]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/powerpc/platforms/pseries/ras.c
Merge tag 'media/v5.1-2' of git://git.kernel.org/pub/scm/linux/kernel/git/mchehab...
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / platforms / pseries / ras.c
1 /*
2 * Copyright (C) 2001 Dave Engebretsen IBM Corporation
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
17 */
18
19 #include <linux/sched.h>
20 #include <linux/interrupt.h>
21 #include <linux/irq.h>
22 #include <linux/of.h>
23 #include <linux/fs.h>
24 #include <linux/reboot.h>
25 #include <linux/irq_work.h>
26
27 #include <asm/machdep.h>
28 #include <asm/rtas.h>
29 #include <asm/firmware.h>
30 #include <asm/mce.h>
31
32 #include "pseries.h"
33
34 static unsigned char ras_log_buf[RTAS_ERROR_LOG_MAX];
35 static DEFINE_SPINLOCK(ras_log_buf_lock);
36
37 static int ras_check_exception_token;
38
39 static void mce_process_errlog_event(struct irq_work *work);
40 static struct irq_work mce_errlog_process_work = {
41 .func = mce_process_errlog_event,
42 };
43
44 #define EPOW_SENSOR_TOKEN 9
45 #define EPOW_SENSOR_INDEX 0
46
47 /* EPOW events counter variable */
48 static int num_epow_events;
49
50 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id);
51 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id);
52 static irqreturn_t ras_error_interrupt(int irq, void *dev_id);
53
54 /* RTAS pseries MCE errorlog section. */
55 struct pseries_mc_errorlog {
56 __be32 fru_id;
57 __be32 proc_id;
58 u8 error_type;
59 /*
60 * sub_err_type (1 byte). Bit fields depends on error_type
61 *
62 * MSB0
63 * |
64 * V
65 * 01234567
66 * XXXXXXXX
67 *
68 * For error_type == MC_ERROR_TYPE_UE
69 * XXXXXXXX
70 * X 1: Permanent or Transient UE.
71 * X 1: Effective address provided.
72 * X 1: Logical address provided.
73 * XX 2: Reserved.
74 * XXX 3: Type of UE error.
75 *
76 * For error_type != MC_ERROR_TYPE_UE
77 * XXXXXXXX
78 * X 1: Effective address provided.
79 * XXXXX 5: Reserved.
80 * XX 2: Type of SLB/ERAT/TLB error.
81 */
82 u8 sub_err_type;
83 u8 reserved_1[6];
84 __be64 effective_address;
85 __be64 logical_address;
86 } __packed;
87
88 /* RTAS pseries MCE error types */
89 #define MC_ERROR_TYPE_UE 0x00
90 #define MC_ERROR_TYPE_SLB 0x01
91 #define MC_ERROR_TYPE_ERAT 0x02
92 #define MC_ERROR_TYPE_TLB 0x04
93 #define MC_ERROR_TYPE_D_CACHE 0x05
94 #define MC_ERROR_TYPE_I_CACHE 0x07
95
96 /* RTAS pseries MCE error sub types */
97 #define MC_ERROR_UE_INDETERMINATE 0
98 #define MC_ERROR_UE_IFETCH 1
99 #define MC_ERROR_UE_PAGE_TABLE_WALK_IFETCH 2
100 #define MC_ERROR_UE_LOAD_STORE 3
101 #define MC_ERROR_UE_PAGE_TABLE_WALK_LOAD_STORE 4
102
103 #define MC_ERROR_SLB_PARITY 0
104 #define MC_ERROR_SLB_MULTIHIT 1
105 #define MC_ERROR_SLB_INDETERMINATE 2
106
107 #define MC_ERROR_ERAT_PARITY 1
108 #define MC_ERROR_ERAT_MULTIHIT 2
109 #define MC_ERROR_ERAT_INDETERMINATE 3
110
111 #define MC_ERROR_TLB_PARITY 1
112 #define MC_ERROR_TLB_MULTIHIT 2
113 #define MC_ERROR_TLB_INDETERMINATE 3
114
115 static inline u8 rtas_mc_error_sub_type(const struct pseries_mc_errorlog *mlog)
116 {
117 switch (mlog->error_type) {
118 case MC_ERROR_TYPE_UE:
119 return (mlog->sub_err_type & 0x07);
120 case MC_ERROR_TYPE_SLB:
121 case MC_ERROR_TYPE_ERAT:
122 case MC_ERROR_TYPE_TLB:
123 return (mlog->sub_err_type & 0x03);
124 default:
125 return 0;
126 }
127 }
128
129 static
130 inline u64 rtas_mc_get_effective_addr(const struct pseries_mc_errorlog *mlog)
131 {
132 __be64 addr = 0;
133
134 switch (mlog->error_type) {
135 case MC_ERROR_TYPE_UE:
136 if (mlog->sub_err_type & 0x40)
137 addr = mlog->effective_address;
138 break;
139 case MC_ERROR_TYPE_SLB:
140 case MC_ERROR_TYPE_ERAT:
141 case MC_ERROR_TYPE_TLB:
142 if (mlog->sub_err_type & 0x80)
143 addr = mlog->effective_address;
144 default:
145 break;
146 }
147 return be64_to_cpu(addr);
148 }
149
150 /*
151 * Enable the hotplug interrupt late because processing them may touch other
152 * devices or systems (e.g. hugepages) that have not been initialized at the
153 * subsys stage.
