]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/powerpc/platforms/pseries/nvram.c
Merge tag 'v3.15-rc1' into perf/urgent
[mirror_ubuntu-focal-kernel.git] / arch / powerpc / platforms / pseries / nvram.c
1 /*
2 * c 2001 PPC 64 Team, IBM Corp
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 *
9 * /dev/nvram driver for PPC64
10 *
11 * This perhaps should live in drivers/char
12 */
13
14
15 #include <linux/types.h>
16 #include <linux/errno.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/kmsg_dump.h>
21 #include <linux/pstore.h>
22 #include <linux/ctype.h>
23 #include <linux/zlib.h>
24 #include <asm/uaccess.h>
25 #include <asm/nvram.h>
26 #include <asm/rtas.h>
27 #include <asm/prom.h>
28 #include <asm/machdep.h>
29
30 /* Max bytes to read/write in one go */
31 #define NVRW_CNT 0x20
32
33 /*
34 * Set oops header version to distinguish between old and new format header.
35 * lnx,oops-log partition max size is 4000, header version > 4000 will
36 * help in identifying new header.
37 */
38 #define OOPS_HDR_VERSION 5000
39
40 static unsigned int nvram_size;
41 static int nvram_fetch, nvram_store;
42 static char nvram_buf[NVRW_CNT]; /* assume this is in the first 4GB */
43 static DEFINE_SPINLOCK(nvram_lock);
44
45 struct err_log_info {
46 __be32 error_type;
47 __be32 seq_num;
48 };
49
50 struct nvram_os_partition {
51 const char *name;
52 int req_size; /* desired size, in bytes */
53 int min_size; /* minimum acceptable size (0 means req_size) */
54 long size; /* size of data portion (excluding err_log_info) */
55 long index; /* offset of data portion of partition */
56 bool os_partition; /* partition initialized by OS, not FW */
57 };
58
59 static struct nvram_os_partition rtas_log_partition = {
60 .name = "ibm,rtas-log",
61 .req_size = 2079,
62 .min_size = 1055,
63 .index = -1,
64 .os_partition = true
65 };
66
67 static struct nvram_os_partition oops_log_partition = {
68 .name = "lnx,oops-log",
69 .req_size = 4000,
70 .min_size = 2000,
71 .index = -1,
72 .os_partition = true
73 };
74
75 static const char *pseries_nvram_os_partitions[] = {
76 "ibm,rtas-log",
77 "lnx,oops-log",
78 NULL
79 };
80
81 struct oops_log_info {
82 __be16 version;
83 __be16 report_length;
84 __be64 timestamp;
85 } __attribute__((packed));
86
87 static void oops_to_nvram(struct kmsg_dumper *dumper,
88 enum kmsg_dump_reason reason);
89
90 static struct kmsg_dumper nvram_kmsg_dumper = {
91 .dump = oops_to_nvram
92 };
93
94 /* See clobbering_unread_rtas_event() */
95 #define NVRAM_RTAS_READ_TIMEOUT 5 /* seconds */
96 static unsigned long last_unread_rtas_event; /* timestamp */
97
98 /*
99 * For capturing and compressing an oops or panic report...
100
101 * big_oops_buf[] holds the uncompressed text we're capturing.
102 *
103 * oops_buf[] holds the compressed text, preceded by a oops header.
104 * oops header has u16 holding the version of oops header (to differentiate
105 * between old and new format header) followed by u16 holding the length of
106 * the compressed* text (*Or uncompressed, if compression fails.) and u64
107 * holding the timestamp. oops_buf[] gets written to NVRAM.
108 *
109 * oops_log_info points to the header. oops_data points to the compressed text.
110 *
111 * +- oops_buf
112 * | +- oops_data
113 * v v
114 * +-----------+-----------+-----------+------------------------+
115 * | version | length | timestamp | text |
116 * | (2 bytes) | (2 bytes) | (8 bytes) | (oops_data_sz bytes) |
117 * +-----------+-----------+-----------+------------------------+
118 * ^
119 * +- oops_log_info
120 *
121 * We preallocate these buffers during init to avoid kmalloc during oops/panic.
