]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/powerpc/platforms/pseries/lparcfg.c
Merge git://git.kernel.org/pub/scm/linux/kernel/git/bpf/bpf
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / platforms / pseries / lparcfg.c
1 /*
2 * PowerPC64 LPAR Configuration Information Driver
3 *
4 * Dave Engebretsen engebret@us.ibm.com
5 * Copyright (c) 2003 Dave Engebretsen
6 * Will Schmidt willschm@us.ibm.com
7 * SPLPAR updates, Copyright (c) 2003 Will Schmidt IBM Corporation.
8 * seq_file updates, Copyright (c) 2004 Will Schmidt IBM Corporation.
9 * Nathan Lynch nathanl@austin.ibm.com
10 * Added lparcfg_write, Copyright (C) 2004 Nathan Lynch IBM Corporation.
11 *
12 * This program is free software; you can redistribute it and/or
13 * modify it under the terms of the GNU General Public License
14 * as published by the Free Software Foundation; either version
15 * 2 of the License, or (at your option) any later version.
16 *
17 * This driver creates a proc file at /proc/ppc64/lparcfg which contains
18 * keyword - value pairs that specify the configuration of the partition.
19 */
20
21 #include <linux/module.h>
22 #include <linux/types.h>
23 #include <linux/errno.h>
24 #include <linux/proc_fs.h>
25 #include <linux/init.h>
26 #include <linux/seq_file.h>
27 #include <linux/slab.h>
28 #include <linux/uaccess.h>
29 #include <linux/hugetlb.h>
30 #include <asm/lppaca.h>
31 #include <asm/hvcall.h>
32 #include <asm/firmware.h>
33 #include <asm/rtas.h>
34 #include <asm/time.h>
35 #include <asm/prom.h>
36 #include <asm/vdso_datapage.h>
37 #include <asm/vio.h>
38 #include <asm/mmu.h>
39 #include <asm/machdep.h>
40 #include <asm/drmem.h>
41
42 #include "pseries.h"
43
44 /*
45 * This isn't a module but we expose that to userspace
46 * via /proc so leave the definitions here
47 */
48 #define MODULE_VERS "1.9"
49 #define MODULE_NAME "lparcfg"
50
51 /* #define LPARCFG_DEBUG */
52
53 /*
54 * Track sum of all purrs across all processors. This is used to further
55 * calculate usage values by different applications
56 */
57 static void cpu_get_purr(void *arg)
58 {
59 atomic64_t *sum = arg;
60
61 atomic64_add(mfspr(SPRN_PURR), sum);
62 }
63
64 static unsigned long get_purr(void)
65 {
66 atomic64_t purr = ATOMIC64_INIT(0);
67
68 on_each_cpu(cpu_get_purr, &purr, 1);
69
70 return atomic64_read(&purr);
71 }
72
73 /*
74 * Methods used to fetch LPAR data when running on a pSeries platform.
75 */
76
77 struct hvcall_ppp_data {
78 u64 entitlement;
79 u64 unallocated_entitlement;
80 u16 group_num;
81 u16 pool_num;
82 u8 capped;
83 u8 weight;
84 u8 unallocated_weight;
85 u16 active_procs_in_pool;
86 u16 active_system_procs;
87 u16 phys_platform_procs;
88 u32 max_proc_cap_avail;
89 u32 entitled_proc_cap_avail;
90 };
91
92 /*
93 * H_GET_PPP hcall returns info in 4 parms.
94 * entitled_capacity,unallocated_capacity,
95 * aggregation, resource_capability).
96 *
97 * R4 = Entitled Processor Capacity Percentage.
98 * R5 = Unallocated Processor Capacity Percentage.
99 * R6 (AABBCCDDEEFFGGHH).
100 * XXXX - reserved (0)
101 * XXXX - reserved (0)
102 * XXXX - Group Number
103 * XXXX - Pool Number.
104 * R7 (IIJJKKLLMMNNOOPP).
105 * XX - reserved. (0)
106 * XX - bit 0-6 reserved (0). bit 7 is Capped indicator.