154 */
155 int __init init_ras_hotplug_IRQ(void)
156 {
157 struct device_node *np;
158
159 /* Hotplug Events */
160 np = of_find_node_by_path("/event-sources/hot-plug-events");
161 if (np != NULL) {
162 if (dlpar_workqueue_init() == 0)
163 request_event_sources_irqs(np, ras_hotplug_interrupt,
164 "RAS_HOTPLUG");
165 of_node_put(np);
166 }
167
168 return 0;
169 }
170 machine_late_initcall(pseries, init_ras_hotplug_IRQ);
171
172 /*
173 * Initialize handlers for the set of interrupts caused by hardware errors
174 * and power system events.
175 */
176 static int __init init_ras_IRQ(void)
177 {
178 struct device_node *np;
179
180 ras_check_exception_token = rtas_token("check-exception");
181
182 /* Internal Errors */
183 np = of_find_node_by_path("/event-sources/internal-errors");
184 if (np != NULL) {
185 request_event_sources_irqs(np, ras_error_interrupt,
186 "RAS_ERROR");
187 of_node_put(np);
188 }
189
190 /* EPOW Events */
191 np = of_find_node_by_path("/event-sources/epow-events");
192 if (np != NULL) {
193 request_event_sources_irqs(np, ras_epow_interrupt, "RAS_EPOW");
194 of_node_put(np);
195 }
196
197 return 0;
198 }
199 machine_subsys_initcall(pseries, init_ras_IRQ);
200
201 #define EPOW_SHUTDOWN_NORMAL 1
202 #define EPOW_SHUTDOWN_ON_UPS 2
203 #define EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS 3
204 #define EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH 4
205
206 static void handle_system_shutdown(char event_modifier)
207 {
208 switch (event_modifier) {
209 case EPOW_SHUTDOWN_NORMAL:
210 pr_emerg("Power off requested\n");
211 orderly_poweroff(true);
212 break;
213
214 case EPOW_SHUTDOWN_ON_UPS:
215 pr_emerg("Loss of system power detected. System is running on"
216 " UPS/battery. Check RTAS error log for details\n");
217 orderly_poweroff(true);
218 break;
219
220 case EPOW_SHUTDOWN_LOSS_OF_CRITICAL_FUNCTIONS:
221 pr_emerg("Loss of system critical functions detected. Check"
222 " RTAS error log for details\n");
223 orderly_poweroff(true);
224 break;
225
226 case EPOW_SHUTDOWN_AMBIENT_TEMPERATURE_TOO_HIGH:
227 pr_emerg("High ambient temperature detected. Check RTAS"
228 " error log for details\n");
229 orderly_poweroff(true);
230 break;
231
232 default:
233 pr_err("Unknown power/cooling shutdown event (modifier = %d)\n",
234 event_modifier);
235 }
236 }
237
238 struct epow_errorlog {
239 unsigned char sensor_value;
240 unsigned char event_modifier;
241 unsigned char extended_modifier;
242 unsigned char reserved;
243 unsigned char platform_reason;
244 };
245
246 #define EPOW_RESET 0
247 #define EPOW_WARN_COOLING 1
248 #define EPOW_WARN_POWER 2
249 #define EPOW_SYSTEM_SHUTDOWN 3
250 #define EPOW_SYSTEM_HALT 4
251 #define EPOW_MAIN_ENCLOSURE 5
252 #define EPOW_POWER_OFF 7
253
254 static void rtas_parse_epow_errlog(struct rtas_error_log *log)
255 {
256 struct pseries_errorlog *pseries_log;
257 struct epow_errorlog *epow_log;
258 char action_code;
259 char modifier;
260
261 pseries_log = get_pseries_errorlog(log, PSERIES_ELOG_SECT_ID_EPOW);
262 if (pseries_log == NULL)
263 return;
264
265 epow_log = (struct epow_errorlog *)pseries_log->data;
266 action_code = epow_log->sensor_value & 0xF; /* bottom 4 bits */