122 */
123 static size_t big_oops_buf_sz;
124 static char *big_oops_buf, *oops_buf;
125 static char *oops_data;
126 static size_t oops_data_sz;
127
128 /* Compression parameters */
129 #define COMPR_LEVEL 6
130 #define WINDOW_BITS 12
131 #define MEM_LEVEL 4
132 static struct z_stream_s stream;
133
134 #ifdef CONFIG_PSTORE
135 static struct nvram_os_partition of_config_partition = {
136 .name = "of-config",
137 .index = -1,
138 .os_partition = false
139 };
140
141 static struct nvram_os_partition common_partition = {
142 .name = "common",
143 .index = -1,
144 .os_partition = false
145 };
146
147 static enum pstore_type_id nvram_type_ids[] = {
148 PSTORE_TYPE_DMESG,
149 PSTORE_TYPE_PPC_RTAS,
150 PSTORE_TYPE_PPC_OF,
151 PSTORE_TYPE_PPC_COMMON,
152 -1
153 };
154 static int read_type;
155 static unsigned long last_rtas_event;
156 #endif
157
158 static ssize_t pSeries_nvram_read(char *buf, size_t count, loff_t *index)
159 {
160 unsigned int i;
161 unsigned long len;
162 int done;
163 unsigned long flags;
164 char *p = buf;
165
166
167 if (nvram_size == 0 || nvram_fetch == RTAS_UNKNOWN_SERVICE)
168 return -ENODEV;
169
170 if (*index >= nvram_size)
171 return 0;
172
173 i = *index;
174 if (i + count > nvram_size)
175 count = nvram_size - i;
176
177 spin_lock_irqsave(&nvram_lock, flags);
178
179 for (; count != 0; count -= len) {
180 len = count;
181 if (len > NVRW_CNT)
182 len = NVRW_CNT;
183
184 if ((rtas_call(nvram_fetch, 3, 2, &done, i, __pa(nvram_buf),
185 len) != 0) || len != done) {
186 spin_unlock_irqrestore(&nvram_lock, flags);
187 return -EIO;
188 }
189
190 memcpy(p, nvram_buf, len);
191
192 p += len;
193 i += len;
194 }
195
196 spin_unlock_irqrestore(&nvram_lock, flags);
197
198 *index = i;
199 return p - buf;
200 }
201
202 static ssize_t pSeries_nvram_write(char *buf, size_t count, loff_t *index)
203 {
204 unsigned int i;
205 unsigned long len;
206 int done;
207 unsigned long flags;
208 const char *p = buf;
209
210 if (nvram_size == 0 || nvram_store == RTAS_UNKNOWN_SERVICE)
211 return -ENODEV;
212
213 if (*index >= nvram_size)
214 return 0;
215
216 i = *index;
217 if (i + count > nvram_size)
218 count = nvram_size - i;
219
220 spin_lock_irqsave(&nvram_lock, flags);
221
222 for (; count != 0; count -= len) {
223 len = count;
224 if (len > NVRW_CNT)
225 len = NVRW_CNT;
226
227 memcpy(nvram_buf, p, len);
228
229 if ((rtas_call(nvram_store, 3, 2, &done, i, __pa(nvram_buf),
230 len) != 0) || len != done) {
231 spin_unlock_irqrestore(&nvram_lock, flags);
232 return -EIO;
233 }
234
235 p += len;
236 i += len;
237 }
238 spin_unlock_irqrestore(&nvram_lock, flags);
239
240 *index = i;
241 return p - buf;
242 }
243
244 static ssize_t pSeries_nvram_get_size(void)
245 {
246 return nvram_size ? nvram_size : -ENODEV;
247 }
248
249
250 /* nvram_write_os_partition, nvram_write_error_log
251 *
252 * We need to buffer the error logs into nvram to ensure that we have
253 * the failure information to decode. If we have a severe error there
254 * is no way to guarantee that the OS or the machine is in a state to
255 * get back to user land and write the error to disk. For example if
256 * the SCSI device driver causes a Machine Check by writing to a bad
257 * IO address, there is no way of guaranteeing that the device driver
258 * is in any state that is would also be able to write the error data
259 * captured to disk, thus we buffer it in NVRAM for analysis on the
260 * next boot.