107 * XX - variable processor Capacity Weight
108 * XX - Unallocated Variable Processor Capacity Weight.
109 * XXXX - Active processors in Physical Processor Pool.
110 * XXXX - Processors active on platform.
111 * R8 (QQQQRRRRRRSSSSSS). if ibm,partition-performance-parameters-level >= 1
112 * XXXX - Physical platform procs allocated to virtualization.
113 * XXXXXX - Max procs capacity % available to the partitions pool.
114 * XXXXXX - Entitled procs capacity % available to the
115 * partitions pool.
116 */
117 static unsigned int h_get_ppp(struct hvcall_ppp_data *ppp_data)
118 {
119 unsigned long rc;
120 unsigned long retbuf[PLPAR_HCALL9_BUFSIZE];
121
122 rc = plpar_hcall9(H_GET_PPP, retbuf);
123
124 ppp_data->entitlement = retbuf[0];
125 ppp_data->unallocated_entitlement = retbuf[1];
126
127 ppp_data->group_num = (retbuf[2] >> 2 * 8) & 0xffff;
128 ppp_data->pool_num = retbuf[2] & 0xffff;
129
130 ppp_data->capped = (retbuf[3] >> 6 * 8) & 0x01;
131 ppp_data->weight = (retbuf[3] >> 5 * 8) & 0xff;
132 ppp_data->unallocated_weight = (retbuf[3] >> 4 * 8) & 0xff;
133 ppp_data->active_procs_in_pool = (retbuf[3] >> 2 * 8) & 0xffff;
134 ppp_data->active_system_procs = retbuf[3] & 0xffff;
135
136 ppp_data->phys_platform_procs = retbuf[4] >> 6 * 8;
137 ppp_data->max_proc_cap_avail = (retbuf[4] >> 3 * 8) & 0xffffff;
138 ppp_data->entitled_proc_cap_avail = retbuf[4] & 0xffffff;
139
140 return rc;
141 }
142
143 static unsigned h_pic(unsigned long *pool_idle_time,
144 unsigned long *num_procs)
145 {
146 unsigned long rc;
147 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
148
149 rc = plpar_hcall(H_PIC, retbuf);
150
151 *pool_idle_time = retbuf[0];
152 *num_procs = retbuf[1];
153
154 return rc;
155 }
156
157 /*
158 * parse_ppp_data
159 * Parse out the data returned from h_get_ppp and h_pic
160 */
161 static void parse_ppp_data(struct seq_file *m)
162 {
163 struct hvcall_ppp_data ppp_data;
164 struct device_node *root;
165 const __be32 *perf_level;
166 int rc;
167
168 rc = h_get_ppp(&ppp_data);
169 if (rc)
170 return;
171
172 seq_printf(m, "partition_entitled_capacity=%lld\n",
173 ppp_data.entitlement);
174 seq_printf(m, "group=%d\n", ppp_data.group_num);
175 seq_printf(m, "system_active_processors=%d\n",
176 ppp_data.active_system_procs);
177
178 /* pool related entries are appropriate for shared configs */
179 if (lppaca_shared_proc(get_lppaca())) {
180 unsigned long pool_idle_time, pool_procs;
181
182 seq_printf(m, "pool=%d\n", ppp_data.pool_num);
183
184 /* report pool_capacity in percentage */
185 seq_printf(m, "pool_capacity=%d\n",
186 ppp_data.active_procs_in_pool * 100);
187
188 h_pic(&pool_idle_time, &pool_procs);
189 seq_printf(m, "pool_idle_time=%ld\n", pool_idle_time);
190 seq_printf(m, "pool_num_procs=%ld\n", pool_procs);
191 }
192
193 seq_printf(m, "unallocated_capacity_weight=%d\n",
194 ppp_data.unallocated_weight);
195 seq_printf(m, "capacity_weight=%d\n", ppp_data.weight);
196 seq_printf(m, "capped=%d\n", ppp_data.capped);
197 seq_printf(m, "unallocated_capacity=%lld\n",
198 ppp_data.unallocated_entitlement);
199
200 /* The last bits of information returned from h_get_ppp are only
201 * valid if the ibm,partition-performance-parameters-level
202 * property is >= 1.