267 modifier = epow_log->event_modifier & 0xF; /* bottom 4 bits */
268
269 switch (action_code) {
270 case EPOW_RESET:
271 if (num_epow_events) {
272 pr_info("Non critical power/cooling issue cleared\n");
273 num_epow_events--;
274 }
275 break;
276
277 case EPOW_WARN_COOLING:
278 pr_info("Non-critical cooling issue detected. Check RTAS error"
279 " log for details\n");
280 break;
281
282 case EPOW_WARN_POWER:
283 pr_info("Non-critical power issue detected. Check RTAS error"
284 " log for details\n");
285 break;
286
287 case EPOW_SYSTEM_SHUTDOWN:
288 handle_system_shutdown(epow_log->event_modifier);
289 break;
290
291 case EPOW_SYSTEM_HALT:
292 pr_emerg("Critical power/cooling issue detected. Check RTAS"
293 " error log for details. Powering off.\n");
294 orderly_poweroff(true);
295 break;
296
297 case EPOW_MAIN_ENCLOSURE:
298 case EPOW_POWER_OFF:
299 pr_emerg("System about to lose power. Check RTAS error log "
300 " for details. Powering off immediately.\n");
301 emergency_sync();
302 kernel_power_off();
303 break;
304
305 default:
306 pr_err("Unknown power/cooling event (action code = %d)\n",
307 action_code);
308 }
309
310 /* Increment epow events counter variable */
311 if (action_code != EPOW_RESET)
312 num_epow_events++;
313 }
314
315 static irqreturn_t ras_hotplug_interrupt(int irq, void *dev_id)
316 {
317 struct pseries_errorlog *pseries_log;
318 struct pseries_hp_errorlog *hp_elog;
319
320 spin_lock(&ras_log_buf_lock);
321
322 rtas_call(ras_check_exception_token, 6, 1, NULL,
323 RTAS_VECTOR_EXTERNAL_INTERRUPT, virq_to_hw(irq),
324 RTAS_HOTPLUG_EVENTS, 0, __pa(&ras_log_buf),
325 rtas_get_error_log_max());
326
327 pseries_log = get_pseries_errorlog((struct rtas_error_log *)ras_log_buf,
328 PSERIES_ELOG_SECT_ID_HOTPLUG);
329 hp_elog = (struct pseries_hp_errorlog *)pseries_log->data;
330
331 /*
332 * Since PCI hotplug is not currently supported on pseries, put PCI
333 * hotplug events on the ras_log_buf to be handled by rtas_errd.
334 */
335 if (hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_MEM ||
336 hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_CPU ||
337 hp_elog->resource == PSERIES_HP_ELOG_RESOURCE_PMEM)
338 queue_hotplug_event(hp_elog);
339 else
340 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
341
342 spin_unlock(&ras_log_buf_lock);
343 return IRQ_HANDLED;
344 }
345
346 /* Handle environmental and power warning (EPOW) interrupts. */
347 static irqreturn_t ras_epow_interrupt(int irq, void *dev_id)
348 {
349 int status;
350 int state;
351 int critical;
352
353 status = rtas_get_sensor_fast(EPOW_SENSOR_TOKEN, EPOW_SENSOR_INDEX,
354 &state);
355
356 if (state > 3)
357 critical = 1; /* Time Critical */
358 else
359 critical = 0;
360
361 spin_lock(&ras_log_buf_lock);
362
363 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
364 RTAS_VECTOR_EXTERNAL_INTERRUPT,
365 virq_to_hw(irq),
366 RTAS_EPOW_WARNING,
367 critical, __pa(&ras_log_buf),
368 rtas_get_error_log_max());
369
370 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, 0);
371
372 rtas_parse_epow_errlog((struct rtas_error_log *)ras_log_buf);
373
374 spin_unlock(&ras_log_buf_lock);
375 return IRQ_HANDLED;
376 }
377
378 /*
379 * Handle hardware error interrupts.
