]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/powerpc/sysdev/xive/common.c
Merge tag 'iio-for-4.13b' of git://git.kernel.org/pub/scm/linux/kernel/git/jic23...
[mirror_ubuntu-artful-kernel.git] / arch / powerpc / sysdev / xive / common.c
1 /*
2 * Copyright 2016,2017 IBM Corporation.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public License
6 * as published by the Free Software Foundation; either version
7 * 2 of the License, or (at your option) any later version.
8 */
9
10 #define pr_fmt(fmt) "xive: " fmt
11
12 #include <linux/types.h>
13 #include <linux/threads.h>
14 #include <linux/kernel.h>
15 #include <linux/irq.h>
16 #include <linux/debugfs.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/seq_file.h>
20 #include <linux/init.h>
21 #include <linux/cpu.h>
22 #include <linux/of.h>
23 #include <linux/slab.h>
24 #include <linux/spinlock.h>
25 #include <linux/msi.h>
26
27 #include <asm/prom.h>
28 #include <asm/io.h>
29 #include <asm/smp.h>
30 #include <asm/machdep.h>
31 #include <asm/irq.h>
32 #include <asm/errno.h>
33 #include <asm/xive.h>
34 #include <asm/xive-regs.h>
35 #include <asm/xmon.h>
36
37 #include "xive-internal.h"
38
39 #undef DEBUG_FLUSH
40 #undef DEBUG_ALL
41
42 #ifdef DEBUG_ALL
43 #define DBG_VERBOSE(fmt...) pr_devel(fmt)
44 #else
45 #define DBG_VERBOSE(fmt...) do { } while(0)
46 #endif
47
48 bool __xive_enabled;
49 EXPORT_SYMBOL_GPL(__xive_enabled);
50 bool xive_cmdline_disabled;
51
52 /* We use only one priority for now */
53 static u8 xive_irq_priority;
54
55 /* TIMA exported to KVM */
56 void __iomem *xive_tima;
57 EXPORT_SYMBOL_GPL(xive_tima);
58 u32 xive_tima_offset;
59
60 /* Backend ops */
61 static const struct xive_ops *xive_ops;
62
63 /* Our global interrupt domain */
64 static struct irq_domain *xive_irq_domain;
65
66 #ifdef CONFIG_SMP
67 /* The IPIs all use the same logical irq number */
68 static u32 xive_ipi_irq;
69 #endif
70
71 /* Xive state for each CPU */
72 static DEFINE_PER_CPU(struct xive_cpu *, xive_cpu);
73
74 /*
75 * A "disabled" interrupt should never fire, to catch problems
76 * we set its logical number to this
77 */
78 #define XIVE_BAD_IRQ 0x7fffffff
79 #define XIVE_MAX_IRQ (XIVE_BAD_IRQ - 1)
80
81 /* An invalid CPU target */
82 #define XIVE_INVALID_TARGET (-1)
83
84 /*
85 * Read the next entry in a queue, return its content if it's valid
86 * or 0 if there is no new entry.
87 *
88 * The queue pointer is moved forward unless "just_peek" is set
89 */
90 static u32 xive_read_eq(struct xive_q *q, bool just_peek)
91 {
92 u32 cur;
93
94 if (!q->qpage)
95 return 0;
96 cur = be32_to_cpup(q->qpage + q->idx);
97
98 /* Check valid bit (31) vs current toggle polarity */
99 if ((cur >> 31) == q->toggle)
100 return 0;
101
102 /* If consuming from the queue ... */
103 if (!just_peek) {
104 /* Next entry */
105 q->idx = (q->idx + 1) & q->msk;
106
107 /* Wrap around: flip valid toggle */
108 if (q->idx == 0)
109 q->toggle ^= 1;
110 }
111 /* Mask out the valid bit (31) */
112 return cur & 0x7fffffff;
113 }
114
115 /*
116 * Scans all the queue that may have interrupts in them
117 * (based on "pending_prio") in priority order until an
118 * interrupt is found or all the queues are empty.