261 *
262 * In NVRAM the partition containing the error log buffer will looks like:
263 * Header (in bytes):
264 * +-----------+----------+--------+------------+------------------+
265 * | signature | checksum | length | name | data |
266 * |0 |1 |2 3|4 15|16 length-1|
267 * +-----------+----------+--------+------------+------------------+
268 *
269 * The 'data' section would look like (in bytes):
270 * +--------------+------------+-----------------------------------+
271 * | event_logged | sequence # | error log |
272 * |0 3|4 7|8 error_log_size-1|
273 * +--------------+------------+-----------------------------------+
274 *
275 * event_logged: 0 if event has not been logged to syslog, 1 if it has
276 * sequence #: The unique sequence # for each event. (until it wraps)
277 * error log: The error log from event_scan
278 */
279 int nvram_write_os_partition(struct nvram_os_partition *part, char * buff,
280 int length, unsigned int err_type, unsigned int error_log_cnt)
281 {
282 int rc;
283 loff_t tmp_index;
284 struct err_log_info info;
285
286 if (part->index == -1) {
287 return -ESPIPE;
288 }
289
290 if (length > part->size) {
291 length = part->size;
292 }
293
294 info.error_type = cpu_to_be32(err_type);
295 info.seq_num = cpu_to_be32(error_log_cnt);
296
297 tmp_index = part->index;
298
299 rc = ppc_md.nvram_write((char *)&info, sizeof(struct err_log_info), &tmp_index);
300 if (rc <= 0) {
301 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
302 return rc;
303 }
304
305 rc = ppc_md.nvram_write(buff, length, &tmp_index);
306 if (rc <= 0) {
307 pr_err("%s: Failed nvram_write (%d)\n", __func__, rc);
308 return rc;
309 }
310
311 return 0;
312 }
313
314 int nvram_write_error_log(char * buff, int length,
315 unsigned int err_type, unsigned int error_log_cnt)
316 {
317 int rc = nvram_write_os_partition(&rtas_log_partition, buff, length,
318 err_type, error_log_cnt);
319 if (!rc) {
320 last_unread_rtas_event = get_seconds();
321 #ifdef CONFIG_PSTORE
322 last_rtas_event = get_seconds();
323 #endif
324 }
325
326 return rc;
327 }
328
329 /* nvram_read_partition
330 *
331 * Reads nvram partition for at most 'length'
332 */
333 int nvram_read_partition(struct nvram_os_partition *part, char *buff,
334 int length, unsigned int *err_type,
335 unsigned int *error_log_cnt)
336 {
337 int rc;
338 loff_t tmp_index;
339 struct err_log_info info;
340
341 if (part->index == -1)
342 return -1;
343
344 if (length > part->size)
345 length = part->size;
346
347 tmp_index = part->index;
348
349 if (part->os_partition) {
350 rc = ppc_md.nvram_read((char *)&info,
351 sizeof(struct err_log_info),
352 &tmp_index);
353 if (rc <= 0) {
354 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
355 return rc;
356 }
357 }
358
359 rc = ppc_md.nvram_read(buff, length, &tmp_index);
360 if (rc <= 0) {
361 pr_err("%s: Failed nvram_read (%d)\n", __func__, rc);
362 return rc;
363 }
364
365 if (part->os_partition) {
366 *error_log_cnt = be32_to_cpu(info.seq_num);
367 *err_type = be32_to_cpu(info.error_type);
368 }
369
370 return 0;
371 }
372
373 /* nvram_read_error_log
374 *
375 * Reads nvram for error log for at most 'length'
376 */
377 int nvram_read_error_log(char *buff, int length,
378 unsigned int *err_type, unsigned int *error_log_cnt)
379 {
380 return nvram_read_partition(&rtas_log_partition, buff, length,
381 err_type, error_log_cnt);
382 }
383
384 /* This doesn't actually zero anything, but it sets the event_logged
385 * word to tell that this event is safely in syslog.
386 */
387 int nvram_clear_error_log(void)
388 {
389 loff_t tmp_index;
390 int clear_word = ERR_FLAG_ALREADY_LOGGED;
391 int rc;
392
393 if (rtas_log_partition.index == -1)
394 return -1;
395
396 tmp_index = rtas_log_partition.index;
397
398 rc = ppc_md.nvram_write((char *)&clear_word, sizeof(int), &tmp_index);
399 if (rc <= 0) {
400 printk(KERN_ERR "nvram_clear_error_log: Failed nvram_write (%d)\n", rc);
401 return rc;
402 }
403 last_unread_rtas_event = 0;
404
405 return 0;
406 }
407
408 /* pseries_nvram_init_os_partition
409 *
410 * This sets up a partition with an "OS" signature.
