDARY)
1181 hash = ~hash;
1182
1183 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1184 slot += hidx & _PTEIDX_GROUP_IX;
1185
1186 slot_array[index] = slot;
1187 vpn_array[index] = vpn;
1188 if (index == PPC64_HUGE_HPTE_BATCH - 1) {
1189 /*
1190 * Now do a bluk invalidate
1191 */
1192 __pSeries_lpar_hugepage_invalidate(slot_array,
1193 vpn_array,
1194 PPC64_HUGE_HPTE_BATCH,
1195 psize, ssize);
1196 index = 0;
1197 } else
1198 index++;
1199 }
1200 if (index)
1201 __pSeries_lpar_hugepage_invalidate(slot_array, vpn_array,
1202 index, psize, ssize);
1203 }
1204 #else
1205 static void pSeries_lpar_hugepage_invalidate(unsigned long vsid,
1206 unsigned long addr,
1207 unsigned char *hpte_slot_array,
1208 int psize, int ssize, int local)
1209 {
1210 WARN(1, "%s called without THP support\n", __func__);
1211 }
1212 #endif
1213
1214 static int pSeries_lpar_hpte_removebolted(unsigned long ea,
1215 int psize, int ssize)
1216 {
1217 unsigned long vpn;
1218 unsigned long slot, vsid;
1219
1220 vsid = get_kernel_vsid(ea, ssize);
1221 vpn = hpt_vpn(ea, vsid, ssize);
1222
1223 slot = pSeries_lpar_hpte_find(vpn, psize, ssize);
1224 if (slot == -1)
1225 return -ENOENT;
1226
1227 /*
1228 * lpar doesn't use the passed actual page size
1229 */
1230 pSeries_lpar_hpte_invalidate(slot, vpn, psize, 0, ssize, 0);
1231 return 0;
1232 }
1233
1234
1235 static inline unsigned long compute_slot(real_pte_t pte,
1236 unsigned long vpn,
1237 unsigned long index,
1238 unsigned long shift,
1239 int ssize)
1240 {
1241 unsigned long slot, hash, hidx;
1242
1243 hash = hpt_hash(vpn, shift, ssize);
1244 hidx = __rpte_to_hidx(pte, index);
1245 if (hidx & _PTEIDX_SECONDARY)
1246 hash = ~hash;
1247 slot = (hash & htab_hash_mask) * HPTES_PER_GROUP;
1248 slot += hidx & _PTEIDX_GROUP_IX;
1249 return slot;
1250 }
1251
1252 /**
1253 * The hcall H_BLOCK_REMOVE implies that the virtual pages to processed are
1254 * "all within the same naturally aligned 8 page virtual address block".
1255 */
1256 static void do_block_remove(unsigned long number, struct ppc64_tlb_batch *batch,
1257 unsigned long *param)
1258 {
1259 unsigned long vpn;
1260 unsigned long i, pix = 0;
1261 unsigned long index, shift, slot, current_vpgb, vpgb;
1262 real_pte_t pte;
1263 int psize, ssize;
1264
1265 psize = batch->psize;
1266 ssize = batch->ssize;
1267
1268 for (i = 0; i < number; i++) {
1269 vpn = batch->vpn[i];
1270 pte = batch->pte[i];
1271 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1272 /*
1273 * Shifting 3 bits more on the right to get a
1274 * 8 pages aligned virtual addresse.
1275 */
1276 vpgb = (vpn >> (shift - VPN_SHIFT + 3));
1277 if (!pix || vpgb != current_vpgb) {
1278 /*
1279 * Need to start a new 8 pages block, flush
1280 * the current one if needed.
1281 */
1282 if (pix)
1283 (void)call_block_remove(pix, param,
1284 true);
1285 current_vpgb = vpgb;
1286 param[0] = hpte_encode_avpn(vpn, psize,
1287 ssize);
1288 pix = 1;
1289 }
1290
1291 slot = compute_slot(pte, vpn, index, shift, ssize);
1292 param[pix++] = HBR_REQUEST | HBLKR_AVPN | slot;
1293
1294 if (pix == PLPAR_HCALL9_BUFSIZE) {
1295 pix = call_block_remove(pix, param, false);
1296 /*
1297 * pix = 0 means that all the entries were
1298 * removed, we can start a new block.