119 *
120 * Then updates the CPPR (Current Processor Priority
121 * Register) based on the most favored interrupt found
122 * (0xff if none) and return what was found (0 if none).
123 *
124 * If just_peek is set, return the most favored pending
125 * interrupt if any but don't update the queue pointers.
126 *
127 * Note: This function can operate generically on any number
128 * of queues (up to 8). The current implementation of the XIVE
129 * driver only uses a single queue however.
130 *
131 * Note2: This will also "flush" "the pending_count" of a queue
132 * into the "count" when that queue is observed to be empty.
133 * This is used to keep track of the amount of interrupts
134 * targetting a queue. When an interrupt is moved away from
135 * a queue, we only decrement that queue count once the queue
136 * has been observed empty to avoid races.
137 */
138 static u32 xive_scan_interrupts(struct xive_cpu *xc, bool just_peek)
139 {
140 u32 irq = 0;
141 u8 prio;
142
143 /* Find highest pending priority */
144 while (xc->pending_prio != 0) {
145 struct xive_q *q;
146
147 prio = ffs(xc->pending_prio) - 1;
148 DBG_VERBOSE("scan_irq: trying prio %d\n", prio);
149
150 /* Try to fetch */
151 irq = xive_read_eq(&xc->queue[prio], just_peek);
152
153 /* Found something ? That's it */
154 if (irq)
155 break;
156
157 /* Clear pending bits */
158 xc->pending_prio &= ~(1 << prio);
159
160 /*
161 * Check if the queue count needs adjusting due to
162 * interrupts being moved away. See description of
163 * xive_dec_target_count()
164 */
165 q = &xc->queue[prio];
166 if (atomic_read(&q->pending_count)) {
167 int p = atomic_xchg(&q->pending_count, 0);
168 if (p) {
169 WARN_ON(p > atomic_read(&q->count));
170 atomic_sub(p, &q->count);
171 }
172 }
173 }
174
175 /* If nothing was found, set CPPR to 0xff */
176 if (irq == 0)
177 prio = 0xff;
178
179 /* Update HW CPPR to match if necessary */
180 if (prio != xc->cppr) {
181 DBG_VERBOSE("scan_irq: adjusting CPPR to %d\n", prio);
182 xc->cppr = prio;
183 out_8(xive_tima + xive_tima_offset + TM_CPPR, prio);
184 }
185
186 return irq;
187 }
188
189 /*
190 * This is used to perform the magic loads from an ESB
191 * described in xive.h
192 */
193 static u8 xive_poke_esb(struct xive_irq_data *xd, u32 offset)
194 {
195 u64 val;
196
197 /* Handle HW errata */
198 if (xd->flags & XIVE_IRQ_FLAG_SHIFT_BUG)
199 offset |= offset << 4;
200
201 val = in_be64(xd->eoi_mmio + offset);
202
203 return (u8)val;
204 }
205
206 #ifdef CONFIG_XMON
207 static void xive_dump_eq(const char *name, struct xive_q *q)
208 {
209 u32 i0, i1, idx;
210
211 if (!q->qpage)
212 return;
213 idx = q->idx;
214 i0 = be32_to_cpup(q->qpage + idx);
215 idx = (idx + 1) & q->msk;
216 i1 = be32_to_cpup(q->qpage + idx);
217 xmon_printf(" %s Q T=%d %08x %08x ...\n", name,
218 q->toggle, i0, i1);
219 }
220
221 void xmon_xive_do_dump(int cpu)
222 {
223 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
224
225 xmon_printf("XIVE state for CPU %d:\n", cpu);
226 xmon_printf(" pp=%02x cppr=%02x\n", xc->pending_prio, xc->cppr);
227 xive_dump_eq("IRQ", &xc->queue[xive_irq_priority]);
228 #ifdef CONFIG_SMP
229 {
230 u64 val = xive_poke_esb(&xc->ipi_data, XIVE_ESB_GET);
231 xmon_printf(" IPI state: %x:%c%c\n", xc->hw_ipi,
232 val & XIVE_ESB_VAL_P ? 'P' : 'p',
233 val & XIVE_ESB_VAL_P ? 'Q' : 'q');
234 }
235 #endif
236 }
237 #endif /* CONFIG_XMON */
238
239 static unsigned int xive_get_irq(void)
240 {
241 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
242 u32 irq;
243
244 /*
245 * This can be called either as a result of a HW interrupt or
246 * as a "replay" because EOI decided there was still something
247 * in one of the queues.