203 */
204 root = of_find_node_by_path("/");
205 if (root) {
206 perf_level = of_get_property(root,
207 "ibm,partition-performance-parameters-level",
208 NULL);
209 if (perf_level && (be32_to_cpup(perf_level) >= 1)) {
210 seq_printf(m,
211 "physical_procs_allocated_to_virtualization=%d\n",
212 ppp_data.phys_platform_procs);
213 seq_printf(m, "max_proc_capacity_available=%d\n",
214 ppp_data.max_proc_cap_avail);
215 seq_printf(m, "entitled_proc_capacity_available=%d\n",
216 ppp_data.entitled_proc_cap_avail);
217 }
218
219 of_node_put(root);
220 }
221 }
222
223 /**
224 * parse_mpp_data
225 * Parse out data returned from h_get_mpp
226 */
227 static void parse_mpp_data(struct seq_file *m)
228 {
229 struct hvcall_mpp_data mpp_data;
230 int rc;
231
232 rc = h_get_mpp(&mpp_data);
233 if (rc)
234 return;
235
236 seq_printf(m, "entitled_memory=%ld\n", mpp_data.entitled_mem);
237
238 if (mpp_data.mapped_mem != -1)
239 seq_printf(m, "mapped_entitled_memory=%ld\n",
240 mpp_data.mapped_mem);
241
242 seq_printf(m, "entitled_memory_group_number=%d\n", mpp_data.group_num);
243 seq_printf(m, "entitled_memory_pool_number=%d\n", mpp_data.pool_num);
244
245 seq_printf(m, "entitled_memory_weight=%d\n", mpp_data.mem_weight);
246 seq_printf(m, "unallocated_entitled_memory_weight=%d\n",
247 mpp_data.unallocated_mem_weight);
248 seq_printf(m, "unallocated_io_mapping_entitlement=%ld\n",
249 mpp_data.unallocated_entitlement);
250
251 if (mpp_data.pool_size != -1)
252 seq_printf(m, "entitled_memory_pool_size=%ld bytes\n",
253 mpp_data.pool_size);
254
255 seq_printf(m, "entitled_memory_loan_request=%ld\n",
256 mpp_data.loan_request);
257
258 seq_printf(m, "backing_memory=%ld bytes\n", mpp_data.backing_mem);
259 }
260
261 /**
262 * parse_mpp_x_data
263 * Parse out data returned from h_get_mpp_x
264 */
265 static void parse_mpp_x_data(struct seq_file *m)
266 {
267 struct hvcall_mpp_x_data mpp_x_data;
268
269 if (!firmware_has_feature(FW_FEATURE_XCMO))
270 return;
271 if (h_get_mpp_x(&mpp_x_data))
272 return;
273
274 seq_printf(m, "coalesced_bytes=%ld\n", mpp_x_data.coalesced_bytes);
275
276 if (mpp_x_data.pool_coalesced_bytes)
277 seq_printf(m, "pool_coalesced_bytes=%ld\n",
278 mpp_x_data.pool_coalesced_bytes);
279 if (mpp_x_data.pool_purr_cycles)
280 seq_printf(m, "coalesce_pool_purr=%ld\n", mpp_x_data.pool_purr_cycles);
281 if (mpp_x_data.pool_spurr_cycles)
282 seq_printf(m, "coalesce_pool_spurr=%ld\n", mpp_x_data.pool_spurr_cycles);
283 }
284
285 #define SPLPAR_CHARACTERISTICS_TOKEN 20
286 #define SPLPAR_MAXLENGTH 1026*(sizeof(char))
287
288 /*
289 * parse_system_parameter_string()
290 * Retrieve the potential_processors, max_entitled_capacity and friends
291 * through the get-system-parameter rtas call. Replace keyword strings as
292 * necessary.
