]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/platforms/pseries/ras.c
KVM: PPC: Book3S HV: Use the hardware referenced bit for kvm_age_hva
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / platforms / pseries / ras.c
1 /*
2 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 /* Change Activity:
20 * 2001/09/21 : engebret : Created with minimal EPOW and HW exception support.
21 * End Change Activity
22 */
23
24 #include <linux/errno.h>
25 #include <linux/threads.h>
26 #include <linux/kernel_stat.h>
27 #include <linux/signal.h>
28 #include <linux/sched.h>
29 #include <linux/ioport.h>
30 #include <linux/interrupt.h>
31 #include <linux/timex.h>
32 #include <linux/init.h>
33 #include <linux/delay.h>
34 #include <linux/irq.h>
35 #include <linux/random.h>
36 #include <linux/sysrq.h>
37 #include <linux/bitops.h>
38
39 #include <asm/uaccess.h>
40 #include <asm/system.h>
41 #include <asm/io.h>
42 #include <asm/pgtable.h>
43 #include <asm/irq.h>
44 #include <asm/cache.h>
45 #include <asm/prom.h>
46 #include <asm/ptrace.h>
47 #include <asm/machdep.h>
48 #include <asm/rtas.h>
49 #include <asm/udbg.h>
50 #include <asm/firmware.h>
51
52 #include "pseries.h"
53
54 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
55 static DEFINE_SPINLOCK(ras_log_buf_lock);
56
57 static char global_mce_data_buf[RTAS_ERROR_LOG_MAX];
58 static DEFINE_PER_CPU(__u64, mce_data_buf);
59
60 static int ras_get_sensor_state_token;
61 static int ras_check_exception_token;
62
63 #define EPOW_SENSOR_TOKEN 9
64 #define EPOW_SENSOR_INDEX 0
65
66 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
67 static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
68
69
70 /*
71 * Initialize handlers for the set of interrupts caused by hardware errors
72 * and power system events.
73 */
74 static int __init init_ras_IRQ(void)
75 {
76 struct device_node *np;
77
78 ras_get_sensor_state_token = rtas_token("get-sensor-state");
79 ras_check_exception_token = rtas_token("check-exception");
80
81 /* Internal Errors */
82 np = of_find_node_by_path("/event-sources/internal-errors");
83 if (np != NULL) {
84 request_event_sources_irqs(np, ras_error_interrupt,
85 "RAS_ERROR");
86 of_node_put(np);
87 }
88
89 /* EPOW Events */
90 np = of_find_node_by_path("/event-sources/epow-events");
91 if (np != NULL) {
92 request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
93 of_node_put(np);
94 }
95
96 return 0;
97 }
98 __initcall(init_ras_IRQ);
99
100 /*
101 * Handle power subsystem events (EPOW).
102 *
103 * Presently we just log the event has occurred. This should be fixed
104 * to examine the type of power failure and take appropriate action where
105 * the time horizon permits something useful to be done.
106 */
107 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
108 {
109 int status = 0xdeadbeef;
110 int state = 0;
111 int critical;
112
113 status = rtas_call(ras_get_sensor_state_token, 2, 2, &state,
114 EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX);
115
116 if (state > 3)
117 critical = 1; /* Time Critical */
118 else
119 critical = 0;
120
121 spin_lock(&ras_log_buf_lock);
122
123 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
124 RTAS_VECTOR_EXTERNAL_INTERRUPT,
125 virq_to_hw(irq),
126 RTAS_EPOW_WARNING | RTAS_POWERMGM_EVENTS,
127 critical, __pa(&ras_log_buf),
128 rtas_get_error_log_max());
129
130 udbg_printf("EPOW <0x%lx 0x%x 0x%x>\n",
131 *((unsigned long *)&ras_log_buf), status, state);
132 printk(KERN_WARNING "EPOW <0x%lx 0x%x 0x%x>\n",
133 *((unsigned long *)&ras_log_buf), status, state);
134
135 /* format and print the extended information */
136 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
137
138 spin_unlock(&ras_log_buf_lock);
139 return IRQ_HANDLED;
140 }
141
142 /*
143 * Handle hardware error interrupts.
144 *
145 * RTAS check-exception is called to collect data on the exception. If
146 * the error is deemed recoverable, we log a warning and return.
147 * For nonrecoverable errors, an error is logged and we stop all processing
148 * as quickly as possible in order to prevent propagation of the failure.
149 */
150 static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
151 {
152 struct rtas_error_log *rtas_elog;
153 int status = 0xdeadbeef;
154 int fatal;
155
156 spin_lock(&ras_log_buf_lock);
157
158 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
159 RTAS_VECTOR_EXTERNAL_INTERRUPT,
160 virq_to_hw(irq),
161 RTAS_INTERNAL_ERROR, 1 /*Time Critical */,
162 __pa(&ras_log_buf),
163 rtas_get_error_log_max());
164
165 rtas_elog = (struct rtas_error_log *)ras_log_buf;
166
167 if ((status == 0) && (rtas_elog->severity >= RTAS_SEVERITY_ERROR_SYNC))
168 fatal = 1;
169 else
170 fatal = 0;
171
172 /* format and print the extended information */
173 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
174
175 if (fatal) {
176 udbg_printf("Fatal HW Error <0x%lx 0x%x>\n",
177 *((unsigned long *)&ras_log_buf), status);
178 printk(KERN_EMERG "Error: Fatal hardware error <0x%lx 0x%x>\n",
179 *((unsigned long *)&ras_log_buf), status);
180
181 #ifndef DEBUG_RTAS_POWER_OFF
182 /* Don't actually power off when debugging so we can test
183 * without actually failing while injecting errors.