411 *
412 * The general strategy is the following:
413 * 1.) If a partition with the indicated name already exists...
414 * - If it's large enough, use it.
415 * - Otherwise, recycle it and keep going.
416 * 2.) Search for a free partition that is large enough.
417 * 3.) If there's not a free partition large enough, recycle any obsolete
418 * OS partitions and try again.
419 * 4.) Will first try getting a chunk that will satisfy the requested size.
420 * 5.) If a chunk of the requested size cannot be allocated, then try finding
421 * a chunk that will satisfy the minum needed.
422 *
423 * Returns 0 on success, else -1.
424 */
425 static int __init pseries_nvram_init_os_partition(struct nvram_os_partition
426 *part)
427 {
428 loff_t p;
429 int size;
430
431 /* Look for ours */
432 p = nvram_find_partition(part->name, NVRAM_SIG_OS, &size);
433
434 /* Found one but too small, remove it */
435 if (p && size < part->min_size) {
436 pr_info("nvram: Found too small %s partition,"
437 " removing it...\n", part->name);
438 nvram_remove_partition(part->name, NVRAM_SIG_OS, NULL);
439 p = 0;
440 }
441
442 /* Create one if we didn't find */
443 if (!p) {
444 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
445 part->req_size, part->min_size);
446 if (p == -ENOSPC) {
447 pr_info("nvram: No room to create %s partition, "
448 "deleting any obsolete OS partitions...\n",
449 part->name);
450 nvram_remove_partition(NULL, NVRAM_SIG_OS,
451 pseries_nvram_os_partitions);
452 p = nvram_create_partition(part->name, NVRAM_SIG_OS,
453 part->req_size, part->min_size);
454 }
455 }
456
457 if (p <= 0) {
458 pr_err("nvram: Failed to find or create %s"
459 " partition, err %d\n", part->name, (int)p);
460 return -1;
461 }
462
463 part->index = p;
464 part->size = nvram_get_partition_size(p) - sizeof(struct err_log_info);
465
466 return 0;
467 }
468
469 /*
470 * Are we using the ibm,rtas-log for oops/panic reports? And if so,
471 * would logging this oops/panic overwrite an RTAS event that rtas_errd
472 * hasn't had a chance to read and process? Return 1 if so, else 0.
473 *
474 * We assume that if rtas_errd hasn't read the RTAS event in
475 * NVRAM_RTAS_READ_TIMEOUT seconds, it's probably not going to.
476 */
477 static int clobbering_unread_rtas_event(void)
478 {
479 return (oops_log_partition.index == rtas_log_partition.index
480 && last_unread_rtas_event
481 && get_seconds() - last_unread_rtas_event <=
482 NVRAM_RTAS_READ_TIMEOUT);
483 }
484
485 /* Derived from logfs_compress() */
486 static int nvram_compress(const void *in, void *out, size_t inlen,
487 size_t outlen)
488 {
489 int err, ret;
490
491 ret = -EIO;
492 err = zlib_deflateInit2(&stream, COMPR_LEVEL, Z_DEFLATED, WINDOW_BITS,
493 MEM_LEVEL, Z_DEFAULT_STRATEGY);
494 if (err != Z_OK)
495 goto error;
496
497 stream.next_in = in;
498 stream.avail_in = inlen;
499 stream.total_in = 0;
500 stream.next_out = out;
501 stream.avail_out = outlen;
502 stream.total_out = 0;
503
504 err = zlib_deflate(&stream, Z_FINISH);
505 if (err != Z_STREAM_END)
506 goto error;
507
508 err = zlib_deflateEnd(&stream);
509 if (err != Z_OK)
510 goto error;
511
512 if (stream.total_out >= stream.total_in)
513 goto error;
514
515 ret = stream.total_out;
516 error:
517 return ret;
518 }
519
520 /* Compress the text from big_oops_buf into oops_buf. */
521 static int zip_oops(size_t text_len)
522 {
523 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
524 int zipped_len = nvram_compress(big_oops_buf, oops_data, text_len,
525 oops_data_sz);
526 if (zipped_len < 0) {
527 pr_err("nvram: compression failed; returned %d\n", zipped_len);
528 pr_err("nvram: logging uncompressed oops/panic report\n");
529 return -1;
530 }
531 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
532 oops_hdr->report_length = cpu_to_be16(zipped_len);
533 oops_hdr->timestamp = cpu_to_be64(get_seconds());
534 return 0;
535 }
536
537 #ifdef CONFIG_PSTORE
538 static int nvram_pstore_open(struct pstore_info *psi)
539 {
540 /* Reset the iterator to start reading partitions again */
541 read_type = -1;
542 return 0;
543 }
544
545 /**
546 * nvram_pstore_write - pstore write callback for nvram
547 * @type: Type of message logged
548 * @reason: reason behind dump (oops/panic)
549 * @id: identifier to indicate the write performed
550 * @part: pstore writes data to registered buffer in parts,
551 * part number will indicate the same.
