]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/powerpc/sysdev/xive/common.c
powerpc/xive: Ensure active irqd when setting affinity
[mirror_ubuntu-hirsute-kernel.git] / arch / powerpc / sysdev / xive / common.c
1 /*
2 * Copyright 2016,2017 IBM Corporation.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 */
9
10 #define pr_fmt(fmt) "xive: " fmt
11
12 #include <linux/types.h>
13 #include <linux/threads.h>
14 #include <linux/kernel.h>
15 #include <linux/irq.h>
16 #include <linux/debugfs.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/seq_file.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/of.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/msi.h>
26
27 #include <asm/prom.h>
28 #include <asm/io.h>
29 #include <asm/smp.h>
30 #include <asm/machdep.h>
31 #include <asm/irq.h>
32 #include <asm/errno.h>
33 #include <asm/xive.h>
34 #include <asm/xive-regs.h>
35 #include <asm/xmon.h>
36
37 #include "xive-internal.h"
38
39 #undef DEBUG_FLUSH
40 #undef DEBUG_ALL
41
42 #ifdef DEBUG_ALL
43 #define DBG_VERBOSE(fmt...) pr_devel(fmt)
44 #else
45 #define DBG_VERBOSE(fmt...) do { } while(0)
46 #endif
47
48 bool __xive_enabled;
49 EXPORT_SYMBOL_GPL(__xive_enabled);
50 bool xive_cmdline_disabled;
51
52 /* We use only one priority for now */
53 static u8 xive_irq_priority;
54
55 /* TIMA exported to KVM */
56 void __iomem *xive_tima;
57 EXPORT_SYMBOL_GPL(xive_tima);
58 u32 xive_tima_offset;
59
60 /* Backend ops */
61 static const struct xive_ops *xive_ops;
62
63 /* Our global interrupt domain */
64 static struct irq_domain *xive_irq_domain;
65
66 #ifdef CONFIG_SMP
67 /* The IPIs all use the same logical irq number */
68 static u32 xive_ipi_irq;
69 #endif
70
71 /* Xive state for each CPU */
72 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
73
74 /*
75 * A "disabled" interrupt should never fire, to catch problems
76 * we set its logical number to this
77 */
78 #define XIVE_BAD_IRQ 0x7fffffff
79 #define XIVE_MAX_IRQ (XIVE_BAD_IRQ - 1)
80
81 /* An invalid CPU target */
82 #define XIVE_INVALID_TARGET (-1)
83
84 /*
85 * Read the next entry in a queue, return its content if it's valid
86 * or 0 if there is no new entry.
87 *
88 * The queue pointer is moved forward unless "just_peek" is set
89 */
90 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
91 {
92 u32 cur;
93
94 if (!q->qpage)
95 return 0;
96 cur = be32_to_cpup(q->qpage + q->idx);
97
98 /* Check valid bit (31) vs current toggle polarity */
99 if ((cur >> 31) == q->toggle)
100 return 0;
101
102 /* If consuming from the queue ... */
103 if (!just_peek) {
104 /* Next entry */
105 q->idx = (q->idx + 1) & q->msk;
106
107 /* Wrap around: flip valid toggle */
108 if (q->idx == 0)
109 q->toggle ^= 1;
110 }
111 /* Mask out the valid bit (31) */
112 return cur & 0x7fffffff;
113 }
114
115 /*
116 * Scans all the queue that may have interrupts in them
117 * (based on "pending_prio") in priority order until an
118 * interrupt is found or all the queues are empty.
119 *
120 * Then updates the CPPR (Current Processor Priority
121 * Register) based on the most favored interrupt found
122 * (0xff if none) and return what was found (0 if none).
123 *
124 * If just_peek is set, return the most favored pending
125 * interrupt if any but don't update the queue pointers.
126 *
127 * Note: This function can operate generically on any number
128 * of queues (up to 8). The current implementation of the XIVE
129 * driver only uses a single queue however.
130 *
131 * Note2: This will also "flush" "the pending_count" of a queue
132 * into the "count" when that queue is observed to be empty.
133 * This is used to keep track of the amount of interrupts
134 * targetting a queue. When an interrupt is moved away from
135 * a queue, we only decrement that queue count once the queue
136 * has been observed empty to avoid races.
