]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/powerpc/platforms/pseries/ras.c
treewide: Replace GPLv2 boilerplate/reference with SPDX - rule 156
[mirror_ubuntu-jammy-kernel.git] / arch / powerpc / platforms / pseries / ras.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
4 */
5
6 #include <linux/sched.h>
7 #include <linux/interrupt.h>
8 #include <linux/irq.h>
9 #include <linux/of.h>
10 #include <linux/fs.h>
11 #include <linux/reboot.h>
12 #include <linux/irq_work.h>
13
14 #include <asm/machdep.h>
15 #include <asm/rtas.h>
16 #include <asm/firmware.h>
17 #include <asm/mce.h>
18
19 #include "pseries.h"
20
21 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
22 static DEFINE_SPINLOCK(ras_log_buf_lock);
23
24 static int ras_check_exception_token;
25
26 static void mce_process_errlog_event(struct irq_work *work);
27 static struct irq_work mce_errlog_process_work = {
28 .func = mce_process_errlog_event,
29 };
30
31 #define EPOW_SENSOR_TOKEN 9
32 #define EPOW_SENSOR_INDEX 0
33
34 /* EPOW events counter variable */
35 static int num_epow_events;
36
37 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id);
38 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
39 static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
40
41 /* RTAS pseries MCE errorlog section. */
42 struct pseries_mc_errorlog {
43 __be32 fru_id;
44 __be32 proc_id;
45 u8 error_type;
46 /*
47 * sub_err_type (1 byte). Bit fields depends on error_type
48 *
49 * MSB0
50 * |
51 * V
52 * 01234567
53 * XXXXXXXX
54 *
55 * For error_type == MC_ERROR_TYPE_UE
56 * XXXXXXXX
57 * X 1: Permanent or Transient UE.
58 * X 1: Effective address provided.
59 * X 1: Logical address provided.
60 * XX 2: Reserved.
61 * XXX 3: Type of UE error.
62 *
63 * For error_type != MC_ERROR_TYPE_UE
64 * XXXXXXXX
65 * X 1: Effective address provided.
66 * XXXXX 5: Reserved.
67 * XX 2: Type of SLB/ERAT/TLB error.
68 */
69 u8 sub_err_type;
70 u8 reserved_1[6];
71 __be64 effective_address;
72 __be64 logical_address;
73 } __packed;
74
75 /* RTAS pseries MCE error types */
76 #define MC_ERROR_TYPE_UE 0x00
77 #define MC_ERROR_TYPE_SLB 0x01
78 #define MC_ERROR_TYPE_ERAT 0x02
79 #define MC_ERROR_TYPE_TLB 0x04
80 #define MC_ERROR_TYPE_D_CACHE 0x05
81 #define MC_ERROR_TYPE_I_CACHE 0x07
82
83 /* RTAS pseries MCE error sub types */
84 #define MC_ERROR_UE_INDETERMINATE 0
85 #define MC_ERROR_UE_IFETCH 1
86 #define MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH 2
87 #define MC_ERROR_UE_LOAD_STORE 3
88 #define MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE 4
89
90 #define MC_ERROR_SLB_PARITY 0
91 #define MC_ERROR_SLB_MULTIHIT 1
92 #define MC_ERROR_SLB_INDETERMINATE 2
93
94 #define MC_ERROR_ERAT_PARITY 1
95 #define MC_ERROR_ERAT_MULTIHIT 2
96 #define MC_ERROR_ERAT_INDETERMINATE 3
97
98 #define MC_ERROR_TLB_PARITY 1
99 #define MC_ERROR_TLB_MULTIHIT 2
100 #define MC_ERROR_TLB_INDETERMINATE 3
101
102 static inline u8 rtas_mc_error_sub_type(const struct pseries_mc_errorlog *mlog)
103 {
104 switch (mlog->error_type) {
105 case MC_ERROR_TYPE_UE:
106 return (mlog->sub_err_type & 0x07);
107 case MC_ERROR_TYPE_SLB:
108 case MC_ERROR_TYPE_ERAT:
109 case MC_ERROR_TYPE_TLB:
110 return (mlog->sub_err_type & 0x03);
111 default:
112 return 0;
113 }
114 }
115
116 static
117 inline u64 rtas_mc_get_effective_addr(const struct pseries_mc_errorlog *mlog)
118 {
119 __be64 addr = 0;
120
121 switch (mlog->error_type) {
122 case MC_ERROR_TYPE_UE:
123 if (mlog->sub_err_type & 0x40)
124 addr = mlog->effective_address;
125 break;
126 case MC_ERROR_TYPE_SLB:
127 case MC_ERROR_TYPE_ERAT:
128 case MC_ERROR_TYPE_TLB:
129 if (mlog->sub_err_type & 0x80)
130 addr = mlog->effective_address;
131 default:
132 break;
133 }
134 return be64_to_cpu(addr);
135 }
136
137 /*
138 * Enable the hotplug interrupt late because processing them may touch other
139 * devices or systems (e.g. hugepages) that have not been initialized at the
140 * subsys stage.