184 * Error data will not be logged to syslog.
185 */
186 ppc_md.power_off();
187 #endif
188 } else {
189 udbg_printf("Recoverable HW Error <0x%lx 0x%x>\n",
190 *((unsigned long *)&ras_log_buf), status);
191 printk(KERN_WARNING
192 "Warning: Recoverable hardware error <0x%lx 0x%x>\n",
193 *((unsigned long *)&ras_log_buf), status);
194 }
195
196 spin_unlock(&ras_log_buf_lock);
197 return IRQ_HANDLED;
198 }
199
200 /*
201 * Some versions of FWNMI place the buffer inside the 4kB page starting at
202 * 0x7000. Other versions place it inside the rtas buffer. We check both.
203 */
204 #define VALID_FWNMI_BUFFER(A) \
205 ((((A) >= 0x7000) && ((A) < 0x7ff0)) || \
206 (((A) >= rtas.base) && ((A) < (rtas.base + rtas.size - 16))))
207
208 /*
209 * Get the error information for errors coming through the
210 * FWNMI vectors. The pt_regs' r3 will be updated to reflect
211 * the actual r3 if possible, and a ptr to the error log entry
212 * will be returned if found.
213 *
214 * If the RTAS error is not of the extended type, then we put it in a per
215 * cpu 64bit buffer. If it is the extended type we use global_mce_data_buf.
216 *
217 * The global_mce_data_buf does not have any locks or protection around it,
218 * if a second machine check comes in, or a system reset is done
219 * before we have logged the error, then we will get corruption in the
220 * error log. This is preferable over holding off on calling
221 * ibm,nmi-interlock which would result in us checkstopping if a
222 * second machine check did come in.
223 */
224 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
225 {
226 unsigned long *savep;
227 struct rtas_error_log *h, *errhdr = NULL;
228
229 if (!VALID_FWNMI_BUFFER(regs->gpr[3])) {
230 printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
231 return NULL;
232 }
233
234 savep = __va(regs->gpr[3]);
235 regs->gpr[3] = savep[0]; /* restore original r3 */
236
237 /* If it isn't an extended log we can use the per cpu 64bit buffer */
238 h = (struct rtas_error_log *)&savep[1];
239 if (!h->extended) {
240 memcpy(&__get_cpu_var(mce_data_buf), h, sizeof(__u64));
241 errhdr = (struct rtas_error_log *)&__get_cpu_var(mce_data_buf);
242 } else {
243 int len;
244
245 len = max_t(int, 8+h->extended_log_length, RTAS_ERROR_LOG_MAX);
246 memset(global_mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
247 memcpy(global_mce_data_buf, h, len);
248 errhdr = (struct rtas_error_log *)global_mce_data_buf;
249 }
250
251 return errhdr;
252 }
253
254 /* Call this when done with the data returned by FWNMI_get_errinfo.
255 * It will release the saved data area for other CPUs in the
256 * partition to receive FWNMI errors.
257 */
258 static void fwnmi_release_errinfo(void)
259 {
260 int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
261 if (ret != 0)
262 printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
263 }
264
265 int pSeries_system_reset_exception(struct pt_regs *regs)
266 {
267 if (fwnmi_active) {
268 struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
269 if (errhdr) {
270 /* XXX Should look at FWNMI information */
271 }
272 fwnmi_release_errinfo();
273 }
274 return 0; /* need to perform reset */
275 }
276
277 /*
278 * See if we can recover from a machine check exception.
279 * This is only called on power4 (or above) and only via
280 * the Firmware Non-Maskable Interrupts (fwnmi) handler
281 * which provides the error analysis for us.
282 *
283 * Return 1 if corrected (or delivered a signal).
284 * Return 0 if there is nothing we can do.
285 */
286 static int recover_mce(struct pt_regs *regs, struct rtas_error_log *err)
287 {
288 int recovered = 0;
289
290 if (!(regs->msr & MSR_RI)) {
291 /* If MSR_RI isn't set, we cannot recover */
292 recovered = 0;
293
294 } else if (err->disposition == RTAS_DISP_FULLY_RECOVERED) {
295 /* Platform corrected itself */
296 recovered = 1;
297
298 } else if (err->disposition == RTAS_DISP_LIMITED_RECOVERY) {
299 /* Platform corrected itself but could be degraded */
300 printk(KERN_ERR "MCE: limited recovery, system may "
301 "be degraded\n");
302 recovered = 1;
303
304 } else if (user_mode(regs) && !is_global_init(current) &&
305 err->severity == RTAS_SEVERITY_ERROR_SYNC) {
306
307 /*
308 * If we received a synchronous error when in userspace
309 * kill the task. Firmware may report details of the fail
310 * asynchronously, so we can't rely on the target and type
311 * fields being valid here.
312 */
313 printk(KERN_ERR "MCE: uncorrectable error, killing task "
314 "%s:%d\n", current->comm, current->pid);
315
316 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
317 recovered = 1;
318 }
319
320 log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
321
322 return recovered;
323 }
324
325 /*
326 * Handle a machine check.
327 *
328 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
329 * should be present. If so the handler which called us tells us if the
330 * error was recovered (never true if RI=0).
331 *
332 * On hardware prior to Power 4 these exceptions were asynchronous which
333 * means we can't tell exactly where it occurred and so we can't recover.
334 */
335 int pSeries_machine_check_exception(struct pt_regs *regs)
336 {
337 struct rtas_error_log *errp;
338
339 if (fwnmi_active) {
340 errp = fwnmi_get_errinfo(regs);
341 fwnmi_release_errinfo();
342 if (errp && recover_mce(regs, errp))
343 return 1;
344 }
345
346 return 0;
347 }