137 */
138 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
139 {
140 u32 irq = 0;
141 u8 prio;
142
143 /* Find highest pending priority */
144 while (xc->pending_prio != 0) {
145 struct xive_q *q;
146
147 prio = ffs(xc->pending_prio) - 1;
148 DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
149
150 /* Try to fetch */
151 irq = xive_read_eq(&xc->queue[prio], just_peek);
152
153 /* Found something ? That's it */
154 if (irq)
155 break;
156
157 /* Clear pending bits */
158 xc->pending_prio &= ~(1 << prio);
159
160 /*
161 * Check if the queue count needs adjusting due to
162 * interrupts being moved away. See description of
163 * xive_dec_target_count()
164 */
165 q = &xc->queue[prio];
166 if (atomic_read(&q->pending_count)) {
167 int p = atomic_xchg(&q->pending_count, 0);
168 if (p) {
169 WARN_ON(p > atomic_read(&q->count));
170 atomic_sub(p, &q->count);
171 }
172 }
173 }
174
175 /* If nothing was found, set CPPR to 0xff */
176 if (irq == 0)
177 prio = 0xff;
178
179 /* Update HW CPPR to match if necessary */
180 if (prio != xc->cppr) {
181 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
182 xc->cppr = prio;
183 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
184 }
185
186 return irq;
187 }
188
189 /*
190 * This is used to perform the magic loads from an ESB
191 * described in xive.h
192 */
193 static u8 xive_poke_esb(struct xive_irq_data *xd, u32 offset)
194 {
195 u64 val;
196
197 /* Handle HW errata */
198 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
199 offset |= offset << 4;
200
201 val = in_be64(xd->eoi_mmio + offset);
202
203 return (u8)val;
204 }
205
206 #ifdef CONFIG_XMON
207 static void xive_dump_eq(const char *name, struct xive_q *q)
208 {
209 u32 i0, i1, idx;
210
211 if (!q->qpage)
212 return;
213 idx = q->idx;
214 i0 = be32_to_cpup(q->qpage + idx);
215 idx = (idx + 1) & q->msk;
216 i1 = be32_to_cpup(q->qpage + idx);
217 xmon_printf(" %s Q T=%d %08x %08x ...\n", name,
218 q->toggle, i0, i1);
219 }
220
221 void xmon_xive_do_dump(int cpu)
222 {
223 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
224
225 xmon_printf("XIVE state for CPU %d:\n", cpu);
226 xmon_printf(" pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr);
227 xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]);
228 #ifdef CONFIG_SMP
229 {
230 u64 val = xive_poke_esb(&xc->ipi_data, XIVE_ESB_GET);
231 xmon_printf(" IPI state: %x:%c%c\n", xc->hw_ipi,
232 val & XIVE_ESB_VAL_P ? 'P' : 'p',
233 val & XIVE_ESB_VAL_P ? 'Q' : 'q');
234 }
235 #endif
236 }
237 #endif /* CONFIG_XMON */
238
239 static unsigned int xive_get_irq(void)
240 {
241 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
242 u32 irq;
243
244 /*
245 * This can be called either as a result of a HW interrupt or
246 * as a "replay" because EOI decided there was still something
247 * in one of the queues.
248 *
249 * First we perform an ACK cycle in order to update our mask
250 * of pending priorities. This will also have the effect of
251 * updating the CPPR to the most favored pending interrupts.
252 *
253 * In the future, if we have a way to differenciate a first
254 * entry (on HW interrupt) from a replay triggered by EOI,
255 * we could skip this on replays unless we soft-mask tells us
256 * that a new HW interrupt occurred.
257 */
258 xive_ops->update_pending(xc);
259
260 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
261
262 /* Scan our queue(s) for interrupts */
263 irq = xive_scan_interrupts(xc, false);
264
265 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
266 irq, xc->pending_prio);
267
268 /* Return pending interrupt if any */
269 if (irq == XIVE_BAD_IRQ)
270 return 0;
271 return irq;
272 }
273
274 /*
275 * After EOI'ing an interrupt, we need to re-check the queue
276 * to see if another interrupt is pending since multiple
277 * interrupts can coalesce into a single notification to the
278 * CPU.
279 *
280 * If we find that there is indeed more in there, we call
281 * force_external_irq_replay() to make Linux synthetize an
282 * external interrupt on the next call to local_irq_restore().
283 */
284 static void xive_do_queue_eoi(struct xive_cpu *xc)
285 {
286 if (xive_scan_interrupts(xc, true) != 0) {
287 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
288 force_external_irq_replay();
289 }
290 }
291
292 /*
293 * EOI an interrupt at the source. There are several methods
294 * to do this depending on the HW version and source type
295 */
296 void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
297 {
298 /* If the XIVE supports the new "store EOI facility, use it */
299 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
300 out_be64(xd->eoi_mmio + XIVE_ESB_STORE_EOI, 0);
301 else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
302 /*
303 * The FW told us to call it. This happens for some
304 * interrupt sources that need additional HW whacking
305 * beyond the ESB manipulation. For example LPC interrupts
306 * on P9 DD1.0 need a latch to be clared in the LPC bridge
307 * itself. The Firmware will take care of it.
308 */
309 if (WARN_ON_ONCE(!xive_ops->eoi))
310 return;
311 xive_ops->eoi(hw_irq);
312 } else {
313 u8 eoi_val;
314
315 /*
316 * Otherwise for EOI, we use the special MMIO that does
317 * a clear of both P and Q and returns the old Q,
318 * except for LSIs where we use the "EOI cycle" special
319 * load.
320 *
321 * This allows us to then do a re-trigger if Q was set
322 * rather than synthesizing an interrupt in software
323 *
324 * For LSIs, using the HW EOI cycle works around a problem
325 * on P9 DD1 PHBs where the other ESB accesses don't work
326 * properly.
327 */
328 if (xd->flags & XIVE_IRQ_FLAG_LSI)
329 in_be64(xd->eoi_mmio);
330 else {
331 eoi_val = xive_poke_esb(xd, XIVE_ESB_SET_PQ_00);
332 DBG_VERBOSE("eoi_val=%x\n", offset, eoi_val);
333
334 /* Re-trigger if needed */
335 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
336 out_be64(xd->trig_mmio, 0);
337 }
338 }
339 }
340
341 /* irq_chip eoi callback */
342 static void xive_irq_eoi(struct irq_data *d)
343 {
344 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
345 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
346
347 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
348 d->irq, irqd_to_hwirq(d), xc->pending_prio);
349
350 /*
351 * EOI the source if it hasn't been disabled and hasn't
352 * been passed-through to a KVM guest
353 */
354 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d))
355 xive_do_source_eoi(irqd_to_hwirq(d), xd);
356
357 /*
358 * Clear saved_p to indicate that it's no longer occupying
359 * a queue slot on the target queue
360 */
361 xd->saved_p = false;
362
363 /* Check for more work in the queue */
364 xive_do_queue_eoi(xc);
365 }
366
367 /*
368 * Helper used to mask and unmask an interrupt source. This
369 * is only called for normal interrupts that do not require
370 * masking/unmasking via firmware.