552 * @count: Indicates oops count
553 * @compressed: Flag to indicate the log is compressed
554 * @size: number of bytes written to the registered buffer
555 * @psi: registered pstore_info structure
556 *
557 * Called by pstore_dump() when an oops or panic report is logged in the
558 * printk buffer.
559 * Returns 0 on successful write.
560 */
561 static int nvram_pstore_write(enum pstore_type_id type,
562 enum kmsg_dump_reason reason,
563 u64 *id, unsigned int part, int count,
564 bool compressed, size_t size,
565 struct pstore_info *psi)
566 {
567 int rc;
568 unsigned int err_type = ERR_TYPE_KERNEL_PANIC;
569 struct oops_log_info *oops_hdr = (struct oops_log_info *) oops_buf;
570
571 /* part 1 has the recent messages from printk buffer */
572 if (part > 1 || type != PSTORE_TYPE_DMESG ||
573 clobbering_unread_rtas_event())
574 return -1;
575
576 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
577 oops_hdr->report_length = cpu_to_be16(size);
578 oops_hdr->timestamp = cpu_to_be64(get_seconds());
579
580 if (compressed)
581 err_type = ERR_TYPE_KERNEL_PANIC_GZ;
582
583 rc = nvram_write_os_partition(&oops_log_partition, oops_buf,
584 (int) (sizeof(*oops_hdr) + size), err_type, count);
585
586 if (rc != 0)
587 return rc;
588
589 *id = part;
590 return 0;
591 }
592
593 /*
594 * Reads the oops/panic report, rtas, of-config and common partition.
595 * Returns the length of the data we read from each partition.
596 * Returns 0 if we've been called before.
597 */
598 static ssize_t nvram_pstore_read(u64 *id, enum pstore_type_id *type,
599 int *count, struct timespec *time, char **buf,
600 bool *compressed, struct pstore_info *psi)
601 {
602 struct oops_log_info *oops_hdr;
603 unsigned int err_type, id_no, size = 0;
604 struct nvram_os_partition *part = NULL;
605 char *buff = NULL;
606 int sig = 0;
607 loff_t p;
608
609 read_type++;
610
611 switch (nvram_type_ids[read_type]) {
612 case PSTORE_TYPE_DMESG:
613 part = &oops_log_partition;
614 *type = PSTORE_TYPE_DMESG;
615 break;
616 case PSTORE_TYPE_PPC_RTAS:
617 part = &rtas_log_partition;
618 *type = PSTORE_TYPE_PPC_RTAS;
619 time->tv_sec = last_rtas_event;
620 time->tv_nsec = 0;
621 break;
622 case PSTORE_TYPE_PPC_OF:
623 sig = NVRAM_SIG_OF;
624 part = &of_config_partition;
625 *type = PSTORE_TYPE_PPC_OF;
626 *id = PSTORE_TYPE_PPC_OF;
627 time->tv_sec = 0;
628 time->tv_nsec = 0;
629 break;
630 case PSTORE_TYPE_PPC_COMMON:
631 sig = NVRAM_SIG_SYS;
632 part = &common_partition;
633 *type = PSTORE_TYPE_PPC_COMMON;
634 *id = PSTORE_TYPE_PPC_COMMON;
635 time->tv_sec = 0;
636 time->tv_nsec = 0;
637 break;
638 default:
639 return 0;
640 }
641
642 if (!part->os_partition) {
643 p = nvram_find_partition(part->name, sig, &size);
644 if (p <= 0) {
645 pr_err("nvram: Failed to find partition %s, "
646 "err %d\n", part->name, (int)p);
647 return 0;
648 }