1299 * Otherwise, this means that there are entries
1300 * to retry, and pix points to latest one, so
1301 * we should increment it and try to continue
1302 * the same block.
1303 */
1304 if (pix)
1305 pix++;
1306 }
1307 } pte_iterate_hashed_end();
1308 }
1309
1310 if (pix)
1311 (void)call_block_remove(pix, param, true);
1312 }
1313
1314 /*
1315 * Take a spinlock around flushes to avoid bouncing the hypervisor tlbie
1316 * lock.
1317 */
1318 static void pSeries_lpar_flush_hash_range(unsigned long number, int local)
1319 {
1320 unsigned long vpn;
1321 unsigned long i, pix, rc;
1322 unsigned long flags = 0;
1323 struct ppc64_tlb_batch *batch = this_cpu_ptr(&ppc64_tlb_batch);
1324 int lock_tlbie = !mmu_has_feature(MMU_FTR_LOCKLESS_TLBIE);
1325 unsigned long param[PLPAR_HCALL9_BUFSIZE];
1326 unsigned long index, shift, slot;
1327 real_pte_t pte;
1328 int psize, ssize;
1329
1330 if (lock_tlbie)
1331 spin_lock_irqsave(&pSeries_lpar_tlbie_lock, flags);
1332
1333 if (firmware_has_feature(FW_FEATURE_BLOCK_REMOVE)) {
1334 do_block_remove(number, batch, param);
1335 goto out;
1336 }
1337
1338 psize = batch->psize;
1339 ssize = batch->ssize;
1340 pix = 0;
1341 for (i = 0; i < number; i++) {
1342 vpn = batch->vpn[i];
1343 pte = batch->pte[i];
1344 pte_iterate_hashed_subpages(pte, psize, vpn, index, shift) {
1345 slot = compute_slot(pte, vpn, index, shift, ssize);
1346 if (!firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1347 /*
1348 * lpar doesn't use the passed actual page size
1349 */
1350 pSeries_lpar_hpte_invalidate(slot, vpn, psize,
1351 0, ssize, local);
1352 } else {
1353 param[pix] = HBR_REQUEST | HBR_AVPN | slot;
1354 param[pix+1] = hpte_encode_avpn(vpn, psize,
1355 ssize);
1356 pix += 2;
1357 if (pix == 8) {
1358 rc = plpar_hcall9(H_BULK_REMOVE, param,
1359 param[0], param[1], param[2],
1360 param[3], param[4], param[5],
1361 param[6], param[7]);
1362 BUG_ON(rc != H_SUCCESS);
1363 pix = 0;
1364 }
1365 }
1366 } pte_iterate_hashed_end();
1367 }
1368 if (pix) {
1369 param[pix] = HBR_END;
1370 rc = plpar_hcall9(H_BULK_REMOVE, param, param[0], param[1],
1371 param[2], param[3], param[4], param[5],
1372 param[6], param[7]);
1373 BUG_ON(rc != H_SUCCESS);
1374 }
1375
1376 out:
1377 if (lock_tlbie)
1378 spin_unlock_irqrestore(&pSeries_lpar_tlbie_lock, flags);
1379 }
1380
1381 static int __init disable_bulk_remove(char *str)
1382 {
1383 if (strcmp(str, "off") == 0 &&
1384 firmware_has_feature(FW_FEATURE_BULK_REMOVE)) {
1385 pr_info("Disabling BULK_REMOVE firmware feature");
1386 powerpc_firmware_features &= ~FW_FEATURE_BULK_REMOVE;
1387 }
1388 return 1;
1389 }
1390
1391 __setup("bulk_remove=", disable_bulk_remove);
1392
1393 #define HPT_RESIZE_TIMEOUT 10000 /* ms */
1394
1395 struct hpt_resize_state {
1396 unsigned long shift;
1397 int commit_rc;
1398 };
1399
1400 static int pseries_lpar_resize_hpt_commit(void *data)
1401 {
1402 struct hpt_resize_state *state = data;
1403
1404 state->commit_rc = plpar_resize_hpt_commit(0, state->shift);
1405 if (state->commit_rc != H_SUCCESS)
1406 return -EIO;
1407
1408 /* Hypervisor has transitioned the HTAB, update our globals */
1409 ppc64_pft_size = state->shift;
1410 htab_size_bytes = 1UL << ppc64_pft_size;
1411 htab_hash_mask = (htab_size_bytes >> 7) - 1;
1412
1413 return 0;
1414 }
1415
1416 /*
1417 * Must be called in process context. The caller must hold the
1418 * cpus_lock.