371 */
372 static void xive_do_source_set_mask(struct xive_irq_data *xd,
373 bool mask)
374 {
375 u64 val;
376
377 /*
378 * If the interrupt had P set, it may be in a queue.
379 *
380 * We need to make sure we don't re-enable it until it
381 * has been fetched from that queue and EOId. We keep
382 * a copy of that P state and use it to restore the
383 * ESB accordingly on unmask.
384 */
385 if (mask) {
386 val = xive_poke_esb(xd, XIVE_ESB_SET_PQ_01);
387 xd->saved_p = !!(val & XIVE_ESB_VAL_P);
388 } else if (xd->saved_p)
389 xive_poke_esb(xd, XIVE_ESB_SET_PQ_10);
390 else
391 xive_poke_esb(xd, XIVE_ESB_SET_PQ_00);
392 }
393
394 /*
395 * Try to chose "cpu" as a new interrupt target. Increments
396 * the queue accounting for that target if it's not already
397 * full.
398 */
399 static bool xive_try_pick_target(int cpu)
400 {
401 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
402 struct xive_q *q = &xc->queue[xive_irq_priority];
403 int max;
404
405 /*
406 * Calculate max number of interrupts in that queue.
407 *
408 * We leave a gap of 1 just in case...
409 */
410 max = (q->msk + 1) - 1;
411 return !!atomic_add_unless(&q->count, 1, max);
412 }
413
414 /*
415 * Un-account an interrupt for a target CPU. We don't directly
416 * decrement q->count since the interrupt might still be present
417 * in the queue.
418 *
419 * Instead increment a separate counter "pending_count" which
420 * will be substracted from "count" later when that CPU observes
421 * the queue to be empty.
422 */
423 static void xive_dec_target_count(int cpu)
424 {
425 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
426 struct xive_q *q = &xc->queue[xive_irq_priority];
427
428 if (unlikely(WARN_ON(cpu < 0 || !xc))) {
429 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
430 return;
431 }
432
433 /*
434 * We increment the "pending count" which will be used
435 * to decrement the target queue count whenever it's next
436 * processed and found empty. This ensure that we don't
437 * decrement while we still have the interrupt there
438 * occupying a slot.
439 */
440 atomic_inc(&q->pending_count);
441 }
442
443 /* Find a tentative CPU target in a CPU mask */
444 static int xive_find_target_in_mask(const struct cpumask *mask,
445 unsigned int fuzz)
446 {
447 int cpu, first, num, i;
448
449 /* Pick up a starting point CPU in the mask based on fuzz */
450 num = cpumask_weight(mask);
451 first = fuzz % num;
452
453 /* Locate it */
454 cpu = cpumask_first(mask);
455 for (i = 0; i < first && cpu < nr_cpu_ids; i++)
456 cpu = cpumask_next(cpu, mask);
457
458 /* Sanity check */
459 if (WARN_ON(cpu >= nr_cpu_ids))
460 cpu = cpumask_first(cpu_online_mask);
461
462 /* Remember first one to handle wrap-around */
463 first = cpu;
464
465 /*
466 * Now go through the entire mask until we find a valid
467 * target.
468 */
469 for (;;) {
470 /*
471 * We re-check online as the fallback case passes us
472 * an untested affinity mask
473 */
474 if (cpu_online(cpu) && xive_try_pick_target(cpu))
475 return cpu;
476 cpu = cpumask_next(cpu, mask);
477 if (cpu == first)
478 break;
479 /* Wrap around */
480 if (cpu >= nr_cpu_ids)
481 cpu = cpumask_first(mask);
482 }
483 return -1;
484 }
485
486 /*
487 * Pick a target CPU for an interrupt. This is done at
488 * startup or if the affinity is changed in a way that
489 * invalidates the current target.
490 */
491 static int xive_pick_irq_target(struct irq_data *d,
492 const struct cpumask *affinity)
493 {
494 static unsigned int fuzz;
495 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
496 cpumask_var_t mask;
497 int cpu = -1;
498
499 /*
500 * If we have chip IDs, first we try to build a mask of
501 * CPUs matching the CPU and find a target in there
502 */
503 if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
504 zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
505 /* Build a mask of matching chip IDs */
506 for_each_cpu_and(cpu, affinity, cpu_online_mask) {
507 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
508 if (xc->chip_id == xd->src_chip)
509 cpumask_set_cpu(cpu, mask);
510 }
511 /* Try to find a target */
512 if (cpumask_empty(mask))
513 cpu = -1;
514 else
515 cpu = xive_find_target_in_mask(mask, fuzz++);
516 free_cpumask_var(mask);
517 if (cpu >= 0)
518 return cpu;
519 fuzz--;
520 }
521
522 /* No chip IDs, fallback to using the affinity mask */
523 return xive_find_target_in_mask(affinity, fuzz++);
524 }
525
526 static unsigned int xive_irq_startup(struct irq_data *d)
527 {
528 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
529 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
530 int target, rc;
531
532 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
533 d->irq, hw_irq, d);
534
535 #ifdef CONFIG_PCI_MSI
536 /*
537 * The generic MSI code returns with the interrupt disabled on the
538 * card, using the MSI mask bits. Firmware doesn't appear to unmask
539 * at that level, so we do it here by hand.