293 */
294 static void parse_system_parameter_string(struct seq_file *m)
295 {
296 int call_status;
297
298 unsigned char *local_buffer = kmalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
299 if (!local_buffer) {
300 printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
301 __FILE__, __func__, __LINE__);
302 return;
303 }
304
305 spin_lock(&rtas_data_buf_lock);
306 memset(rtas_data_buf, 0, SPLPAR_MAXLENGTH);
307 call_status = rtas_call(rtas_token("ibm,get-system-parameter"), 3, 1,
308 NULL,
309 SPLPAR_CHARACTERISTICS_TOKEN,
310 __pa(rtas_data_buf),
311 RTAS_DATA_BUF_SIZE);
312 memcpy(local_buffer, rtas_data_buf, SPLPAR_MAXLENGTH);
313 local_buffer[SPLPAR_MAXLENGTH - 1] = '\0';
314 spin_unlock(&rtas_data_buf_lock);
315
316 if (call_status != 0) {
317 printk(KERN_INFO
318 "%s %s Error calling get-system-parameter (0x%x)\n",
319 __FILE__, __func__, call_status);
320 } else {
321 int splpar_strlen;
322 int idx, w_idx;
323 char *workbuffer = kzalloc(SPLPAR_MAXLENGTH, GFP_KERNEL);
324 if (!workbuffer) {
325 printk(KERN_ERR "%s %s kmalloc failure at line %d\n",
326 __FILE__, __func__, __LINE__);
327 kfree(local_buffer);
328 return;
329 }
330 #ifdef LPARCFG_DEBUG
331 printk(KERN_INFO "success calling get-system-parameter\n");
332 #endif
333 splpar_strlen = local_buffer[0] * 256 + local_buffer[1];
334 local_buffer += 2; /* step over strlen value */
335
336 w_idx = 0;
337 idx = 0;
338 while ((*local_buffer) && (idx < splpar_strlen)) {
339 workbuffer[w_idx++] = local_buffer[idx++];
340 if ((local_buffer[idx] == ',')
341 || (local_buffer[idx] == '\0')) {
342 workbuffer[w_idx] = '\0';
343 if (w_idx) {
344 /* avoid the empty string */
345 seq_printf(m, "%s\n", workbuffer);
346 }
347 memset(workbuffer, 0, SPLPAR_MAXLENGTH);
348 idx++; /* skip the comma */
349 w_idx = 0;
350 } else if (local_buffer[idx] == '=') {
351 /* code here to replace workbuffer contents
352 with different keyword strings */
353 if (0 == strcmp(workbuffer, "MaxEntCap")) {
354 strcpy(workbuffer,
355 "partition_max_entitled_capacity");
356 w_idx = strlen(workbuffer);
357 }
358 if (0 == strcmp(workbuffer, "MaxPlatProcs")) {
359 strcpy(workbuffer,
360 "system_potential_processors");
361 w_idx = strlen(workbuffer);
362 }
363 }
364 }
365 kfree(workbuffer);
366 local_buffer -= 2; /* back up over strlen value */
367 }
368 kfree(local_buffer);
369 }
370
371 /* Return the number of processors in the system.
372 * This function reads through the device tree and counts
373 * the virtual processors, this does not include threads.