380 *
381 * RTAS check-exception is called to collect data on the exception. If
382 * the error is deemed recoverable, we log a warning and return.
383 * For nonrecoverable errors, an error is logged and we stop all processing
384 * as quickly as possible in order to prevent propagation of the failure.
385 */
386 static irqreturn_t ras_error_interrupt(int irq, void *dev_id)
387 {
388 struct rtas_error_log *rtas_elog;
389 int status;
390 int fatal;
391
392 spin_lock(&ras_log_buf_lock);
393
394 status = rtas_call(ras_check_exception_token, 6, 1, NULL,
395 RTAS_VECTOR_EXTERNAL_INTERRUPT,
396 virq_to_hw(irq),
397 RTAS_INTERNAL_ERROR, 1 /* Time Critical */,
398 __pa(&ras_log_buf),
399 rtas_get_error_log_max());
400
401 rtas_elog = (struct rtas_error_log *)ras_log_buf;
402
403 if (status == 0 &&
404 rtas_error_severity(rtas_elog) >= RTAS_SEVERITY_ERROR_SYNC)
405 fatal = 1;
406 else
407 fatal = 0;
408
409 /* format and print the extended information */
410 log_error(ras_log_buf, ERR_TYPE_RTAS_LOG, fatal);
411
412 if (fatal) {
413 pr_emerg("Fatal hardware error detected. Check RTAS error"
414 " log for details. Powering off immediately\n");
415 emergency_sync();
416 kernel_power_off();
417 } else {
418 pr_err("Recoverable hardware error detected\n");
419 }
420
421 spin_unlock(&ras_log_buf_lock);
422 return IRQ_HANDLED;
423 }
424
425 /*
426 * Some versions of FWNMI place the buffer inside the 4kB page starting at
427 * 0x7000. Other versions place it inside the rtas buffer. We check both.
428 */
429 #define VALID_FWNMI_BUFFER(A) \
430 ((((A) >= 0x7000) && ((A) < 0x7ff0)) || \
431 (((A) >= rtas.base) && ((A) < (rtas.base + rtas.size - 16))))
432
433 static inline struct rtas_error_log *fwnmi_get_errlog(void)
434 {
435 return (struct rtas_error_log *)local_paca->mce_data_buf;
436 }
437
438 /*
439 * Get the error information for errors coming through the
440 * FWNMI vectors. The pt_regs' r3 will be updated to reflect
441 * the actual r3 if possible, and a ptr to the error log entry
442 * will be returned if found.
443 *
444 * Use one buffer mce_data_buf per cpu to store RTAS error.
445 *
446 * The mce_data_buf does not have any locks or protection around it,
447 * if a second machine check comes in, or a system reset is done
448 * before we have logged the error, then we will get corruption in the
449 * error log. This is preferable over holding off on calling
450 * ibm,nmi-interlock which would result in us checkstopping if a
451 * second machine check did come in.