540 */
541 if (irq_data_get_msi_desc(d))
542 pci_msi_unmask_irq(d);
543 #endif
544
545 /* Pick a target */
546 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
547 if (target == XIVE_INVALID_TARGET) {
548 /* Try again breaking affinity */
549 target = xive_pick_irq_target(d, cpu_online_mask);
550 if (target == XIVE_INVALID_TARGET)
551 return -ENXIO;
552 pr_warn("irq %d started with broken affinity\n", d->irq);
553 }
554
555 /* Sanity check */
556 if (WARN_ON(target == XIVE_INVALID_TARGET ||
557 target >= nr_cpu_ids))
558 target = smp_processor_id();
559
560 xd->target = target;
561
562 /*
563 * Configure the logical number to be the Linux IRQ number
564 * and set the target queue
565 */
566 rc = xive_ops->configure_irq(hw_irq,
567 get_hard_smp_processor_id(target),
568 xive_irq_priority, d->irq);
569 if (rc)
570 return rc;
571
572 /* Unmask the ESB */
573 xive_do_source_set_mask(xd, false);
574
575 return 0;
576 }
577
578 static void xive_irq_shutdown(struct irq_data *d)
579 {
580 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
581 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
582
583 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
584 d->irq, hw_irq, d);
585
586 if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
587 return;
588
589 /* Mask the interrupt at the source */
590 xive_do_source_set_mask(xd, true);
591
592 /*
593 * The above may have set saved_p. We clear it otherwise it
594 * will prevent re-enabling later on. It is ok to forget the
595 * fact that the interrupt might be in a queue because we are
596 * accounting that already in xive_dec_target_count() and will
597 * be re-routing it to a new queue with proper accounting when
598 * it's started up again
599 */
600 xd->saved_p = false;
601
602 /*
603 * Mask the interrupt in HW in the IVT/EAS and set the number
604 * to be the "bad" IRQ number
605 */
606 xive_ops->configure_irq(hw_irq,
607 get_hard_smp_processor_id(xd->target),
608 0xff, XIVE_BAD_IRQ);
609
610 xive_dec_target_count(xd->target);
611 xd->target = XIVE_INVALID_TARGET;
612 }
613
614 static void xive_irq_unmask(struct irq_data *d)
615 {
616 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
617
618 pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
619
620 /*
621 * This is a workaround for PCI LSI problems on P9, for
622 * these, we call FW to set the mask. The problems might
623 * be fixed by P9 DD2.0, if that is the case, firmware
624 * will no longer set that flag.
625 */
626 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
627 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
628 xive_ops->configure_irq(hw_irq,
629 get_hard_smp_processor_id(xd->target),
630 xive_irq_priority, d->irq);
631 return;
632 }
633
634 xive_do_source_set_mask(xd, false);
635 }
636
637 static void xive_irq_mask(struct irq_data *d)
638 {
639 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
640
641 pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
642
643 /*
644 * This is a workaround for PCI LSI problems on P9, for
645 * these, we call OPAL to set the mask. The problems might
646 * be fixed by P9 DD2.0, if that is the case, firmware
647 * will no longer set that flag.
648 */
649 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
650 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
651 xive_ops->configure_irq(hw_irq,
652 get_hard_smp_processor_id(xd->target),
653 0xff, d->irq);
654 return;
655 }
656
657 xive_do_source_set_mask(xd, true);
658 }
659
660 static int xive_irq_set_affinity(struct irq_data *d,
661 const struct cpumask *cpumask,
662 bool force)
663 {
664 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
665 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
666 u32 target, old_target;
667 int rc = 0;
668
669 pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
670
671 /* Is this valid ? */
672 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
673 return -EINVAL;
674
675 /* Don't do anything if the interrupt isn't started */
676 if (!irqd_is_started(d))
677 return IRQ_SET_MASK_OK;
678
679 /*
680 * If existing target is already in the new mask, and is
681 * online then do nothing.
682 */
683 if (xd->target != XIVE_INVALID_TARGET &&
684 cpu_online(xd->target) &&
685 cpumask_test_cpu(xd->target, cpumask))
686 return IRQ_SET_MASK_OK;
687
688 /* Pick a new target */
689 target = xive_pick_irq_target(d, cpumask);
690
691 /* No target found */
692 if (target == XIVE_INVALID_TARGET)
693 return -ENXIO;
694
695 /* Sanity check */
696 if (WARN_ON(target >= nr_cpu_ids))
697 target = smp_processor_id();
698
699 old_target = xd->target;
700
701 /*
702 * Only configure the irq if it's not currently passed-through to
703 * a KVM guest
704 */
705 if (!irqd_is_forwarded_to_vcpu(d))
706 rc = xive_ops->configure_irq(hw_irq,
707 get_hard_smp_processor_id(target),
708 xive_irq_priority, d->irq);
709 if (rc < 0) {
710 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
711 return rc;
712 }
713
714 pr_devel(" target: 0x%x\n", target);
715 xd->target = target;
716
717 /* Give up previous target */
718 if (old_target != XIVE_INVALID_TARGET)
719 xive_dec_target_count(old_target);
720
721 return IRQ_SET_MASK_OK;
722 }
723
724 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
725 {
726 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
727
728 /*
729 * We only support these. This has really no effect other than setting
730 * the corresponding descriptor bits mind you but those will in turn
731 * affect the resend function when re-enabling an edge interrupt.