141 */
142 int __init init_ras_hotplug_IRQ(void)
143 {
144 struct device_node *np;
145
146 /* Hotplug Events */
147 np = of_find_node_by_path("/event-sources/hot-plug-events");
148 if (np != NULL) {
149 if (dlpar_workqueue_init() == 0)
150 request_event_sources_irqs(np, ras_hotplug_interrupt,
151 "RAS_HOTPLUG");
152 of_node_put(np);
153 }
154
155 return 0;
156 }
157 machine_late_initcall(pseries, init_ras_hotplug_IRQ);
158
159 /*
160 * Initialize handlers for the set of interrupts caused by hardware errors
161 * and power system events.
162 */
163 static int __init init_ras_IRQ(void)
164 {
165 struct device_node *np;
166
167 ras_check_exception_token = rtas_token("check-exception");
168
169 /* Internal Errors */
170 np = of_find_node_by_path("/event-sources/internal-errors");
171 if (np != NULL) {
172 request_event_sources_irqs(np, ras_error_interrupt,
173 "RAS_ERROR");
174 of_node_put(np);
175 }
176
177 /* EPOW Events */
178 np = of_find_node_by_path("/event-sources/epow-events");
179 if (np != NULL) {
180 request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
181 of_node_put(np);
182 }
183
184 return 0;
185 }
186 machine_subsys_initcall(pseries, init_ras_IRQ);
187
188 #define EPOW_SHUTDOWN_NORMAL 1
189 #define EPOW_SHUTDOWN_ON_UPS 2
190 #define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS 3
191 #define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH 4
192
193 static void handle_system_shutdown(char event_modifier)
194 {
195 switch (event_modifier) {
196 case EPOW_SHUTDOWN_NORMAL:
197 pr_emerg("Power off requested\n");
198 orderly_poweroff(true);
199 break;
200
201 case EPOW_SHUTDOWN_ON_UPS:
202 pr_emerg("Loss of system power detected. System is running on"
203 " UPS/battery. Check RTAS error log for details\n");
204 orderly_poweroff(true);
205 break;
206
207 case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
208 pr_emerg("Loss of system critical functions detected. Check"
209 " RTAS error log for details\n");
210 orderly_poweroff(true);
211 break;
212
213 case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
214 pr_emerg("High ambient temperature detected. Check RTAS"
215 " error log for details\n");
216 orderly_poweroff(true);
217 break;
218
219 default:
220 pr_err("Unknown power/cooling shutdown event (modifier = %d)\n",
221 event_modifier);
222 }
223 }
224
225 struct epow_errorlog {
226 unsigned char sensor_value;
227 unsigned char event_modifier;
228 unsigned char extended_modifier;
229 unsigned char reserved;
230 unsigned char platform_reason;
231 };
232
233 #define EPOW_RESET 0
234 #define EPOW_WARN_COOLING 1
235 #define EPOW_WARN_POWER 2
236 #define EPOW_SYSTEM_SHUTDOWN 3
237 #define EPOW_SYSTEM_HALT 4
238 #define EPOW_MAIN_ENCLOSURE 5
239 #define EPOW_POWER_OFF 7
240
241 static void rtas_parse_epow_errlog(struct rtas_error_log *log)
242 {
243 struct pseries_errorlog *pseries_log;
244 struct epow_errorlog *epow_log;
245 char action_code;
246 char modifier;
247
248 pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
249 if (pseries_log == NULL)
250 return;
251
252 epow_log = (struct epow_errorlog *)pseries_log->data;
253 action_code = epow_log->sensor_value & 0xF; /* bottom 4 bits */
254 modifier = epow_log->event_modifier & 0xF; /* bottom 4 bits */
255
256 switch (action_code) {
257 case EPOW_RESET:
258 if (num_epow_events) {