452 */
453 static struct rtas_error_log *fwnmi_get_errinfo(struct pt_regs *regs)
454 {
455 unsigned long *savep;
456 struct rtas_error_log *h;
457
458 /* Mask top two bits */
459 regs->gpr[3] &= ~(0x3UL << 62);
460
461 if (!VALID_FWNMI_BUFFER(regs->gpr[3])) {
462 printk(KERN_ERR "FWNMI: corrupt r3 0x%016lx\n", regs->gpr[3]);
463 return NULL;
464 }
465
466 savep = __va(regs->gpr[3]);
467 regs->gpr[3] = be64_to_cpu(savep[0]); /* restore original r3 */
468
469 h = (struct rtas_error_log *)&savep[1];
470 /* Use the per cpu buffer from paca to store rtas error log */
471 memset(local_paca->mce_data_buf, 0, RTAS_ERROR_LOG_MAX);
472 if (!rtas_error_extended(h)) {
473 memcpy(local_paca->mce_data_buf, h, sizeof(__u64));
474 } else {
475 int len, error_log_length;
476
477 error_log_length = 8 + rtas_error_extended_log_length(h);
478 len = min_t(int, error_log_length, RTAS_ERROR_LOG_MAX);
479 memcpy(local_paca->mce_data_buf, h, len);
480 }
481
482 return (struct rtas_error_log *)local_paca->mce_data_buf;
483 }
484
485 /* Call this when done with the data returned by FWNMI_get_errinfo.
486 * It will release the saved data area for other CPUs in the
487 * partition to receive FWNMI errors.
488 */
489 static void fwnmi_release_errinfo(void)
490 {
491 int ret = rtas_call(rtas_token("ibm,nmi-interlock"), 0, 1, NULL);
492 if (ret != 0)
493 printk(KERN_ERR "FWNMI: nmi-interlock failed: %d\n", ret);
494 }
495
496 int pSeries_system_reset_exception(struct pt_regs *regs)
497 {
498 #ifdef __LITTLE_ENDIAN__
499 /*
500 * Some firmware byteswaps SRR registers and gives incorrect SRR1. Try
501 * to detect the bad SRR1 pattern here. Flip the NIP back to correct
502 * endian for reporting purposes. Unfortunately the MSR can't be fixed,
503 * so clear it. It will be missing MSR_RI so we won't try to recover.
504 */
505 if ((be64_to_cpu(regs->msr) &
506 (MSR_LE|MSR_RI|MSR_DR|MSR_IR|MSR_ME|MSR_PR|
507 MSR_ILE|MSR_HV|MSR_SF)) == (MSR_DR|MSR_SF)) {
508 regs->nip = be64_to_cpu((__be64)regs->nip);
509 regs->msr = 0;
510 }
511 #endif
512
513 if (fwnmi_active) {
514 struct rtas_error_log *errhdr = fwnmi_get_errinfo(regs);
515 if (errhdr) {
516 /* XXX Should look at FWNMI information */
517 }
518 fwnmi_release_errinfo();
519 }
520
521 if (smp_handle_nmi_ipi(regs))
522 return 1;
523
524 return 0; /* need to perform reset */
525 }
526
527 #define VAL_TO_STRING(ar, val) \
528 (((val) < ARRAY_SIZE(ar)) ? ar[(val)] : "Unknown")
529
530 static void pseries_print_mce_info(struct pt_regs *regs,
531 struct rtas_error_log *errp)
532 {
533 const char *level, *sevstr;
534 struct pseries_errorlog *pseries_log;
535 struct pseries_mc_errorlog *mce_log;
536 u8 error_type, err_sub_type;
537 u64 addr;
538 u8 initiator = rtas_error_initiator(errp);
539 int disposition = rtas_error_disposition(errp);
540
541 static const char * const initiators[] = {
542 "Unknown",
543 "CPU",
544 "PCI",
545 "ISA",
546 "Memory",
547 "Power Mgmt",
548 };
549 static const char * const mc_err_types[] = {
550 "UE",
551 "SLB",
552 "ERAT",
553 "Unknown",
554 "TLB",
555 "D-Cache",
556 "Unknown",
557 "I-Cache",
558 };
559 static const char * const mc_ue_types[] = {
560 "Indeterminate",
561 "Instruction fetch",
562 "Page table walk ifetch",
563 "Load/Store",
564 "Page table walk Load/Store",
565 };
566
567 /* SLB sub errors valid values are 0x0, 0x1, 0x2 */
568 static const char * const mc_slb_types[] = {