732 *
733 * Set set the default to edge as explained in map().
734 */
735 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
736 flow_type = IRQ_TYPE_EDGE_RISING;
737
738 if (flow_type != IRQ_TYPE_EDGE_RISING &&
739 flow_type != IRQ_TYPE_LEVEL_LOW)
740 return -EINVAL;
741
742 irqd_set_trigger_type(d, flow_type);
743
744 /*
745 * Double check it matches what the FW thinks
746 *
747 * NOTE: We don't know yet if the PAPR interface will provide
748 * the LSI vs MSI information apart from the device-tree so
749 * this check might have to move into an optional backend call
750 * that is specific to the native backend
751 */
752 if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
753 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
754 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
755 d->irq, (u32)irqd_to_hwirq(d),
756 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
757 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
758 }
759
760 return IRQ_SET_MASK_OK_NOCOPY;
761 }
762
763 static int xive_irq_retrigger(struct irq_data *d)
764 {
765 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
766
767 /* This should be only for MSIs */
768 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
769 return 0;
770
771 /*
772 * To perform a retrigger, we first set the PQ bits to
773 * 11, then perform an EOI.
774 */
775 xive_poke_esb(xd, XIVE_ESB_SET_PQ_11);
776
777 /*
778 * Note: We pass "0" to the hw_irq argument in order to
779 * avoid calling into the backend EOI code which we don't
780 * want to do in the case of a re-trigger. Backends typically
781 * only do EOI for LSIs anyway.
782 */
783 xive_do_source_eoi(0, xd);
784
785 return 1;
786 }
787
788 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
789 {
790 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
791 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
792 int rc;
793 u8 pq;
794
795 /*
796 * We only support this on interrupts that do not require
797 * firmware calls for masking and unmasking
798 */
799 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
800 return -EIO;
801
802 /*
803 * This is called by KVM with state non-NULL for enabling
804 * pass-through or NULL for disabling it
805 */
806 if (state) {
807 irqd_set_forwarded_to_vcpu(d);
808
809 /* Set it to PQ=10 state to prevent further sends */
810 pq = xive_poke_esb(xd, XIVE_ESB_SET_PQ_10);
811
812 /* No target ? nothing to do */
813 if (xd->target == XIVE_INVALID_TARGET) {
814 /*
815 * An untargetted interrupt should have been
816 * also masked at the source
817 */
818 WARN_ON(pq & 2);
819
820 return 0;
821 }
822
823 /*
824 * If P was set, adjust state to PQ=11 to indicate
825 * that a resend is needed for the interrupt to reach
826 * the guest. Also remember the value of P.
827 *
828 * This also tells us that it's in flight to a host queue
829 * or has already been fetched but hasn't been EOIed yet
830 * by the host. This it's potentially using up a host
831 * queue slot. This is important to know because as long
832 * as this is the case, we must not hard-unmask it when
833 * "returning" that interrupt to the host.
834 *
835 * This saved_p is cleared by the host EOI, when we know
836 * for sure the queue slot is no longer in use.
837 */
838 if (pq & 2) {
839 pq = xive_poke_esb(xd, XIVE_ESB_SET_PQ_11);
840 xd->saved_p = true;
841
842 /*
843 * Sync the XIVE source HW to ensure the interrupt
844 * has gone through the EAS before we change its
845 * target to the guest. That should guarantee us
846 * that we *will* eventually get an EOI for it on
847 * the host. Otherwise there would be a small window
848 * for P to be seen here but the interrupt going
849 * to the guest queue.
850 */
851 if (xive_ops->sync_source)
852 xive_ops->sync_source(hw_irq);
853 } else
854 xd->saved_p = false;
855 } else {
856 irqd_clr_forwarded_to_vcpu(d);
857
858 /* No host target ? hard mask and return */
859 if (xd->target == XIVE_INVALID_TARGET) {
860 xive_do_source_set_mask(xd, true);
861 return 0;
862 }
863
864 /*
865 * Sync the XIVE source HW to ensure the interrupt
866 * has gone through the EAS before we change its
867 * target to the host.
868 */
869 if (xive_ops->sync_source)
870 xive_ops->sync_source(hw_irq);
871
872 /*
873 * By convention we are called with the interrupt in
874 * a PQ=10 or PQ=11 state, ie, it won't fire and will
875 * have latched in Q whether there's a pending HW
876 * interrupt or not.
877 *
878 * First reconfigure the target.
879 */
880 rc = xive_ops->configure_irq(hw_irq,
881 get_hard_smp_processor_id(xd->target),
882 xive_irq_priority, d->irq);
883 if (rc)
884 return rc;
885
886 /*
887 * Then if saved_p is not set, effectively re-enable the
888 * interrupt with an EOI. If it is set, we know there is
889 * still a message in a host queue somewhere that will be
890 * EOId eventually.
891 *
892 * Note: We don't check irqd_irq_disabled(). Effectively,
893 * we *will* let the irq get through even if masked if the
894 * HW is still firing it in order to deal with the whole
895 * saved_p business properly. If the interrupt triggers
896 * while masked, the generic code will re-mask it anyway.