248 *
249 * First we perform an ACK cycle in order to update our mask
250 * of pending priorities. This will also have the effect of
251 * updating the CPPR to the most favored pending interrupts.
252 *
253 * In the future, if we have a way to differenciate a first
254 * entry (on HW interrupt) from a replay triggered by EOI,
255 * we could skip this on replays unless we soft-mask tells us
256 * that a new HW interrupt occurred.
257 */
258 xive_ops->update_pending(xc);
259
260 DBG_VERBOSE("get_irq: pending=%02x\n", xc->pending_prio);
261
262 /* Scan our queue(s) for interrupts */
263 irq = xive_scan_interrupts(xc, false);
264
265 DBG_VERBOSE("get_irq: got irq 0x%x, new pending=0x%02x\n",
266 irq, xc->pending_prio);
267
268 /* Return pending interrupt if any */
269 if (irq == XIVE_BAD_IRQ)
270 return 0;
271 return irq;
272 }
273
274 /*
275 * After EOI'ing an interrupt, we need to re-check the queue
276 * to see if another interrupt is pending since multiple
277 * interrupts can coalesce into a single notification to the
278 * CPU.
279 *
280 * If we find that there is indeed more in there, we call
281 * force_external_irq_replay() to make Linux synthetize an
282 * external interrupt on the next call to local_irq_restore().
283 */
284 static void xive_do_queue_eoi(struct xive_cpu *xc)
285 {
286 if (xive_scan_interrupts(xc, true) != 0) {
287 DBG_VERBOSE("eoi: pending=0x%02x\n", xc->pending_prio);
288 force_external_irq_replay();
289 }
290 }
291
292 /*
293 * EOI an interrupt at the source. There are several methods
294 * to do this depending on the HW version and source type
295 */
296 void xive_do_source_eoi(u32 hw_irq, struct xive_irq_data *xd)
297 {
298 /* If the XIVE supports the new "store EOI facility, use it */
299 if (xd->flags & XIVE_IRQ_FLAG_STORE_EOI)
300 out_be64(xd->eoi_mmio + XIVE_ESB_STORE_EOI, 0);
301 else if (hw_irq && xd->flags & XIVE_IRQ_FLAG_EOI_FW) {
302 /*
303 * The FW told us to call it. This happens for some
304 * interrupt sources that need additional HW whacking
305 * beyond the ESB manipulation. For example LPC interrupts
306 * on P9 DD1.0 need a latch to be clared in the LPC bridge
307 * itself. The Firmware will take care of it.
308 */
309 if (WARN_ON_ONCE(!xive_ops->eoi))
310 return;
311 xive_ops->eoi(hw_irq);
312 } else {
313 u8 eoi_val;
314
315 /*
316 * Otherwise for EOI, we use the special MMIO that does
317 * a clear of both P and Q and returns the old Q,
318 * except for LSIs where we use the "EOI cycle" special
319 * load.
320 *
321 * This allows us to then do a re-trigger if Q was set
322 * rather than synthesizing an interrupt in software
323 *
324 * For LSIs, using the HW EOI cycle works around a problem
325 * on P9 DD1 PHBs where the other ESB accesses don't work
326 * properly.