569 "Parity",
570 "Multihit",
571 "Indeterminate",
572 };
573
574 /* TLB and ERAT sub errors valid values are 0x1, 0x2, 0x3 */
575 static const char * const mc_soft_types[] = {
576 "Unknown",
577 "Parity",
578 "Multihit",
579 "Indeterminate",
580 };
581
582 if (!rtas_error_extended(errp)) {
583 pr_err("Machine check interrupt: Missing extended error log\n");
584 return;
585 }
586
587 pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
588 if (pseries_log == NULL)
589 return;
590
591 mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
592
593 error_type = mce_log->error_type;
594 err_sub_type = rtas_mc_error_sub_type(mce_log);
595
596 switch (rtas_error_severity(errp)) {
597 case RTAS_SEVERITY_NO_ERROR:
598 level = KERN_INFO;
599 sevstr = "Harmless";
600 break;
601 case RTAS_SEVERITY_WARNING:
602 level = KERN_WARNING;
603 sevstr = "";
604 break;
605 case RTAS_SEVERITY_ERROR:
606 case RTAS_SEVERITY_ERROR_SYNC:
607 level = KERN_ERR;
608 sevstr = "Severe";
609 break;
610 case RTAS_SEVERITY_FATAL:
611 default:
612 level = KERN_ERR;
613 sevstr = "Fatal";
614 break;
615 }
616
617 #ifdef CONFIG_PPC_BOOK3S_64
618 /* Display faulty slb contents for SLB errors. */
619 if (error_type == MC_ERROR_TYPE_SLB)
620 slb_dump_contents(local_paca->mce_faulty_slbs);
621 #endif
622
623 printk("%s%s Machine check interrupt [%s]\n", level, sevstr,
624 disposition == RTAS_DISP_FULLY_RECOVERED ?
625 "Recovered" : "Not recovered");
626 if (user_mode(regs)) {
627 printk("%s NIP: [%016lx] PID: %d Comm: %s\n", level,
628 regs->nip, current->pid, current->comm);
629 } else {
630 printk("%s NIP [%016lx]: %pS\n", level, regs->nip,
631 (void *)regs->nip);
632 }
633 printk("%s Initiator: %s\n", level,
634 VAL_TO_STRING(initiators, initiator));
635
636 switch (error_type) {
637 case MC_ERROR_TYPE_UE:
638 printk("%s Error type: %s [%s]\n", level,
639 VAL_TO_STRING(mc_err_types, error_type),
640 VAL_TO_STRING(mc_ue_types, err_sub_type));
641 break;
642 case MC_ERROR_TYPE_SLB:
643 printk("%s Error type: %s [%s]\n", level,
644 VAL_TO_STRING(mc_err_types, error_type),
645 VAL_TO_STRING(mc_slb_types, err_sub_type));
646 break;
647 case MC_ERROR_TYPE_ERAT:
648 case MC_ERROR_TYPE_TLB:
649 printk("%s Error type: %s [%s]\n", level,
650 VAL_TO_STRING(mc_err_types, error_type),
651 VAL_TO_STRING(mc_soft_types, err_sub_type));
652 break;
653 default:
654 printk("%s Error type: %s\n", level,
655 VAL_TO_STRING(mc_err_types, error_type));
656 break;
657 }
658
659 addr = rtas_mc_get_effective_addr(mce_log);
660 if (addr)
661 printk("%s Effective address: %016llx\n", level, addr);
662 }
663
664 static int mce_handle_error(struct rtas_error_log *errp)
665 {
666 struct pseries_errorlog *pseries_log;
667 struct pseries_mc_errorlog *mce_log;
668 int disposition = rtas_error_disposition(errp);
669 u8 error_type;
670
671 if (!rtas_error_extended(errp))
672 goto out;
673
674 pseries_log = get_pseries_errorlog(errp, PSERIES_ELOG_SECT_ID_MCE);
675 if (pseries_log == NULL)
676 goto out;
677
678 mce_log = (struct pseries_mc_errorlog *)pseries_log->data;
679 error_type = mce_log->error_type;
680
681 #ifdef CONFIG_PPC_BOOK3S_64
682 if (disposition == RTAS_DISP_NOT_RECOVERED) {
683 switch (error_type) {
684 case MC_ERROR_TYPE_SLB:
685 case MC_ERROR_TYPE_ERAT:
686 /*
687 * Store the old slb content in paca before flushing.
688 * Print this when we go to virtual mode.