897 */
898 if (!xd->saved_p)
899 xive_do_source_eoi(hw_irq, xd);
900
901 }
902 return 0;
903 }
904
905 static struct irq_chip xive_irq_chip = {
906 .name = "XIVE-IRQ",
907 .irq_startup = xive_irq_startup,
908 .irq_shutdown = xive_irq_shutdown,
909 .irq_eoi = xive_irq_eoi,
910 .irq_mask = xive_irq_mask,
911 .irq_unmask = xive_irq_unmask,
912 .irq_set_affinity = xive_irq_set_affinity,
913 .irq_set_type = xive_irq_set_type,
914 .irq_retrigger = xive_irq_retrigger,
915 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
916 };
917
918 bool is_xive_irq(struct irq_chip *chip)
919 {
920 return chip == &xive_irq_chip;
921 }
922 EXPORT_SYMBOL_GPL(is_xive_irq);
923
924 void xive_cleanup_irq_data(struct xive_irq_data *xd)
925 {
926 if (xd->eoi_mmio) {
927 iounmap(xd->eoi_mmio);
928 if (xd->eoi_mmio == xd->trig_mmio)
929 xd->trig_mmio = NULL;
930 xd->eoi_mmio = NULL;
931 }
932 if (xd->trig_mmio) {
933 iounmap(xd->trig_mmio);
934 xd->trig_mmio = NULL;
935 }
936 }
937 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
938
939 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
940 {
941 struct xive_irq_data *xd;
942 int rc;
943
944 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
945 if (!xd)
946 return -ENOMEM;
947 rc = xive_ops->populate_irq_data(hw, xd);
948 if (rc) {
949 kfree(xd);
950 return rc;
951 }
952 xd->target = XIVE_INVALID_TARGET;
953 irq_set_handler_data(virq, xd);
954
955 return 0;
956 }
957
958 static void xive_irq_free_data(unsigned int virq)
959 {
960 struct xive_irq_data *xd = irq_get_handler_data(virq);
961
962 if (!xd)
963 return;
964 irq_set_handler_data(virq, NULL);
965 xive_cleanup_irq_data(xd);
966 kfree(xd);
967 }
968
969 #ifdef CONFIG_SMP
970
971 static void xive_cause_ipi(int cpu)
972 {
973 struct xive_cpu *xc;
974 struct xive_irq_data *xd;
975
976 xc = per_cpu(xive_cpu, cpu);
977
978 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
979 smp_processor_id(), cpu, xc->hw_ipi);
980
981 xd = &xc->ipi_data;
982 if (WARN_ON(!xd->trig_mmio))
983 return;
984 out_be64(xd->trig_mmio, 0);
985 }
986
987 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
988 {
989 return smp_ipi_demux();
990 }
991
992 static void xive_ipi_eoi(struct irq_data *d)
993 {
994 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
995
996 /* Handle possible race with unplug and drop stale IPIs */
997 if (!xc)
998 return;
999 xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
1000 xive_do_queue_eoi(xc);
1001 }
1002
1003 static void xive_ipi_do_nothing(struct irq_data *d)
1004 {
1005 /*
1006 * Nothing to do, we never mask/unmask IPIs, but the callback
1007 * has to exist for the struct irq_chip.
1008 */
1009 }
1010
1011 static struct irq_chip xive_ipi_chip = {
1012 .name = "XIVE-IPI",
1013 .irq_eoi = xive_ipi_eoi,
1014 .irq_mask = xive_ipi_do_nothing,
1015 .irq_unmask = xive_ipi_do_nothing,
1016 };
1017
1018 static void __init xive_request_ipi(void)
1019 {
1020 unsigned int virq;
1021
1022 /*
1023 * Initialization failed, move on, we might manage to
1024 * reach the point where we display our errors before
1025 * the system falls appart
1026 */
1027 if (!xive_irq_domain)
1028 return;
1029
1030 /* Initialize it */
1031 virq = irq_create_mapping(xive_irq_domain, 0);
1032 xive_ipi_irq = virq;
1033
1034 WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1035 IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1036 }
1037
1038 static int xive_setup_cpu_ipi(unsigned int cpu)
1039 {
1040 struct xive_cpu *xc;
1041 int rc;
1042
1043 pr_debug("Setting up IPI for CPU %d\n", cpu);
1044
1045 xc = per_cpu(xive_cpu, cpu);
1046
1047 /* Check if we are already setup */
1048 if (xc->hw_ipi != 0)
1049 return 0;
1050
1051 /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1052 if (xive_ops->get_ipi(cpu, xc))
1053 return -EIO;
1054
1055 /*
1056 * Populate the IRQ data in the xive_cpu structure and
1057 * configure the HW / enable the IPIs.