259 pr_info("Non critical power/cooling issue cleared\n");
260 num_epow_events--;
261 }
262 break;
263
264 case EPOW_WARN_COOLING:
265 pr_info("Non-critical cooling issue detected. Check RTAS error"
266 " log for details\n");
267 break;
268
269 case EPOW_WARN_POWER:
270 pr_info("Non-critical power issue detected. Check RTAS error"
271 " log for details\n");
272 break;
273
274 case EPOW_SYSTEM_SHUTDOWN:
275 handle_system_shutdown(epow_log->event_modifier);
276 break;
277
278 case EPOW_SYSTEM_HALT:
279 pr_emerg("Critical power/cooling issue detected. Check RTAS"
280 " error log for details. Powering off.\n");
281 orderly_poweroff(true);
282 break;
283
284 case EPOW_MAIN_ENCLOSURE:
285 case EPOW_POWER_OFF:
286 pr_emerg("System about to lose power. Check RTAS error log "
287 " for details. Powering off immediately.\n");
288 emergency_sync();
289 kernel_power_off();
290 break;
291
292 default:
293 pr_err("Unknown power/cooling event (action code = %d)\n",
294 action_code);
295 }
296
297 /* Increment epow events counter variable */
298 if (action_code != EPOW_RESET)
299 num_epow_events++;
300 }
301
302 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id)
303 {
304 struct pseries_errorlog *pseries_log;
305 struct pseries_hp_errorlog *hp_elog;
306
307 spin_lock(&ras_log_buf_lock);
308
309 rtas_call(ras_check_exception_token, 6, 1, NULL,
310 RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq),
311 RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf),
312 rtas_get_error_log_max());
313
314 pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf,
315 PSERIES_ELOG_SECT_ID_HOTPLUG);
316 hp_elog = (struct pseries_hp_errorlog *)pseries_log->data;
317
318 /*
319 * Since PCI hotplug is not currently supported on pseries, put PCI
320 * hotplug events on the ras_log_buf to be handled by rtas_errd.
321 */
322 if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM ||
323 hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU ||
324 hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_PMEM)
325 queue_hotplug_event(hp_elog);
326 else
327 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
328
329 spin_unlock(&ras_log_buf_lock);
330 return IRQ_HANDLED;
331 }
332
333 /* Handle environmental and power warning (EPOW) interrupts. */
334 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
335 {
336 int status;
337 int state;
338 int critical;
339
340 status = rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX,
341 &state);
342
343 if (state > 3)
344 critical = 1; /* Time Critical */
345 else
346 critical = 0;
347
348 spin_lock(&ras_log_buf_lock);
349
350 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
351 RTAS_VECTOR_EXTERNAL_INTERRUPT,
352 virq_to_hw(irq),
353 RTAS_EPOW_WARNING,
354 critical, __pa(&ras_log_buf),
355 rtas_get_error_log_max());
356
357 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
358
359 rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
360
361 spin_unlock(&ras_log_buf_lock);
362 return IRQ_HANDLED;
363 }
364
365 /*
366 * Handle hardware error interrupts.
367 *
368 * RTAS check-exception is called to collect data on the exception. If
369 * the error is deemed recoverable, we log a warning and return.
370 * For nonrecoverable errors, an error is logged and we stop all processing
371 * as quickly as possible in order to prevent propagation of the failure.