327 */
328 if (xd->flags & XIVE_IRQ_FLAG_LSI)
329 in_be64(xd->eoi_mmio);
330 else {
331 eoi_val = xive_poke_esb(xd, XIVE_ESB_SET_PQ_00);
332 DBG_VERBOSE("eoi_val=%x\n", offset, eoi_val);
333
334 /* Re-trigger if needed */
335 if ((eoi_val & XIVE_ESB_VAL_Q) && xd->trig_mmio)
336 out_be64(xd->trig_mmio, 0);
337 }
338 }
339 }
340
341 /* irq_chip eoi callback */
342 static void xive_irq_eoi(struct irq_data *d)
343 {
344 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
345 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
346
347 DBG_VERBOSE("eoi_irq: irq=%d [0x%lx] pending=%02x\n",
348 d->irq, irqd_to_hwirq(d), xc->pending_prio);
349
350 /*
351 * EOI the source if it hasn't been disabled and hasn't
352 * been passed-through to a KVM guest
353 */
354 if (!irqd_irq_disabled(d) && !irqd_is_forwarded_to_vcpu(d))
355 xive_do_source_eoi(irqd_to_hwirq(d), xd);
356
357 /*
358 * Clear saved_p to indicate that it's no longer occupying
359 * a queue slot on the target queue
360 */
361 xd->saved_p = false;
362
363 /* Check for more work in the queue */
364 xive_do_queue_eoi(xc);
365 }
366
367 /*
368 * Helper used to mask and unmask an interrupt source. This
369 * is only called for normal interrupts that do not require
370 * masking/unmasking via firmware.
371 */
372 static void xive_do_source_set_mask(struct xive_irq_data *xd,
373 bool mask)
374 {
375 u64 val;
376
377 /*
378 * If the interrupt had P set, it may be in a queue.
379 *
380 * We need to make sure we don't re-enable it until it
381 * has been fetched from that queue and EOId. We keep
382 * a copy of that P state and use it to restore the
383 * ESB accordingly on unmask.
384 */
385 if (mask) {
386 val = xive_poke_esb(xd, XIVE_ESB_SET_PQ_01);
387 xd->saved_p = !!(val & XIVE_ESB_VAL_P);
388 } else if (xd->saved_p)
389 xive_poke_esb(xd, XIVE_ESB_SET_PQ_10);
390 else
391 xive_poke_esb(xd, XIVE_ESB_SET_PQ_00);
392 }
393
394 /*
395 * Try to chose "cpu" as a new interrupt target. Increments
396 * the queue accounting for that target if it's not already
397 * full.
398 */
399 static bool xive_try_pick_target(int cpu)
400 {
401 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
402 struct xive_q *q = &xc->queue[xive_irq_priority];
403 int max;
404
405 /*
406 * Calculate max number of interrupts in that queue.
407 *
408 * We leave a gap of 1 just in case...
409 */
410 max = (q->msk + 1) - 1;
411 return !!atomic_add_unless(&q->count, 1, max);
412 }
413
414 /*
415 * Un-account an interrupt for a target CPU. We don't directly
416 * decrement q->count since the interrupt might still be present
417 * in the queue.
418 *
419 * Instead increment a separate counter "pending_count" which
420 * will be substracted from "count" later when that CPU observes
421 * the queue to be empty.
422 */
423 static void xive_dec_target_count(int cpu)
424 {
425 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
426 struct xive_q *q = &xc->queue[xive_irq_priority];
427
428 if (unlikely(WARN_ON(cpu < 0 || !xc))) {
429 pr_err("%s: cpu=%d xc=%p\n", __func__, cpu, xc);
430 return;
431 }
432
433 /*
434 * We increment the "pending count" which will be used
435 * to decrement the target queue count whenever it's next
436 * processed and found empty. This ensure that we don't
437 * decrement while we still have the interrupt there
438 * occupying a slot.
439 */
440 atomic_inc(&q->pending_count);
441 }
442
443 /* Find a tentative CPU target in a CPU mask */
444 static int xive_find_target_in_mask(const struct cpumask *mask,
445 unsigned int fuzz)
446 {
447 int cpu, first, num, i;
448
449 /* Pick up a starting point CPU in the mask based on fuzz */
450 num = cpumask_weight(mask);
451 first = fuzz % num;
452
453 /* Locate it */
454 cpu = cpumask_first(mask);
455 for (i = 0; i < first && cpu < nr_cpu_ids; i++)
456 cpu = cpumask_next(cpu, mask);
457
458 /* Sanity check */
459 if (WARN_ON(cpu >= nr_cpu_ids))
460 cpu = cpumask_first(cpu_online_mask);
461
462 /* Remember first one to handle wrap-around */
463 first = cpu;
464
465 /*
466 * Now go through the entire mask until we find a valid
467 * target.