649 part->index = p;
650 part->size = size;
651 }
652
653 buff = kmalloc(part->size, GFP_KERNEL);
654
655 if (!buff)
656 return -ENOMEM;
657
658 if (nvram_read_partition(part, buff, part->size, &err_type, &id_no)) {
659 kfree(buff);
660 return 0;
661 }
662
663 *count = 0;
664
665 if (part->os_partition)
666 *id = id_no;
667
668 if (nvram_type_ids[read_type] == PSTORE_TYPE_DMESG) {
669 size_t length, hdr_size;
670
671 oops_hdr = (struct oops_log_info *)buff;
672 if (be16_to_cpu(oops_hdr->version) < OOPS_HDR_VERSION) {
673 /* Old format oops header had 2-byte record size */
674 hdr_size = sizeof(u16);
675 length = be16_to_cpu(oops_hdr->version);
676 time->tv_sec = 0;
677 time->tv_nsec = 0;
678 } else {
679 hdr_size = sizeof(*oops_hdr);
680 length = be16_to_cpu(oops_hdr->report_length);
681 time->tv_sec = be64_to_cpu(oops_hdr->timestamp);
682 time->tv_nsec = 0;
683 }
684 *buf = kmalloc(length, GFP_KERNEL);
685 if (*buf == NULL)
686 return -ENOMEM;
687 memcpy(*buf, buff + hdr_size, length);
688 kfree(buff);
689
690 if (err_type == ERR_TYPE_KERNEL_PANIC_GZ)
691 *compressed = true;
692 else
693 *compressed = false;
694 return length;
695 }
696
697 *buf = buff;
698 return part->size;
699 }
700
701 static struct pstore_info nvram_pstore_info = {
702 .owner = THIS_MODULE,
703 .name = "nvram",
704 .open = nvram_pstore_open,
705 .read = nvram_pstore_read,
706 .write = nvram_pstore_write,
707 };
708
709 static int nvram_pstore_init(void)
710 {
711 int rc = 0;
712
713 nvram_pstore_info.buf = oops_data;
714 nvram_pstore_info.bufsize = oops_data_sz;
715
716 rc = pstore_register(&nvram_pstore_info);
717 if (rc != 0)
718 pr_err("nvram: pstore_register() failed, defaults to "
719 "kmsg_dump; returned %d\n", rc);
720
721 return rc;
722 }
723 #else
724 static int nvram_pstore_init(void)
725 {
726 return -1;
727 }
728 #endif
729
730 static void __init nvram_init_oops_partition(int rtas_partition_exists)
731 {
732 int rc;
733
734 rc = pseries_nvram_init_os_partition(&oops_log_partition);
735 if (rc != 0) {
736 if (!rtas_partition_exists)
737 return;
738 pr_notice("nvram: Using %s partition to log both"
739 " RTAS errors and oops/panic reports\n",
740 rtas_log_partition.name);
741 memcpy(&oops_log_partition, &rtas_log_partition,
742 sizeof(rtas_log_partition));
743 }
744 oops_buf = kmalloc(oops_log_partition.size, GFP_KERNEL);
745 if (!oops_buf) {
746 pr_err("nvram: No memory for %s partition\n",
747 oops_log_partition.name);
748 return;
749 }
750 oops_data = oops_buf + sizeof(struct oops_log_info);
751 oops_data_sz = oops_log_partition.size - sizeof(struct oops_log_info);
752
753 rc = nvram_pstore_init();
754
755 if (!rc)
756 return;
757
758 /*
759 * Figure compression (preceded by elimination of each line's <n>
760 * severity prefix) will reduce the oops/panic report to at most
761 * 45% of its original size.