374 */
375 static int lparcfg_count_active_processors(void)
376 {
377 struct device_node *cpus_dn;
378 int count = 0;
379
380 for_each_node_by_type(cpus_dn, "cpu") {
381 #ifdef LPARCFG_DEBUG
382 printk(KERN_ERR "cpus_dn %p\n", cpus_dn);
383 #endif
384 count++;
385 }
386 return count;
387 }
388
389 static void pseries_cmo_data(struct seq_file *m)
390 {
391 int cpu;
392 unsigned long cmo_faults = 0;
393 unsigned long cmo_fault_time = 0;
394
395 seq_printf(m, "cmo_enabled=%d\n", firmware_has_feature(FW_FEATURE_CMO));
396
397 if (!firmware_has_feature(FW_FEATURE_CMO))
398 return;
399
400 for_each_possible_cpu(cpu) {
401 cmo_faults += be64_to_cpu(lppaca_of(cpu).cmo_faults);
402 cmo_fault_time += be64_to_cpu(lppaca_of(cpu).cmo_fault_time);
403 }
404
405 seq_printf(m, "cmo_faults=%lu\n", cmo_faults);
406 seq_printf(m, "cmo_fault_time_usec=%lu\n",
407 cmo_fault_time / tb_ticks_per_usec);
408 seq_printf(m, "cmo_primary_psp=%d\n", cmo_get_primary_psp());
409 seq_printf(m, "cmo_secondary_psp=%d\n", cmo_get_secondary_psp());
410 seq_printf(m, "cmo_page_size=%lu\n", cmo_get_page_size());
411 }
412
413 static void splpar_dispatch_data(struct seq_file *m)
414 {
415 int cpu;
416 unsigned long dispatches = 0;
417 unsigned long dispatch_dispersions = 0;
418
419 for_each_possible_cpu(cpu) {
420 dispatches += be32_to_cpu(lppaca_of(cpu).yield_count);
421 dispatch_dispersions +=
422 be32_to_cpu(lppaca_of(cpu).dispersion_count);
423 }
424
425 seq_printf(m, "dispatches=%lu\n", dispatches);
426 seq_printf(m, "dispatch_dispersions=%lu\n", dispatch_dispersions);
427 }
428
429 static void parse_em_data(struct seq_file *m)
430 {
431 unsigned long retbuf[PLPAR_HCALL_BUFSIZE];
432
433 if (firmware_has_feature(FW_FEATURE_LPAR) &&
434 plpar_hcall(H_GET_EM_PARMS, retbuf) == H_SUCCESS)
435 seq_printf(m, "power_mode_data=%016lx\n", retbuf[0]);
436 }
437
438 static void maxmem_data(struct seq_file *m)
439 {
440 unsigned long maxmem = 0;
441
442 maxmem += drmem_info->n_lmbs * drmem_info->lmb_size;
443 maxmem += hugetlb_total_pages() * PAGE_SIZE;
444
445 seq_printf(m, "MaxMem=%ld\n", maxmem);
446 }
447
448 static int pseries_lparcfg_data(struct seq_file *m, void *v)
449 {
450 int partition_potential_processors;
451 int partition_active_processors;
452 struct device_node *rtas_node;
453 const __be32 *lrdrp = NULL;
454
455 rtas_node = of_find_node_by_path("/rtas");
456 if (rtas_node)
457 lrdrp = of_get_property(rtas_node, "ibm,lrdr-capacity", NULL);
458
459 if (lrdrp == NULL) {
460 partition_potential_processors = vdso_data->processorCount;
461 } else {
462 partition_potential_processors = be32_to_cpup(lrdrp + 4);
463 }
464 of_node_put(rtas_node);
465
466 partition_active_processors = lparcfg_count_active_processors();
467
468 if (firmware_has_feature(FW_FEATURE_SPLPAR)) {
469 /* this call handles the ibm,get-system-parameter contents */
470 parse_system_parameter_string(m);
471 parse_ppp_data(m);
472 parse_mpp_data(m);
473 parse_mpp_x_data(m);
474 pseries_cmo_data(m);
475 splpar_dispatch_data(m);
476
477 seq_printf(m, "purr=%ld\n", get_purr());
478 seq_printf(m, "tbr=%ld\n", mftb());
479 } else { /* non SPLPAR case */
480
481 seq_printf(m, "system_active_processors=%d\n",
482 partition_potential_processors);