1058 */
1059 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1060 if (rc) {
1061 pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1062 return -EIO;
1063 }
1064 rc = xive_ops->configure_irq(xc->hw_ipi,
1065 get_hard_smp_processor_id(cpu),
1066 xive_irq_priority, xive_ipi_irq);
1067 if (rc) {
1068 pr_err("Failed to map IPI CPU %d\n", cpu);
1069 return -EIO;
1070 }
1071 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1072 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1073
1074 /* Unmask it */
1075 xive_do_source_set_mask(&xc->ipi_data, false);
1076
1077 return 0;
1078 }
1079
1080 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1081 {
1082 /* Disable the IPI and free the IRQ data */
1083
1084 /* Already cleaned up ? */
1085 if (xc->hw_ipi == 0)
1086 return;
1087
1088 /* Mask the IPI */
1089 xive_do_source_set_mask(&xc->ipi_data, true);
1090
1091 /*
1092 * Note: We don't call xive_cleanup_irq_data() to free
1093 * the mappings as this is called from an IPI on kexec
1094 * which is not a safe environment to call iounmap()
1095 */
1096
1097 /* Deconfigure/mask in the backend */
1098 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1099 0xff, xive_ipi_irq);
1100
1101 /* Free the IPIs in the backend */
1102 xive_ops->put_ipi(cpu, xc);
1103 }
1104
1105 void __init xive_smp_probe(void)
1106 {
1107 smp_ops->cause_ipi = xive_cause_ipi;
1108
1109 /* Register the IPI */
1110 xive_request_ipi();
1111
1112 /* Allocate and setup IPI for the boot CPU */
1113 xive_setup_cpu_ipi(smp_processor_id());
1114 }
1115
1116 #endif /* CONFIG_SMP */
1117
1118 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1119 irq_hw_number_t hw)
1120 {
1121 int rc;
1122
1123 /*
1124 * Mark interrupts as edge sensitive by default so that resend
1125 * actually works. Will fix that up below if needed.
1126 */
1127 irq_clear_status_flags(virq, IRQ_LEVEL);
1128
1129 #ifdef CONFIG_SMP
1130 /* IPIs are special and come up with HW number 0 */
1131 if (hw == 0) {
1132 /*
1133 * IPIs are marked per-cpu. We use separate HW interrupts under
1134 * the hood but associated with the same "linux" interrupt
1135 */
1136 irq_set_chip_and_handler(virq, &xive_ipi_chip,
1137 handle_percpu_irq);
1138 return 0;
1139 }
1140 #endif
1141
1142 rc = xive_irq_alloc_data(virq, hw);
1143 if (rc)
1144 return rc;
1145
1146 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1147
1148 return 0;
1149 }
1150
1151 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1152 {
1153 struct irq_data *data = irq_get_irq_data(virq);
1154 unsigned int hw_irq;
1155
1156 /* XXX Assign BAD number */
1157 if (!data)
1158 return;
1159 hw_irq = (unsigned int)irqd_to_hwirq(data);
1160 if (hw_irq)
1161 xive_irq_free_data(virq);
1162 }
1163
1164 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1165 const u32 *intspec, unsigned int intsize,
1166 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1167
1168 {
1169 *out_hwirq = intspec[0];
1170
1171 /*
1172 * If intsize is at least 2, we look for the type in the second cell,
1173 * we assume the LSB indicates a level interrupt.
1174 */
1175 if (intsize > 1) {
1176 if (intspec[1] & 1)
1177 *out_flags = IRQ_TYPE_LEVEL_LOW;
1178 else
1179 *out_flags = IRQ_TYPE_EDGE_RISING;
1180 } else
1181 *out_flags = IRQ_TYPE_LEVEL_LOW;
1182
1183 return 0;
1184 }
1185
1186 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1187 enum irq_domain_bus_token bus_token)
1188 {
1189 return xive_ops->match(node);
1190 }
1191
1192 static const struct irq_domain_ops xive_irq_domain_ops = {
1193 .match = xive_irq_domain_match,
1194 .map = xive_irq_domain_map,
1195 .unmap = xive_irq_domain_unmap,
1196 .xlate = xive_irq_domain_xlate,
1197 };
1198
1199 static void __init xive_init_host(void)
1200 {
1201 xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1202 &xive_irq_domain_ops, NULL);
1203 if (WARN_ON(xive_irq_domain == NULL))
1204 return;
1205 irq_set_default_host(xive_irq_domain);
1206 }
1207
1208 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1209 {
1210 if (xc->queue[xive_irq_priority].qpage)
1211 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1212 }
1213
1214 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1215 {
1216 int rc = 0;
1217
1218 /* We setup 1 queues for now with a 64k page */
1219 if (!xc->queue[xive_irq_priority].qpage)
1220 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1221
1222 return rc;
1223 }
1224
1225 static int xive_prepare_cpu(unsigned int cpu)
1226 {
1227 struct xive_cpu *xc;
1228
1229 xc = per_cpu(xive_cpu, cpu);
1230 if (!xc) {
1231 struct device_node *np;
1232
1233 xc = kzalloc_node(sizeof(struct xive_cpu),
1234 GFP_KERNEL, cpu_to_node(cpu));
1235 if (!xc)
1236 return -ENOMEM;
1237 np = of_get_cpu_node(cpu, NULL);
1238 if (np)
1239 xc->chip_id = of_get_ibm_chip_id(np);
1240 of_node_put(np);
1241
1242 per_cpu(xive_cpu, cpu) = xc;
1243 }
1244
1245 /* Setup EQs if not already */
1246 return xive_setup_cpu_queues(cpu, xc);
1247 }
1248
1249 static void xive_setup_cpu(void)
1250 {
1251 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1252
1253 /* Debug: Dump the TM state */
1254 pr_devel("CPU %d [HW 0x%02x] VT=%02x\n",
1255 smp_processor_id(), hard_smp_processor_id(),
1256 in_8(xive_tima + xive_tima_offset + TM_WORD2));
1257
1258 /* The backend might have additional things to do */
1259 if (xive_ops->setup_cpu)
1260 xive_ops->setup_cpu(smp_processor_id(), xc);
1261
1262 /* Set CPPR to 0xff to enable flow of interrupts */
1263 xc->cppr = 0xff;
1264 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1265 }
1266
1267 #ifdef CONFIG_SMP
1268 void xive_smp_setup_cpu(void)
1269 {
1270 pr_devel("SMP setup CPU %d\n", smp_processor_id());
1271
1272 /* This will have already been done on the boot CPU */
1273 if (smp_processor_id() != boot_cpuid)
1274 xive_setup_cpu();
1275
1276 }
1277
1278 int xive_smp_prepare_cpu(unsigned int cpu)
1279 {
1280 int rc;
1281
1282 /* Allocate per-CPU data and queues */
1283 rc = xive_prepare_cpu(cpu);
1284 if (rc)
1285 return rc;
1286
1287 /* Allocate and setup IPI for the new CPU */
1288 return xive_setup_cpu_ipi(cpu);
1289 }
1290
1291 #ifdef CONFIG_HOTPLUG_CPU
1292 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1293 {
1294 u32 irq;
1295
1296 /* We assume local irqs are disabled */
1297 WARN_ON(!irqs_disabled());
1298
1299 /* Check what's already in the CPU queue */
1300 while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1301 /*
1302 * We need to re-route that interrupt to its new destination.