468 */
469 for (;;) {
470 /*
471 * We re-check online as the fallback case passes us
472 * an untested affinity mask
473 */
474 if (cpu_online(cpu) && xive_try_pick_target(cpu))
475 return cpu;
476 cpu = cpumask_next(cpu, mask);
477 if (cpu == first)
478 break;
479 /* Wrap around */
480 if (cpu >= nr_cpu_ids)
481 cpu = cpumask_first(mask);
482 }
483 return -1;
484 }
485
486 /*
487 * Pick a target CPU for an interrupt. This is done at
488 * startup or if the affinity is changed in a way that
489 * invalidates the current target.
490 */
491 static int xive_pick_irq_target(struct irq_data *d,
492 const struct cpumask *affinity)
493 {
494 static unsigned int fuzz;
495 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
496 cpumask_var_t mask;
497 int cpu = -1;
498
499 /*
500 * If we have chip IDs, first we try to build a mask of
501 * CPUs matching the CPU and find a target in there
502 */
503 if (xd->src_chip != XIVE_INVALID_CHIP_ID &&
504 zalloc_cpumask_var(&mask, GFP_ATOMIC)) {
505 /* Build a mask of matching chip IDs */
506 for_each_cpu_and(cpu, affinity, cpu_online_mask) {
507 struct xive_cpu *xc = per_cpu(xive_cpu, cpu);
508 if (xc->chip_id == xd->src_chip)
509 cpumask_set_cpu(cpu, mask);
510 }
511 /* Try to find a target */
512 if (cpumask_empty(mask))
513 cpu = -1;
514 else
515 cpu = xive_find_target_in_mask(mask, fuzz++);
516 free_cpumask_var(mask);
517 if (cpu >= 0)
518 return cpu;
519 fuzz--;
520 }
521
522 /* No chip IDs, fallback to using the affinity mask */
523 return xive_find_target_in_mask(affinity, fuzz++);
524 }
525
526 static unsigned int xive_irq_startup(struct irq_data *d)
527 {
528 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
529 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
530 int target, rc;
531
532 pr_devel("xive_irq_startup: irq %d [0x%x] data @%p\n",
533 d->irq, hw_irq, d);
534
535 #ifdef CONFIG_PCI_MSI
536 /*
537 * The generic MSI code returns with the interrupt disabled on the
538 * card, using the MSI mask bits. Firmware doesn't appear to unmask
539 * at that level, so we do it here by hand.
540 */
541 if (irq_data_get_msi_desc(d))
542 pci_msi_unmask_irq(d);
543 #endif
544
545 /* Pick a target */
546 target = xive_pick_irq_target(d, irq_data_get_affinity_mask(d));
547 if (target == XIVE_INVALID_TARGET) {
548 /* Try again breaking affinity */
549 target = xive_pick_irq_target(d, cpu_online_mask);
550 if (target == XIVE_INVALID_TARGET)
551 return -ENXIO;
552 pr_warn("irq %d started with broken affinity\n", d->irq);
553 }
554
555 /* Sanity check */
556 if (WARN_ON(target == XIVE_INVALID_TARGET ||
557 target >= nr_cpu_ids))
558 target = smp_processor_id();
559
560 xd->target = target;
561
562 /*
563 * Configure the logical number to be the Linux IRQ number
564 * and set the target queue
565 */
566 rc = xive_ops->configure_irq(hw_irq,
567 get_hard_smp_processor_id(target),
568 xive_irq_priority, d->irq);
569 if (rc)
570 return rc;
571
572 /* Unmask the ESB */
573 xive_do_source_set_mask(xd, false);
574
575 return 0;
576 }
577
578 static void xive_irq_shutdown(struct irq_data *d)
579 {
580 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
581 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
582
583 pr_devel("xive_irq_shutdown: irq %d [0x%x] data @%p\n",
584 d->irq, hw_irq, d);
585
586 if (WARN_ON(xd->target == XIVE_INVALID_TARGET))
587 return;
588
589 /* Mask the interrupt at the source */
590 xive_do_source_set_mask(xd, true);
591
592 /*
593 * The above may have set saved_p. We clear it otherwise it
594 * will prevent re-enabling later on. It is ok to forget the
595 * fact that the interrupt might be in a queue because we are
596 * accounting that already in xive_dec_target_count() and will
597 * be re-routing it to a new queue with proper accounting when