372 */
373 static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
374 {
375 struct rtas_error_log *rtas_elog;
376 int status;
377 int fatal;
378
379 spin_lock(&ras_log_buf_lock);
380
381 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
382 RTAS_VECTOR_EXTERNAL_INTERRUPT,
383 virq_to_hw(irq),
384 RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
385 __pa(&ras_log_buf),
386 rtas_get_error_log_max());
387
388 rtas_elog = (struct rtas_error_log *)ras_log_buf;
389
390 if (status == 0 &&
391 rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
392 fatal = 1;
393 else
394 fatal = 0;
395
396 /* format and print the extended information */
397 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
398
399 if (fatal) {
400 pr_emerg("Fatal hardware error detected. Check RTAS error"
401 " log for details. Powering off immediately\n");
402 emergency_sync();
403 kernel_power_off();
404 } else {
405 pr_err("Recoverable hardware error detected\n");
406 }
407
408 spin_unlock(&ras_log_buf_lock);
409 return IRQ_HANDLED;
410 }
411
412 /*
413 * Some versions of FWNMI place the buffer inside the 4kB page starting at
414 * 0x7000. Other versions place it inside the rtas buffer. We check both.
415 */
416 #define VALID_FWNMI_BUFFER(A) \
417 ((((A) >= 0x7000) && ((A) < 0x7ff0)) || \
418 (((A) >= rtas.base) && ((A) < (rtas.base + rtas.size - 16))))
419
420 static inline struct rtas_error_log *fwnmi_get_errlog(void)
421 {
422 return (struct rtas_error_log *)local_paca->mce_data_buf;
423 }
424
425 /*
426 * Get the error information for errors coming through the
427 * FWNMI vectors. The pt_regs' r3 will be updated to reflect
428 * the actual r3 if possible, and a ptr to the error log entry
429 * will be returned if found.
430 *
431 * Use one buffer mce_data_buf per cpu to store RTAS error.
432 *
433 * The mce_data_buf does not have any locks or protection around it,
434 * if a second machine check comes in, or a system reset is done
435 * before we have logged the error, then we will get corruption in the
436 * error log. This is preferable over holding off on calling
437 * ibm,nmi-interlock which would result in us checkstopping if a
438 * second machine check did come in.
439 */
440 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
441 {
442 unsigned long *savep;
443 struct rtas_error_log *h;
444
445 /* Mask top two bits */
446 regs->gpr[3] &= ~(0x3UL << 62);
447
448 if (!VALID_FWNMI_BUFFER(regs->gpr[3])) {
449 printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
450 return NULL;
451 }
452
453 savep = __va(regs->gpr[3]);
454 regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
455
456 h = (struct rtas_error_log *)&savep[1];
457 /* Use the per cpu buffer from paca to store rtas error log */
458 memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
459 if (!rtas_error_extended(h)) {
460 memcpy(local_paca->mce_data_buf, h, sizeof(__u64));
461 } else {
462 int len, error_log_length;
463
464 error_log_length = 8 + rtas_error_extended_log_length(h);
465 len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
466 memcpy(local_paca->mce_data_buf, h, len);
467 }
468
469 return (struct rtas_error_log *)local_paca->mce_data_buf;
470 }
471
472 /* Call this when done with the data returned by FWNMI_get_errinfo.
473 * It will release the saved data area for other CPUs in the
474 * partition to receive FWNMI errors.
475 */
476 static void fwnmi_release_errinfo(void)
477 {
478 int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
479 if (ret != 0)
480 printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
481 }
482
483 int pSeries_system_reset_exception(struct pt_regs *regs)
484 {
485 #ifdef __LITTLE_ENDIAN__
486 /*
487 * Some firmware byteswaps SRR registers and gives incorrect SRR1. Try
488 * to detect the bad SRR1 pattern here. Flip the NIP back to correct
489 * endian for reporting purposes. Unfortunately the MSR can't be fixed,
490 * so clear it. It will be missing MSR_RI so we won't try to recover.