1303 * First get and lock the descriptor
1304 */
1305 struct irq_desc *desc = irq_to_desc(irq);
1306 struct irq_data *d = irq_desc_get_irq_data(desc);
1307 struct xive_irq_data *xd;
1308 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1309
1310 /*
1311 * Ignore anything that isn't a XIVE irq and ignore
1312 * IPIs, so can just be dropped.
1313 */
1314 if (d->domain != xive_irq_domain || hw_irq == 0)
1315 continue;
1316
1317 /*
1318 * The IRQ should have already been re-routed, it's just a
1319 * stale in the old queue, so re-trigger it in order to make
1320 * it reach is new destination.
1321 */
1322 #ifdef DEBUG_FLUSH
1323 pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1324 cpu, irq);
1325 #endif
1326 raw_spin_lock(&desc->lock);
1327 xd = irq_desc_get_handler_data(desc);
1328
1329 /*
1330 * For LSIs, we EOI, this will cause a resend if it's
1331 * still asserted. Otherwise do an MSI retrigger.
1332 */
1333 if (xd->flags & XIVE_IRQ_FLAG_LSI)
1334 xive_do_source_eoi(irqd_to_hwirq(d), xd);
1335 else
1336 xive_irq_retrigger(d);
1337
1338 raw_spin_unlock(&desc->lock);
1339 }
1340 }
1341
1342 void xive_smp_disable_cpu(void)
1343 {
1344 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1345 unsigned int cpu = smp_processor_id();
1346
1347 /* Migrate interrupts away from the CPU */
1348 irq_migrate_all_off_this_cpu();
1349
1350 /* Set CPPR to 0 to disable flow of interrupts */
1351 xc->cppr = 0;
1352 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1353
1354 /* Flush everything still in the queue */
1355 xive_flush_cpu_queue(cpu, xc);
1356
1357 /* Re-enable CPPR */
1358 xc->cppr = 0xff;
1359 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1360 }
1361
1362 void xive_flush_interrupt(void)
1363 {
1364 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1365 unsigned int cpu = smp_processor_id();
1366
1367 /* Called if an interrupt occurs while the CPU is hot unplugged */
1368 xive_flush_cpu_queue(cpu, xc);
1369 }
1370
1371 #endif /* CONFIG_HOTPLUG_CPU */
1372
1373 #endif /* CONFIG_SMP */
1374
1375 void xive_kexec_teardown_cpu(int secondary)
1376 {
1377 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1378 unsigned int cpu = smp_processor_id();
1379
1380 /* Set CPPR to 0 to disable flow of interrupts */
1381 xc->cppr = 0;
1382 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1383
1384 /* Backend cleanup if any */
1385 if (xive_ops->teardown_cpu)
1386 xive_ops->teardown_cpu(cpu, xc);
1387
1388 #ifdef CONFIG_SMP
1389 /* Get rid of IPI */
1390 xive_cleanup_cpu_ipi(cpu, xc);
1391 #endif
1392
1393 /* Disable and free the queues */
1394 xive_cleanup_cpu_queues(cpu, xc);
1395 }
1396
1397 void xive_shutdown(void)
1398 {
1399 xive_ops->shutdown();
1400 }
1401
1402 bool xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1403 u8 max_prio)
1404 {
1405 xive_tima = area;
1406 xive_tima_offset = offset;
1407 xive_ops = ops;
1408 xive_irq_priority = max_prio;
1409
1410 ppc_md.get_irq = xive_get_irq;
1411 __xive_enabled = true;
1412
1413 pr_devel("Initializing host..\n");
1414 xive_init_host();
1415
1416 pr_devel("Initializing boot CPU..\n");
1417
1418 /* Allocate per-CPU data and queues */
1419 xive_prepare_cpu(smp_processor_id());
1420
1421 /* Get ready for interrupts */
1422 xive_setup_cpu();
1423
1424 pr_info("Interrupt handling initialized with %s backend\n",
1425 xive_ops->name);
1426 pr_info("Using priority %d for all interrupts\n", max_prio);
1427
1428 return true;
1429 }
1430
1431 static int __init xive_off(char *arg)
1432 {
1433 xive_cmdline_disabled = true;
1434 return 0;
1435 }
1436 __setup("xive=off", xive_off);