598 * it's started up again
599 */
600 xd->saved_p = false;
601
602 /*
603 * Mask the interrupt in HW in the IVT/EAS and set the number
604 * to be the "bad" IRQ number
605 */
606 xive_ops->configure_irq(hw_irq,
607 get_hard_smp_processor_id(xd->target),
608 0xff, XIVE_BAD_IRQ);
609
610 xive_dec_target_count(xd->target);
611 xd->target = XIVE_INVALID_TARGET;
612 }
613
614 static void xive_irq_unmask(struct irq_data *d)
615 {
616 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
617
618 pr_devel("xive_irq_unmask: irq %d data @%p\n", d->irq, xd);
619
620 /*
621 * This is a workaround for PCI LSI problems on P9, for
622 * these, we call FW to set the mask. The problems might
623 * be fixed by P9 DD2.0, if that is the case, firmware
624 * will no longer set that flag.
625 */
626 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
627 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
628 xive_ops->configure_irq(hw_irq,
629 get_hard_smp_processor_id(xd->target),
630 xive_irq_priority, d->irq);
631 return;
632 }
633
634 xive_do_source_set_mask(xd, false);
635 }
636
637 static void xive_irq_mask(struct irq_data *d)
638 {
639 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
640
641 pr_devel("xive_irq_mask: irq %d data @%p\n", d->irq, xd);
642
643 /*
644 * This is a workaround for PCI LSI problems on P9, for
645 * these, we call OPAL to set the mask. The problems might
646 * be fixed by P9 DD2.0, if that is the case, firmware
647 * will no longer set that flag.
648 */
649 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW) {
650 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
651 xive_ops->configure_irq(hw_irq,
652 get_hard_smp_processor_id(xd->target),
653 0xff, d->irq);
654 return;
655 }
656
657 xive_do_source_set_mask(xd, true);
658 }
659
660 static int xive_irq_set_affinity(struct irq_data *d,
661 const struct cpumask *cpumask,
662 bool force)
663 {
664 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
665 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
666 u32 target, old_target;
667 int rc = 0;
668
669 pr_devel("xive_irq_set_affinity: irq %d\n", d->irq);
670
671 /* Is this valid ? */
672 if (cpumask_any_and(cpumask, cpu_online_mask) >= nr_cpu_ids)
673 return -EINVAL;
674
675 /*
676 * If existing target is already in the new mask, and is
677 * online then do nothing.
678 */
679 if (xd->target != XIVE_INVALID_TARGET &&
680 cpu_online(xd->target) &&
681 cpumask_test_cpu(xd->target, cpumask))
682 return IRQ_SET_MASK_OK;
683
684 /* Pick a new target */
685 target = xive_pick_irq_target(d, cpumask);
686
687 /* No target found */
688 if (target == XIVE_INVALID_TARGET)
689 return -ENXIO;
690
691 /* Sanity check */
692 if (WARN_ON(target >= nr_cpu_ids))
693 target = smp_processor_id();
694
695 old_target = xd->target;
696
697 /*
698 * Only configure the irq if it's not currently passed-through to
699 * a KVM guest
700 */
701 if (!irqd_is_forwarded_to_vcpu(d))
702 rc = xive_ops->configure_irq(hw_irq,
703 get_hard_smp_processor_id(target),
704 xive_irq_priority, d->irq);
705 if (rc < 0) {
706 pr_err("Error %d reconfiguring irq %d\n", rc, d->irq);
707 return rc;
708 }
709
710 pr_devel(" target: 0x%x\n", target);
711 xd->target = target;
712
713 /* Give up previous target */
714 if (old_target != XIVE_INVALID_TARGET)
715 xive_dec_target_count(old_target);
716
717 return IRQ_SET_MASK_OK;
718 }
719
720 static int xive_irq_set_type(struct irq_data *d, unsigned int flow_type)
721 {
722 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
723
724 /*
725 * We only support these. This has really no effect other than setting
726 * the corresponding descriptor bits mind you but those will in turn
727 * affect the resend function when re-enabling an edge interrupt.