1419 */
1420 static int pseries_lpar_resize_hpt(unsigned long shift)
1421 {
1422 struct hpt_resize_state state = {
1423 .shift = shift,
1424 .commit_rc = H_FUNCTION,
1425 };
1426 unsigned int delay, total_delay = 0;
1427 int rc;
1428 ktime_t t0, t1, t2;
1429
1430 might_sleep();
1431
1432 if (!firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1433 return -ENODEV;
1434
1435 pr_info("Attempting to resize HPT to shift %lu\n", shift);
1436
1437 t0 = ktime_get();
1438
1439 rc = plpar_resize_hpt_prepare(0, shift);
1440 while (H_IS_LONG_BUSY(rc)) {
1441 delay = get_longbusy_msecs(rc);
1442 total_delay += delay;
1443 if (total_delay > HPT_RESIZE_TIMEOUT) {
1444 /* prepare with shift==0 cancels an in-progress resize */
1445 rc = plpar_resize_hpt_prepare(0, 0);
1446 if (rc != H_SUCCESS)
1447 pr_warn("Unexpected error %d cancelling timed out HPT resize\n",
1448 rc);
1449 return -ETIMEDOUT;
1450 }
1451 msleep(delay);
1452 rc = plpar_resize_hpt_prepare(0, shift);
1453 };
1454
1455 switch (rc) {
1456 case H_SUCCESS:
1457 /* Continue on */
1458 break;
1459
1460 case H_PARAMETER:
1461 pr_warn("Invalid argument from H_RESIZE_HPT_PREPARE\n");
1462 return -EINVAL;
1463 case H_RESOURCE:
1464 pr_warn("Operation not permitted from H_RESIZE_HPT_PREPARE\n");
1465 return -EPERM;
1466 default:
1467 pr_warn("Unexpected error %d from H_RESIZE_HPT_PREPARE\n", rc);
1468 return -EIO;
1469 }
1470
1471 t1 = ktime_get();
1472
1473 rc = stop_machine_cpuslocked(pseries_lpar_resize_hpt_commit,
1474 &state, NULL);
1475
1476 t2 = ktime_get();
1477
1478 if (rc != 0) {
1479 switch (state.commit_rc) {
1480 case H_PTEG_FULL:
1481 return -ENOSPC;
1482
1483 default:
1484 pr_warn("Unexpected error %d from H_RESIZE_HPT_COMMIT\n",
1485 state.commit_rc);
1486 return -EIO;
1487 };
1488 }
1489
1490 pr_info("HPT resize to shift %lu complete (%lld ms / %lld ms)\n",
1491 shift, (long long) ktime_ms_delta(t1, t0),
1492 (long long) ktime_ms_delta(t2, t1));
1493
1494 return 0;
1495 }
1496
1497 static int pseries_lpar_register_process_table(unsigned long base,
1498 unsigned long page_size, unsigned long table_size)
1499 {
1500 long rc;
1501 unsigned long flags = 0;
1502
1503 if (table_size)
1504 flags |= PROC_TABLE_NEW;
1505 if (radix_enabled())
1506 flags |= PROC_TABLE_RADIX | PROC_TABLE_GTSE;
1507 else
1508 flags |= PROC_TABLE_HPT_SLB;
1509 for (;;) {
1510 rc = plpar_hcall_norets(H_REGISTER_PROC_TBL, flags, base,
1511 page_size, table_size);
1512 if (!H_IS_LONG_BUSY(rc))
1513 break;
1514 mdelay(get_longbusy_msecs(rc));
1515 }
1516 if (rc != H_SUCCESS) {
1517 pr_err("Failed to register process table (rc=%ld)\n", rc);
1518 BUG();
1519 }
1520 return rc;
1521 }
1522
1523 void __init hpte_init_pseries(void)
1524 {
1525 mmu_hash_ops.hpte_invalidate = pSeries_lpar_hpte_invalidate;
1526 mmu_hash_ops.hpte_updatepp = pSeries_lpar_hpte_updatepp;
1527 mmu_hash_ops.hpte_updateboltedpp = pSeries_lpar_hpte_updateboltedpp;
1528 mmu_hash_ops.hpte_insert = pSeries_lpar_hpte_insert;
1529 mmu_hash_ops.hpte_remove = pSeries_lpar_hpte_remove;
1530 mmu_hash_ops.hpte_removebolted = pSeries_lpar_hpte_removebolted;
1531 mmu_hash_ops.flush_hash_range = pSeries_lpar_flush_hash_range;
1532 mmu_hash_ops.hpte_clear_all = pseries_hpte_clear_all;
1533 mmu_hash_ops.hugepage_invalidate = pSeries_lpar_hugepage_invalidate;
1534
1535 if (firmware_has_feature(FW_FEATURE_HPT_RESIZE))
1536 mmu_hash_ops.resize_hpt = pseries_lpar_resize_hpt;
1537
1538 /*
1539 * On POWER9, we need to do a H_REGISTER_PROC_TBL hcall
1540 * to inform the hypervisor that we wish to use the HPT.