491 */
492 if ((be64_to_cpu(regs->msr) &
493 (MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR|
494 MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) {
495 regs->nip = be64_to_cpu((__be64)regs->nip);
496 regs->msr = 0;
497 }
498 #endif
499
500 if (fwnmi_active) {
501 struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
502 if (errhdr) {
503 /* XXX Should look at FWNMI information */
504 }
505 fwnmi_release_errinfo();
506 }
507
508 if (smp_handle_nmi_ipi(regs))
509 return 1;
510
511 return 0; /* need to perform reset */
512 }
513
514 #define VAL_TO_STRING(ar, val) \
515 (((val) < ARRAY_SIZE(ar)) ? ar[(val)] : "Unknown")
516
517 static void pseries_print_mce_info(struct pt_regs *regs,
518 struct rtas_error_log *errp)
519 {
520 const char *level, *sevstr;
521 struct pseries_errorlog *pseries_log;
522 struct pseries_mc_errorlog *mce_log;
523 u8 error_type, err_sub_type;
524 u64 addr;
525 u8 initiator = rtas_error_initiator(errp);
526 int disposition = rtas_error_disposition(errp);
527
528 static const char * const initiators[] = {
529 [0] = "Unknown",
530 [1] = "CPU",
531 [2] = "PCI",
532 [3] = "ISA",
533 [4] = "Memory",
534 [5] = "Power Mgmt",
535 };
536 static const char * const mc_err_types[] = {
537 [0] = "UE",
538 [1] = "SLB",
539 [2] = "ERAT",
540 [3] = "Unknown",
541 [4] = "TLB",
542 [5] = "D-Cache",
543 [6] = "Unknown",
544 [7] = "I-Cache",
545 };
546 static const char * const mc_ue_types[] = {
547 [0] = "Indeterminate",
548 [1] = "Instruction fetch",
549 [2] = "Page table walk ifetch",
550 [3] = "Load/Store",
551 [4] = "Page table walk Load/Store",
552 };
553
554 /* SLB sub errors valid values are 0x0, 0x1, 0x2 */
555 static const char * const mc_slb_types[] = {
556 [0] = "Parity",
557 [1] = "Multihit",
558 [2] = "Indeterminate",
559 };
560
561 /* TLB and ERAT sub errors valid values are 0x1, 0x2, 0x3 */
562 static const char * const mc_soft_types[] = {
563 [0] = "Unknown",
564 [1] = "Parity",
565 [2] = "Multihit",
566 [3] = "Indeterminate",
567 };
568
569 if (!rtas_error_extended(errp)) {
570 pr_err("Machine check interrupt: Missing extended error log\n");
571 return;
572 }
573
574 pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
575 if (pseries_log == NULL)
576 return;
577
578 mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
579
580 error_type = mce_log->error_type;
581 err_sub_type = rtas_mc_error_sub_type(mce_log);
582
583 switch (rtas_error_severity(errp)) {
584 case RTAS_SEVERITY_NO_ERROR:
585 level = KERN_INFO;
586 sevstr = "Harmless";
587 break;
588 case RTAS_SEVERITY_WARNING:
589 level = KERN_WARNING;
590 sevstr = "";
591 break;
592 case RTAS_SEVERITY_ERROR:
593 case RTAS_SEVERITY_ERROR_SYNC:
594 level = KERN_ERR;
595 sevstr = "Severe";
596 break;
597 case RTAS_SEVERITY_FATAL:
598 default:
599 level = KERN_ERR;
600 sevstr = "Fatal";
601 break;
602 }
603
604 #ifdef CONFIG_PPC_BOOK3S_64
605 /* Display faulty slb contents for SLB errors. */
606 if (error_type == MC_ERROR_TYPE_SLB)
607 slb_dump_contents(local_paca->mce_faulty_slbs);
608 #endif
609
610 printk("%s%s Machine check interrupt [%s]\n", level, sevstr,
611 disposition == RTAS_DISP_FULLY_RECOVERED ?