728 *
729 * Set set the default to edge as explained in map().
730 */
731 if (flow_type == IRQ_TYPE_DEFAULT || flow_type == IRQ_TYPE_NONE)
732 flow_type = IRQ_TYPE_EDGE_RISING;
733
734 if (flow_type != IRQ_TYPE_EDGE_RISING &&
735 flow_type != IRQ_TYPE_LEVEL_LOW)
736 return -EINVAL;
737
738 irqd_set_trigger_type(d, flow_type);
739
740 /*
741 * Double check it matches what the FW thinks
742 *
743 * NOTE: We don't know yet if the PAPR interface will provide
744 * the LSI vs MSI information apart from the device-tree so
745 * this check might have to move into an optional backend call
746 * that is specific to the native backend
747 */
748 if ((flow_type == IRQ_TYPE_LEVEL_LOW) !=
749 !!(xd->flags & XIVE_IRQ_FLAG_LSI)) {
750 pr_warn("Interrupt %d (HW 0x%x) type mismatch, Linux says %s, FW says %s\n",
751 d->irq, (u32)irqd_to_hwirq(d),
752 (flow_type == IRQ_TYPE_LEVEL_LOW) ? "Level" : "Edge",
753 (xd->flags & XIVE_IRQ_FLAG_LSI) ? "Level" : "Edge");
754 }
755
756 return IRQ_SET_MASK_OK_NOCOPY;
757 }
758
759 static int xive_irq_retrigger(struct irq_data *d)
760 {
761 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
762
763 /* This should be only for MSIs */
764 if (WARN_ON(xd->flags & XIVE_IRQ_FLAG_LSI))
765 return 0;
766
767 /*
768 * To perform a retrigger, we first set the PQ bits to
769 * 11, then perform an EOI.
770 */
771 xive_poke_esb(xd, XIVE_ESB_SET_PQ_11);
772
773 /*
774 * Note: We pass "0" to the hw_irq argument in order to
775 * avoid calling into the backend EOI code which we don't
776 * want to do in the case of a re-trigger. Backends typically
777 * only do EOI for LSIs anyway.
778 */
779 xive_do_source_eoi(0, xd);
780
781 return 1;
782 }
783
784 static int xive_irq_set_vcpu_affinity(struct irq_data *d, void *state)
785 {
786 struct xive_irq_data *xd = irq_data_get_irq_handler_data(d);
787 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
788 int rc;
789 u8 pq;
790
791 /*
792 * We only support this on interrupts that do not require
793 * firmware calls for masking and unmasking
794 */
795 if (xd->flags & XIVE_IRQ_FLAG_MASK_FW)
796 return -EIO;
797
798 /*
799 * This is called by KVM with state non-NULL for enabling
800 * pass-through or NULL for disabling it
801 */
802 if (state) {
803 irqd_set_forwarded_to_vcpu(d);
804
805 /* Set it to PQ=10 state to prevent further sends */
806 pq = xive_poke_esb(xd, XIVE_ESB_SET_PQ_10);
807
808 /* No target ? nothing to do */
809 if (xd->target == XIVE_INVALID_TARGET) {
810 /*
811 * An untargetted interrupt should have been
812 * also masked at the source
813 */
814 WARN_ON(pq & 2);
815
816 return 0;
817 }
818
819 /*
820 * If P was set, adjust state to PQ=11 to indicate
821 * that a resend is needed for the interrupt to reach
822 * the guest. Also remember the value of P.