1541 */
1542 if (cpu_has_feature(CPU_FTR_ARCH_300))
1543 pseries_lpar_register_process_table(0, 0, 0);
1544 }
1545
1546 void radix_init_pseries(void)
1547 {
1548 pr_info("Using radix MMU under hypervisor\n");
1549
1550 pseries_lpar_register_process_table(__pa(process_tb),
1551 0, PRTB_SIZE_SHIFT - 12);
1552 }
1553
1554 #ifdef CONFIG_PPC_SMLPAR
1555 #define CMO_FREE_HINT_DEFAULT 1
1556 static int cmo_free_hint_flag = CMO_FREE_HINT_DEFAULT;
1557
1558 static int __init cmo_free_hint(char *str)
1559 {
1560 char *parm;
1561 parm = strstrip(str);
1562
1563 if (strcasecmp(parm, "no") == 0 || strcasecmp(parm, "off") == 0) {
1564 pr_info("%s: CMO free page hinting is not active.\n", __func__);
1565 cmo_free_hint_flag = 0;
1566 return 1;
1567 }
1568
1569 cmo_free_hint_flag = 1;
1570 pr_info("%s: CMO free page hinting is active.\n", __func__);
1571
1572 if (strcasecmp(parm, "yes") == 0 || strcasecmp(parm, "on") == 0)
1573 return 1;
1574
1575 return 0;
1576 }
1577
1578 __setup("cmo_free_hint=", cmo_free_hint);
1579
1580 static void pSeries_set_page_state(struct page *page, int order,
1581 unsigned long state)
1582 {
1583 int i, j;
1584 unsigned long cmo_page_sz, addr;
1585
1586 cmo_page_sz = cmo_get_page_size();
1587 addr = __pa((unsigned long)page_address(page));
1588
1589 for (i = 0; i < (1 << order); i++, addr += PAGE_SIZE) {
1590 for (j = 0; j < PAGE_SIZE; j += cmo_page_sz)
1591 plpar_hcall_norets(H_PAGE_INIT, state, addr + j, 0);
1592 }
1593 }
1594
1595 void arch_free_page(struct page *page, int order)
1596 {
1597 if (radix_enabled())
1598 return;
1599 if (!cmo_free_hint_flag || !firmware_has_feature(FW_FEATURE_CMO))
1600 return;
1601
1602 pSeries_set_page_state(page, order, H_PAGE_SET_UNUSED);
1603 }
1604 EXPORT_SYMBOL(arch_free_page);
1605
1606 #endif /* CONFIG_PPC_SMLPAR */
1607 #endif /* CONFIG_PPC_BOOK3S_64 */
1608
1609 #ifdef CONFIG_TRACEPOINTS
1610 #ifdef CONFIG_JUMP_LABEL
1611 struct static_key hcall_tracepoint_key = STATIC_KEY_INIT;
1612
1613 int hcall_tracepoint_regfunc(void)
1614 {
1615 static_key_slow_inc(&hcall_tracepoint_key);
1616 return 0;
1617 }
1618
1619 void hcall_tracepoint_unregfunc(void)
1620 {
1621 static_key_slow_dec(&hcall_tracepoint_key);
1622 }
1623 #else
1624 /*
1625 * We optimise our hcall path by placing hcall_tracepoint_refcount
1626 * directly in the TOC so we can check if the hcall tracepoints are
1627 * enabled via a single load.