689 * There are chances that we may hit MCE again if there
690 * is a parity error on the SLB entry we trying to read
691 * for saving. Hence limit the slb saving to single
692 * level of recursion.
693 */
694 if (local_paca->in_mce == 1)
695 slb_save_contents(local_paca->mce_faulty_slbs);
696 flush_and_reload_slb();
697 disposition = RTAS_DISP_FULLY_RECOVERED;
698 rtas_set_disposition_recovered(errp);
699 break;
700 default:
701 break;
702 }
703 }
704 #endif
705
706 out:
707 return disposition;
708 }
709
710 /*
711 * Process MCE rtas errlog event.
712 */
713 static void mce_process_errlog_event(struct irq_work *work)
714 {
715 struct rtas_error_log *err;
716
717 err = fwnmi_get_errlog();
718 log_error((char *)err, ERR_TYPE_RTAS_LOG, 0);
719 }
720
721 /*
722 * See if we can recover from a machine check exception.
723 * This is only called on power4 (or above) and only via
724 * the Firmware Non-Maskable Interrupts (fwnmi) handler
725 * which provides the error analysis for us.
726 *
727 * Return 1 if corrected (or delivered a signal).
728 * Return 0 if there is nothing we can do.
729 */
730 static int recover_mce(struct pt_regs *regs, struct rtas_error_log *err)
731 {
732 int recovered = 0;
733 int disposition = rtas_error_disposition(err);
734
735 pseries_print_mce_info(regs, err);
736
737 if (!(regs->msr & MSR_RI)) {
738 /* If MSR_RI isn't set, we cannot recover */
739 pr_err("Machine check interrupt unrecoverable: MSR(RI=0)\n");
740 recovered = 0;
741
742 } else if (disposition == RTAS_DISP_FULLY_RECOVERED) {
743 /* Platform corrected itself */
744 recovered = 1;
745
746 } else if (disposition == RTAS_DISP_LIMITED_RECOVERY) {
747 /* Platform corrected itself but could be degraded */
748 printk(KERN_ERR "MCE: limited recovery, system may "
749 "be degraded\n");
750 recovered = 1;
751
752 } else if (user_mode(regs) && !is_global_init(current) &&
753 rtas_error_severity(err) == RTAS_SEVERITY_ERROR_SYNC) {
754
755 /*
756 * If we received a synchronous error when in userspace
757 * kill the task. Firmware may report details of the fail
758 * asynchronously, so we can't rely on the target and type
759 * fields being valid here.
760 */
761 printk(KERN_ERR "MCE: uncorrectable error, killing task "
762 "%s:%d\n", current->comm, current->pid);
763
764 _exception(SIGBUS, regs, BUS_MCEERR_AR, regs->nip);
765 recovered = 1;
766 }
767
768 /* Queue irq work to log this rtas event later. */
769 irq_work_queue(&mce_errlog_process_work);
770
771 return recovered;
772 }
773
774 /*
775 * Handle a machine check.
776 *
777 * Note that on Power 4 and beyond Firmware Non-Maskable Interrupts (fwnmi)
778 * should be present. If so the handler which called us tells us if the
779 * error was recovered (never true if RI=0).
780 *
781 * On hardware prior to Power 4 these exceptions were asynchronous which
782 * means we can't tell exactly where it occurred and so we can't recover.
783 */
784 int pSeries_machine_check_exception(struct pt_regs *regs)
785 {
786 struct rtas_error_log *errp;
787
788 if (fwnmi_active) {
789 fwnmi_release_errinfo();
790 errp = fwnmi_get_errlog();
791 if (errp && recover_mce(regs, errp))
792 return 1;
793 }
794
795 return 0;
796 }
797
798 long pseries_machine_check_realmode(struct pt_regs *regs)
799 {
800 struct rtas_error_log *errp;
801 int disposition;
802
803 if (fwnmi_active) {
804 errp = fwnmi_get_errinfo(regs);
805 /*
806 * Call to fwnmi_release_errinfo() in real mode causes kernel
807 * to panic. Hence we will call it as soon as we go into
808 * virtual mode.
809 */
810 disposition = mce_handle_error(errp);
811 if (disposition == RTAS_DISP_FULLY_RECOVERED)
812 return 1;
813 }
814
815 return 0;
816 }