483
484 seq_printf(m, "system_potential_processors=%d\n",
485 partition_potential_processors);
486
487 seq_printf(m, "partition_max_entitled_capacity=%d\n",
488 partition_potential_processors * 100);
489
490 seq_printf(m, "partition_entitled_capacity=%d\n",
491 partition_active_processors * 100);
492 }
493
494 seq_printf(m, "partition_active_processors=%d\n",
495 partition_active_processors);
496
497 seq_printf(m, "partition_potential_processors=%d\n",
498 partition_potential_processors);
499
500 seq_printf(m, "shared_processor_mode=%d\n",
501 lppaca_shared_proc(get_lppaca()));
502
503 #ifdef CONFIG_PPC_BOOK3S_64
504 seq_printf(m, "slb_size=%d\n", mmu_slb_size);
505 #endif
506 parse_em_data(m);
507 maxmem_data(m);
508
509 return 0;
510 }
511
512 static ssize_t update_ppp(u64 *entitlement, u8 *weight)
513 {
514 struct hvcall_ppp_data ppp_data;
515 u8 new_weight;
516 u64 new_entitled;
517 ssize_t retval;
518
519 /* Get our current parameters */
520 retval = h_get_ppp(&ppp_data);
521 if (retval)
522 return retval;
523
524 if (entitlement) {
525 new_weight = ppp_data.weight;
526 new_entitled = *entitlement;
527 } else if (weight) {
528 new_weight = *weight;
529 new_entitled = ppp_data.entitlement;
530 } else
531 return -EINVAL;
532
533 pr_debug("%s: current_entitled = %llu, current_weight = %u\n",
534 __func__, ppp_data.entitlement, ppp_data.weight);
535
536 pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
537 __func__, new_entitled, new_weight);
538
539 retval = plpar_hcall_norets(H_SET_PPP, new_entitled, new_weight);
540 return retval;
541 }
542
543 /**
544 * update_mpp
545 *
546 * Update the memory entitlement and weight for the partition. Caller must
547 * specify either a new entitlement or weight, not both, to be updated
548 * since the h_set_mpp call takes both entitlement and weight as parameters.
549 */
550 static ssize_t update_mpp(u64 *entitlement, u8 *weight)
551 {
552 struct hvcall_mpp_data mpp_data;
553 u64 new_entitled;
554 u8 new_weight;
555 ssize_t rc;
556
557 if (entitlement) {
558 /* Check with vio to ensure the new memory entitlement
559 * can be handled.
560 */
561 rc = vio_cmo_entitlement_update(*entitlement);
562 if (rc)
563 return rc;
564 }
565
566 rc = h_get_mpp(&mpp_data);
567 if (rc)
568 return rc;
569
570 if (entitlement) {
571 new_weight = mpp_data.mem_weight;
572 new_entitled = *entitlement;
573 } else if (weight) {
574 new_weight = *weight;
575 new_entitled = mpp_data.entitled_mem;
576 } else
577 return -EINVAL;
578
579 pr_debug("%s: current_entitled = %lu, current_weight = %u\n",
580 __func__, mpp_data.entitled_mem, mpp_data.mem_weight);
581
582 pr_debug("%s: new_entitled = %llu, new_weight = %u\n",
583 __func__, new_entitled, new_weight);
584
585 rc = plpar_hcall_norets(H_SET_MPP, new_entitled, new_weight);
586 return rc;
587 }
588
589 /*
590 * Interface for changing system parameters (variable capacity weight
591 * and entitled capacity). Format of input is "param_name=value";
592 * anything after value is ignored. Valid parameters at this time are
593 * "partition_entitled_capacity" and "capacity_weight". We use
594 * H_SET_PPP to alter parameters.
595 *
596 * This function should be invoked only on systems with
597 * FW_FEATURE_SPLPAR.