612 "Recovered" : "Not recovered");
613 if (user_mode(regs)) {
614 printk("%s NIP: [%016lx] PID: %d Comm: %s\n", level,
615 regs->nip, current->pid, current->comm);
616 } else {
617 printk("%s NIP [%016lx]: %pS\n", level, regs->nip,
618 (void *)regs->nip);
619 }
620 printk("%s Initiator: %s\n", level,
621 VAL_TO_STRING(initiators, initiator));
622
623 switch (error_type) {
624 case MC_ERROR_TYPE_UE:
625 printk("%s Error type: %s [%s]\n", level,
626 VAL_TO_STRING(mc_err_types, error_type),
627 VAL_TO_STRING(mc_ue_types, err_sub_type));
628 break;
629 case MC_ERROR_TYPE_SLB:
630 printk("%s Error type: %s [%s]\n", level,
631 VAL_TO_STRING(mc_err_types, error_type),
632 VAL_TO_STRING(mc_slb_types, err_sub_type));
633 break;
634 case MC_ERROR_TYPE_ERAT:
635 case MC_ERROR_TYPE_TLB:
636 printk("%s Error type: %s [%s]\n", level,
637 VAL_TO_STRING(mc_err_types, error_type),
638 VAL_TO_STRING(mc_soft_types, err_sub_type));
639 break;
640 default:
641 printk("%s Error type: %s\n", level,
642 VAL_TO_STRING(mc_err_types, error_type));
643 break;
644 }
645
646 addr = rtas_mc_get_effective_addr(mce_log);
647 if (addr)
648 printk("%s Effective address: %016llx\n", level, addr);
649 }
650
651 static int mce_handle_error(struct rtas_error_log *errp)
652 {
653 struct pseries_errorlog *pseries_log;
654 struct pseries_mc_errorlog *mce_log;
655 int disposition = rtas_error_disposition(errp);
656 u8 error_type;
657
658 if (!rtas_error_extended(errp))
659 goto out;
660
661 pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
662 if (pseries_log == NULL)
663 goto out;
664
665 mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
666 error_type = mce_log->error_type;
667
668 #ifdef CONFIG_PPC_BOOK3S_64
669 if (disposition == RTAS_DISP_NOT_RECOVERED) {
670 switch (error_type) {
671 case MC_ERROR_TYPE_SLB:
672 case MC_ERROR_TYPE_ERAT:
673 /*
674 * Store the old slb content in paca before flushing.
675 * Print this when we go to virtual mode.
676 * There are chances that we may hit MCE again if there
677 * is a parity error on the SLB entry we trying to read
678 * for saving. Hence limit the slb saving to single
679 * level of recursion.
680 */
681 if (local_paca->in_mce == 1)
682 slb_save_contents(local_paca->mce_faulty_slbs);
683 flush_and_reload_slb();
684 disposition = RTAS_DISP_FULLY_RECOVERED;
685 rtas_set_disposition_recovered(errp);
686 break;
687 default:
688 break;
689 }
690 }
691 #endif
692
693 out:
694 return disposition;
695 }
696
697 #ifdef CONFIG_MEMORY_FAILURE
698
699 static DEFINE_PER_CPU(int, rtas_ue_count);
700 static DEFINE_PER_CPU(unsigned long, rtas_ue_paddr[MAX_MC_EVT]);
701
702 #define UE_EFFECTIVE_ADDR_PROVIDED 0x40
703 #define UE_LOGICAL_ADDR_PROVIDED 0x20
704
705
706 static void pseries_hwpoison_work_fn(struct work_struct *work)
707 {
708 unsigned long paddr;
709 int index;
710
711 while (__this_cpu_read(rtas_ue_count) > 0) {
712 index = __this_cpu_read(rtas_ue_count) - 1;
713 paddr = __this_cpu_read(rtas_ue_paddr[index]);
714 memory_failure(paddr >> PAGE_SHIFT, 0);
715 __this_cpu_dec(rtas_ue_count);
716 }
717 }
718
719 static DECLARE_WORK(hwpoison_work, pseries_hwpoison_work_fn);
720
721 static void queue_ue_paddr(unsigned long paddr)
722 {
723 int index;
724
725 index = __this_cpu_inc_return(rtas_ue_count) - 1;
726 if (index >= MAX_MC_EVT) {
727 __this_cpu_dec(rtas_ue_count);
728 return;
729 }
730 this_cpu_write(rtas_ue_paddr[index], paddr);
731 schedule_work(&hwpoison_work);
732 }
733
734 static void pseries_do_memory_failure(struct pt_regs *regs,
735 struct pseries_mc_errorlog *mce_log)
736 {
737 unsigned long paddr;
738
739 if (mce_log->sub_err_type & UE_LOGICAL_ADDR_PROVIDED) {
740 paddr = be64_to_cpu(mce_log->logical_address);
741 } else if (mce_log->sub_err_type & UE_EFFECTIVE_ADDR_PROVIDED) {
742 unsigned long pfn;
743
744 pfn = addr_to_pfn(regs,
745 be64_to_cpu(mce_log->effective_address));
746 if (pfn == ULONG_MAX)
747 return;
748 paddr = pfn << PAGE_SHIFT;
749 } else {
750 return;
751 }
752 queue_ue_paddr(paddr);
753 }
754
755 static void pseries_process_ue(struct pt_regs *regs,
756 struct rtas_error_log *errp)
757 {
758 struct pseries_errorlog *pseries_log;
759 struct pseries_mc_errorlog *mce_log;
760
761 if (!rtas_error_extended(errp))
762 return;
763
764 pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
765 if (!pseries_log)
766 return;
767
768 mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
769
770 if (mce_log->error_type == MC_ERROR_TYPE_UE)
771 pseries_do_memory_failure(regs, mce_log);
772 }
773 #else
774 static inline void pseries_process_ue(struct pt_regs *regs,
775 struct rtas_error_log *errp) { }
776 #endif /*CONFIG_MEMORY_FAILURE */
777
778 /*
779 * Process MCE rtas errlog event.