762 */
763 big_oops_buf_sz = (oops_data_sz * 100) / 45;
764 big_oops_buf = kmalloc(big_oops_buf_sz, GFP_KERNEL);
765 if (big_oops_buf) {
766 stream.workspace = kmalloc(zlib_deflate_workspacesize(
767 WINDOW_BITS, MEM_LEVEL), GFP_KERNEL);
768 if (!stream.workspace) {
769 pr_err("nvram: No memory for compression workspace; "
770 "skipping compression of %s partition data\n",
771 oops_log_partition.name);
772 kfree(big_oops_buf);
773 big_oops_buf = NULL;
774 }
775 } else {
776 pr_err("No memory for uncompressed %s data; "
777 "skipping compression\n", oops_log_partition.name);
778 stream.workspace = NULL;
779 }
780
781 rc = kmsg_dump_register(&nvram_kmsg_dumper);
782 if (rc != 0) {
783 pr_err("nvram: kmsg_dump_register() failed; returned %d\n", rc);
784 kfree(oops_buf);
785 kfree(big_oops_buf);
786 kfree(stream.workspace);
787 }
788 }
789
790 static int __init pseries_nvram_init_log_partitions(void)
791 {
792 int rc;
793
794 /* Scan nvram for partitions */
795 nvram_scan_partitions();
796
797 rc = pseries_nvram_init_os_partition(&rtas_log_partition);
798 nvram_init_oops_partition(rc == 0);
799 return 0;
800 }
801 machine_arch_initcall(pseries, pseries_nvram_init_log_partitions);
802
803 int __init pSeries_nvram_init(void)
804 {
805 struct device_node *nvram;
806 const __be32 *nbytes_p;
807 unsigned int proplen;
808
809 nvram = of_find_node_by_type(NULL, "nvram");
810 if (nvram == NULL)
811 return -ENODEV;
812
813 nbytes_p = of_get_property(nvram, "#bytes", &proplen);
814 if (nbytes_p == NULL || proplen != sizeof(unsigned int)) {
815 of_node_put(nvram);
816 return -EIO;
817 }
818
819 nvram_size = be32_to_cpup(nbytes_p);
820
821 nvram_fetch = rtas_token("nvram-fetch");
822 nvram_store = rtas_token("nvram-store");
823 printk(KERN_INFO "PPC64 nvram contains %d bytes\n", nvram_size);
824 of_node_put(nvram);
825
826 ppc_md.nvram_read = pSeries_nvram_read;
827 ppc_md.nvram_write = pSeries_nvram_write;
828 ppc_md.nvram_size = pSeries_nvram_get_size;
829
830 return 0;
831 }
832
833
834 /*
835 * This is our kmsg_dump callback, called after an oops or panic report
836 * has been written to the printk buffer. We want to capture as much
837 * of the printk buffer as possible. First, capture as much as we can
838 * that we think will compress sufficiently to fit in the lnx,oops-log
839 * partition. If that's too much, go back and capture uncompressed text.
840 */
841 static void oops_to_nvram(struct kmsg_dumper *dumper,
842 enum kmsg_dump_reason reason)
843 {
844 struct oops_log_info *oops_hdr = (struct oops_log_info *)oops_buf;
845 static unsigned int oops_count = 0;
846 static bool panicking = false;
847 static DEFINE_SPINLOCK(lock);
848 unsigned long flags;
849 size_t text_len;
850 unsigned int err_type = ERR_TYPE_KERNEL_PANIC_GZ;
851 int rc = -1;
852
853 switch (reason) {
854 case KMSG_DUMP_RESTART:
855 case KMSG_DUMP_HALT:
856 case KMSG_DUMP_POWEROFF:
857 /* These are almost always orderly shutdowns. */
858 return;
859 case KMSG_DUMP_OOPS:
860 break;
861 case KMSG_DUMP_PANIC:
862 panicking = true;
863 break;
864 case KMSG_DUMP_EMERG:
865 if (panicking)
866 /* Panic report already captured. */
867 return;
868 break;
869 default:
870 pr_err("%s: ignoring unrecognized KMSG_DUMP_* reason %d\n",
871 __func__, (int) reason);
872 return;
873 }
874
875 if (clobbering_unread_rtas_event())
876 return;
877
878 if (!spin_trylock_irqsave(&lock, flags))
879 return;
880
881 if (big_oops_buf) {
882 kmsg_dump_get_buffer(dumper, false,
883 big_oops_buf, big_oops_buf_sz, &text_len);
884 rc = zip_oops(text_len);
885 }
886 if (rc != 0) {
887 kmsg_dump_rewind(dumper);
888 kmsg_dump_get_buffer(dumper, false,
889 oops_data, oops_data_sz, &text_len);
890 err_type = ERR_TYPE_KERNEL_PANIC;
891 oops_hdr->version = cpu_to_be16(OOPS_HDR_VERSION);
892 oops_hdr->report_length = cpu_to_be16(text_len);
893 oops_hdr->timestamp = cpu_to_be64(get_seconds());
894 }
895
896 (void) nvram_write_os_partition(&oops_log_partition, oops_buf,
897 (int) (sizeof(*oops_hdr) + text_len), err_type,
898 ++oops_count);
899
900 spin_unlock_irqrestore(&lock, flags);
901 }