1628 */
1629
1630 /* NB: reg/unreg are called while guarded with the tracepoints_mutex */
1631 extern long hcall_tracepoint_refcount;
1632
1633 int hcall_tracepoint_regfunc(void)
1634 {
1635 hcall_tracepoint_refcount++;
1636 return 0;
1637 }
1638
1639 void hcall_tracepoint_unregfunc(void)
1640 {
1641 hcall_tracepoint_refcount--;
1642 }
1643 #endif
1644
1645 /*
1646 * Since the tracing code might execute hcalls we need to guard against
1647 * recursion. One example of this are spinlocks calling H_YIELD on
1648 * shared processor partitions.
1649 */
1650 static DEFINE_PER_CPU(unsigned int, hcall_trace_depth);
1651
1652
1653 void __trace_hcall_entry(unsigned long opcode, unsigned long *args)
1654 {
1655 unsigned long flags;
1656 unsigned int *depth;
1657
1658 /*
1659 * We cannot call tracepoints inside RCU idle regions which
1660 * means we must not trace H_CEDE.
1661 */
1662 if (opcode == H_CEDE)
1663 return;
1664
1665 local_irq_save(flags);
1666
1667 depth = this_cpu_ptr(&hcall_trace_depth);
1668
1669 if (*depth)
1670 goto out;
1671
1672 (*depth)++;
1673 preempt_disable();
1674 trace_hcall_entry(opcode, args);
1675 (*depth)--;
1676
1677 out:
1678 local_irq_restore(flags);
1679 }
1680
1681 void __trace_hcall_exit(long opcode, long retval, unsigned long *retbuf)
1682 {
1683 unsigned long flags;
1684 unsigned int *depth;
1685
1686 if (opcode == H_CEDE)
1687 return;
1688
1689 local_irq_save(flags);
1690
1691 depth = this_cpu_ptr(&hcall_trace_depth);
1692
1693 if (*depth)
1694 goto out;
1695
1696 (*depth)++;
1697 trace_hcall_exit(opcode, retval, retbuf);
1698 preempt_enable();
1699 (*depth)--;
1700
1701 out:
1702 local_irq_restore(flags);
1703 }
1704 #endif
1705
1706 /**
1707 * h_get_mpp
1708 * H_GET_MPP hcall returns info in 7 parms
1709 */
1710 int h_get_mpp(struct hvcall_mpp_data *mpp_data)
1711 {
1712 int rc;
1713 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
1714
1715 rc = plpar_hcall9(H_GET_MPP, retbuf);
1716
1717 mpp_data->entitled_mem = retbuf[0];
1718 mpp_data->mapped_mem = retbuf[1];
1719
1720 mpp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
1721 mpp_data->pool_num = retbuf[2] & 0xffff;
1722
1723 mpp_data->mem_weight = (retbuf[3] >> 7 * 8) & 0xff;
1724 mpp_data->unallocated_mem_weight = (retbuf[3] >> 6 * 8) & 0xff;
1725 mpp_data->unallocated_entitlement = retbuf[3] & 0xffffffffffffUL;
1726
1727 mpp_data->pool_size = retbuf[4];
1728 mpp_data->loan_request = retbuf[5];
1729 mpp_data->backing_mem = retbuf[6];
1730
1731 return rc;
1732 }
1733 EXPORT_SYMBOL(h_get_mpp);
1734
1735 int h_get_mpp_x(struct hvcall_mpp_x_data *mpp_x_data)
1736 {
1737 int rc;
1738 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE] = { 0 };
1739
1740 rc = plpar_hcall9(H_GET_MPP_X, retbuf);
1741
1742 mpp_x_data->coalesced_bytes = retbuf[0];
1743 mpp_x_data->pool_coalesced_bytes = retbuf[1];
1744 mpp_x_data->pool_purr_cycles = retbuf[2];
1745 mpp_x_data->pool_spurr_cycles = retbuf[3];
1746
1747 return rc;
1748 }
1749
1750 static unsigned long vsid_unscramble(unsigned long vsid, int ssize)
1751 {
1752 unsigned long protovsid;
1753 unsigned long va_bits = VA_BITS;
1754 unsigned long modinv, vsid_modulus;
1755 unsigned long max_mod_inv, tmp_modinv;
1756
1757 if (!mmu_has_feature(MMU_FTR_68_BIT_VA))
1758 va_bits = 65;
1759
1760 if (ssize == MMU_SEGSIZE_256M) {
1761 modinv = VSID_MULINV_256M;
1762 vsid_modulus = ((1UL << (va_bits - SID_SHIFT)) - 1);
1763 } else {
1764 modinv = VSID_MULINV_1T;
1765 vsid_modulus = ((1UL << (va_bits - SID_SHIFT_1T)) - 1);
1766 }
1767
1768 /*
1769 * vsid outside our range.