598 */
599 static ssize_t lparcfg_write(struct file *file, const char __user * buf,
600 size_t count, loff_t * off)
601 {
602 char kbuf[64];
603 char *tmp;
604 u64 new_entitled, *new_entitled_ptr = &new_entitled;
605 u8 new_weight, *new_weight_ptr = &new_weight;
606 ssize_t retval;
607
608 if (!firmware_has_feature(FW_FEATURE_SPLPAR))
609 return -EINVAL;
610
611 if (count > sizeof(kbuf))
612 return -EINVAL;
613
614 if (copy_from_user(kbuf, buf, count))
615 return -EFAULT;
616
617 kbuf[count - 1] = '\0';
618 tmp = strchr(kbuf, '=');
619 if (!tmp)
620 return -EINVAL;
621
622 *tmp++ = '\0';
623
624 if (!strcmp(kbuf, "partition_entitled_capacity")) {
625 char *endp;
626 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
627 if (endp == tmp)
628 return -EINVAL;
629
630 retval = update_ppp(new_entitled_ptr, NULL);
631 } else if (!strcmp(kbuf, "capacity_weight")) {
632 char *endp;
633 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
634 if (endp == tmp)
635 return -EINVAL;
636
637 retval = update_ppp(NULL, new_weight_ptr);
638 } else if (!strcmp(kbuf, "entitled_memory")) {
639 char *endp;
640 *new_entitled_ptr = (u64) simple_strtoul(tmp, &endp, 10);
641 if (endp == tmp)
642 return -EINVAL;
643
644 retval = update_mpp(new_entitled_ptr, NULL);
645 } else if (!strcmp(kbuf, "entitled_memory_weight")) {
646 char *endp;
647 *new_weight_ptr = (u8) simple_strtoul(tmp, &endp, 10);
648 if (endp == tmp)
649 return -EINVAL;
650
651 retval = update_mpp(NULL, new_weight_ptr);
652 } else
653 return -EINVAL;
654
655 if (retval == H_SUCCESS || retval == H_CONSTRAINED) {
656 retval = count;
657 } else if (retval == H_BUSY) {
658 retval = -EBUSY;
659 } else if (retval == H_HARDWARE) {
660 retval = -EIO;
661 } else if (retval == H_PARAMETER) {
662 retval = -EINVAL;
663 }
664
665 return retval;
666 }
667
668 static int lparcfg_data(struct seq_file *m, void *v)
669 {
670 struct device_node *rootdn;
671 const char *model = "";
672 const char *system_id = "";
673 const char *tmp;
674 const __be32 *lp_index_ptr;
675 unsigned int lp_index = 0;
676
677 seq_printf(m, "%s %s\n", MODULE_NAME, MODULE_VERS);
678
679 rootdn = of_find_node_by_path("/");
680 if (rootdn) {
681 tmp = of_get_property(rootdn, "model", NULL);
682 if (tmp)
683 model = tmp;
684 tmp = of_get_property(rootdn, "system-id", NULL);
685 if (tmp)
686 system_id = tmp;
687 lp_index_ptr = of_get_property(rootdn, "ibm,partition-no",
688 NULL);
689 if (lp_index_ptr)
690 lp_index = be32_to_cpup(lp_index_ptr);
691 of_node_put(rootdn);
692 }
693 seq_printf(m, "serial_number=%s\n", system_id);
694 seq_printf(m, "system_type=%s\n", model);
695 seq_printf(m, "partition_id=%d\n", (int)lp_index);
696
697 return pseries_lparcfg_data(m, v);
698 }
699
700 static int lparcfg_open(struct inode *inode, struct file *file)
701 {
702 return single_open(file, lparcfg_data, NULL);
703 }
704
705 static const struct file_operations lparcfg_fops = {
706 .read = seq_read,
707 .write = lparcfg_write,
708 .open = lparcfg_open,
709 .release = single_release,
710 .llseek = seq_lseek,
711 };
712
713 static int __init lparcfg_init(void)
714 {
715 umode_t mode = 0444;
716
717 /* Allow writing if we have FW_FEATURE_SPLPAR */
718 if (firmware_has_feature(FW_FEATURE_SPLPAR))
719 mode |= 0200;
720
721 if (!proc_create("powerpc/lparcfg", mode, NULL, &lparcfg_fops)) {
722 printk(KERN_ERR "Failed to create powerpc/lparcfg\n");
723 return -EIO;
724 }
725 return 0;
726 }
727 machine_device_initcall(pseries, lparcfg_init);