780 */
781 static void mce_process_errlog_event(struct irq_work *work)
782 {
783 struct rtas_error_log *err;
784
785 err = fwnmi_get_errlog();
786 log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
787 }
788
789 /*
790 * See if we can recover from a machine check exception.
791 * This is only called on power4 (or above) and only via
792 * the Firmware Non-Maskable Interrupts (fwnmi) handler
793 * which provides the error analysis for us.
794 *
795 * Return 1 if corrected (or delivered a signal).
796 * Return 0 if there is nothing we can do.
797 */
798 static int recover_mce(struct pt_regs *regs, struct rtas_error_log *err)
799 {
800 int recovered = 0;
801 int disposition = rtas_error_disposition(err);
802
803 pseries_print_mce_info(regs, err);
804
805 if (!(regs->msr & MSR_RI)) {
806 /* If MSR_RI isn't set, we cannot recover */
807 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
808 recovered = 0;
809
810 } else if (disposition == RTAS_DISP_FULLY_RECOVERED) {
811 /* Platform corrected itself */
812 recovered = 1;
813
814 } else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
815 /* Platform corrected itself but could be degraded */
816 printk(KERN_ERR "MCE: limited recovery, system may "
817 "be degraded\n");
818 recovered = 1;
819
820 } else if (user_mode(regs) && !is_global_init(current) &&
821 rtas_error_severity(err) == RTAS_SEVERITY_ERROR_SYNC) {
822
823 /*
824 * If we received a synchronous error when in userspace
825 * kill the task. Firmware may report details of the fail
826 * asynchronously, so we can't rely on the target and type
827 * fields being valid here.
828 */
829 printk(KERN_ERR "MCE: uncorrectable error, killing task "
830 "%s:%d\n", current->comm, current->pid);
831
832 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
833 recovered = 1;
834 }
835
836 pseries_process_ue(regs, err);
837
838 /* Queue irq work to log this rtas event later. */
839 irq_work_queue(&mce_errlog_process_work);
840
841 return recovered;
842 }
843
844 /*
845 * Handle a machine check.
846 *
847 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
848 * should be present. If so the handler which called us tells us if the
849 * error was recovered (never true if RI=0).
850 *
851 * On hardware prior to Power 4 these exceptions were asynchronous which
852 * means we can't tell exactly where it occurred and so we can't recover.
853 */
854 int pSeries_machine_check_exception(struct pt_regs *regs)
855 {
856 struct rtas_error_log *errp;
857
858 if (fwnmi_active) {
859 fwnmi_release_errinfo();
860 errp = fwnmi_get_errlog();
861 if (errp && recover_mce(regs, errp))
862 return 1;
863 }
864
865 return 0;
866 }
867
868 long pseries_machine_check_realmode(struct pt_regs *regs)
869 {
870 struct rtas_error_log *errp;
871 int disposition;
872
873 if (fwnmi_active) {
874 errp = fwnmi_get_errinfo(regs);
875 /*
876 * Call to fwnmi_release_errinfo() in real mode causes kernel
877 * to panic. Hence we will call it as soon as we go into
878 * virtual mode.
879 */
880 disposition = mce_handle_error(errp);
881 if (disposition == RTAS_DISP_FULLY_RECOVERED)
882 return 1;
883 }
884
885 return 0;
886 }