1770 */
1771 if (vsid >= vsid_modulus)
1772 return 0;
1773
1774 /*
1775 * If modinv is the modular multiplicate inverse of (x % vsid_modulus)
1776 * and vsid = (protovsid * x) % vsid_modulus, then we say:
1777 * protovsid = (vsid * modinv) % vsid_modulus
1778 */
1779
1780 /* Check if (vsid * modinv) overflow (63 bits) */
1781 max_mod_inv = 0x7fffffffffffffffull / vsid;
1782 if (modinv < max_mod_inv)
1783 return (vsid * modinv) % vsid_modulus;
1784
1785 tmp_modinv = modinv/max_mod_inv;
1786 modinv %= max_mod_inv;
1787
1788 protovsid = (((vsid * max_mod_inv) % vsid_modulus) * tmp_modinv) % vsid_modulus;
1789 protovsid = (protovsid + vsid * modinv) % vsid_modulus;
1790
1791 return protovsid;
1792 }
1793
1794 static int __init reserve_vrma_context_id(void)
1795 {
1796 unsigned long protovsid;
1797
1798 /*
1799 * Reserve context ids which map to reserved virtual addresses. For now
1800 * we only reserve the context id which maps to the VRMA VSID. We ignore
1801 * the addresses in "ibm,adjunct-virtual-addresses" because we don't
1802 * enable adjunct support via the "ibm,client-architecture-support"
1803 * interface.
1804 */
1805 protovsid = vsid_unscramble(VRMA_VSID, MMU_SEGSIZE_1T);
1806 hash__reserve_context_id(protovsid >> ESID_BITS_1T);
1807 return 0;
1808 }
1809 machine_device_initcall(pseries, reserve_vrma_context_id);
1810
1811 #ifdef CONFIG_DEBUG_FS
1812 /* debugfs file interface for vpa data */
1813 static ssize_t vpa_file_read(struct file *filp, char __user *buf, size_t len,
1814 loff_t *pos)
1815 {
1816 int cpu = (long)filp->private_data;
1817 struct lppaca *lppaca = &lppaca_of(cpu);
1818
1819 return simple_read_from_buffer(buf, len, pos, lppaca,
1820 sizeof(struct lppaca));
1821 }
1822
1823 static const struct file_operations vpa_fops = {
1824 .open = simple_open,
1825 .read = vpa_file_read,
1826 .llseek = default_llseek,
1827 };
1828
1829 static int __init vpa_debugfs_init(void)
1830 {
1831 char name[16];
1832 long i;
1833 static struct dentry *vpa_dir;
1834
1835 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
1836 return 0;
1837
1838 vpa_dir = debugfs_create_dir("vpa", powerpc_debugfs_root);
1839 if (!vpa_dir) {
1840 pr_warn("%s: can't create vpa root dir\n", __func__);
1841 return -ENOMEM;
1842 }
1843
1844 /* set up the per-cpu vpa file*/
1845 for_each_possible_cpu(i) {
1846 struct dentry *d;
1847
1848 sprintf(name, "cpu-%ld", i);
1849
1850 d = debugfs_create_file(name, 0400, vpa_dir, (void *)i,
1851 &vpa_fops);
1852 if (!d) {
1853 pr_warn("%s: can't create per-cpu vpa file\n",
1854 __func__);
1855 return -ENOMEM;
1856 }
1857 }
1858
1859 return 0;
1860 }
1861 machine_arch_initcall(pseries, vpa_debugfs_init);
1862 #endif /* CONFIG_DEBUG_FS */