823 *
824 * This also tells us that it's in flight to a host queue
825 * or has already been fetched but hasn't been EOIed yet
826 * by the host. This it's potentially using up a host
827 * queue slot. This is important to know because as long
828 * as this is the case, we must not hard-unmask it when
829 * "returning" that interrupt to the host.
830 *
831 * This saved_p is cleared by the host EOI, when we know
832 * for sure the queue slot is no longer in use.
833 */
834 if (pq & 2) {
835 pq = xive_poke_esb(xd, XIVE_ESB_SET_PQ_11);
836 xd->saved_p = true;
837
838 /*
839 * Sync the XIVE source HW to ensure the interrupt
840 * has gone through the EAS before we change its
841 * target to the guest. That should guarantee us
842 * that we *will* eventually get an EOI for it on
843 * the host. Otherwise there would be a small window
844 * for P to be seen here but the interrupt going
845 * to the guest queue.
846 */
847 if (xive_ops->sync_source)
848 xive_ops->sync_source(hw_irq);
849 } else
850 xd->saved_p = false;
851 } else {
852 irqd_clr_forwarded_to_vcpu(d);
853
854 /* No host target ? hard mask and return */
855 if (xd->target == XIVE_INVALID_TARGET) {
856 xive_do_source_set_mask(xd, true);
857 return 0;
858 }
859
860 /*
861 * Sync the XIVE source HW to ensure the interrupt
862 * has gone through the EAS before we change its
863 * target to the host.
864 */
865 if (xive_ops->sync_source)
866 xive_ops->sync_source(hw_irq);
867
868 /*
869 * By convention we are called with the interrupt in
870 * a PQ=10 or PQ=11 state, ie, it won't fire and will
871 * have latched in Q whether there's a pending HW
872 * interrupt or not.
873 *
874 * First reconfigure the target.
875 */
876 rc = xive_ops->configure_irq(hw_irq,
877 get_hard_smp_processor_id(xd->target),
878 xive_irq_priority, d->irq);
879 if (rc)
880 return rc;
881
882 /*
883 * Then if saved_p is not set, effectively re-enable the
884 * interrupt with an EOI. If it is set, we know there is
885 * still a message in a host queue somewhere that will be
886 * EOId eventually.
887 *
888 * Note: We don't check irqd_irq_disabled(). Effectively,
889 * we *will* let the irq get through even if masked if the
890 * HW is still firing it in order to deal with the whole
891 * saved_p business properly. If the interrupt triggers
892 * while masked, the generic code will re-mask it anyway.
893 */
894 if (!xd->saved_p)
895 xive_do_source_eoi(hw_irq, xd);
896
897 }
898 return 0;
899 }
900
901 static struct irq_chip xive_irq_chip = {
902 .name = "XIVE-IRQ",
903 .irq_startup = xive_irq_startup,
904 .irq_shutdown = xive_irq_shutdown,
905 .irq_eoi = xive_irq_eoi,
906 .irq_mask = xive_irq_mask,
907 .irq_unmask = xive_irq_unmask,
908 .irq_set_affinity = xive_irq_set_affinity,
909 .irq_set_type = xive_irq_set_type,
910 .irq_retrigger = xive_irq_retrigger,
911 .irq_set_vcpu_affinity = xive_irq_set_vcpu_affinity,
912 };
913
914 bool is_xive_irq(struct irq_chip *chip)
915 {
916 return chip == &xive_irq_chip;
917 }
918 EXPORT_SYMBOL_GPL(is_xive_irq);
919
920 void xive_cleanup_irq_data(struct xive_irq_data *xd)
921 {
922 if (xd->eoi_mmio) {
923 iounmap(xd->eoi_mmio);
924 if (xd->eoi_mmio == xd->trig_mmio)
925 xd->trig_mmio = NULL;
926 xd->eoi_mmio = NULL;
927 }
928 if (xd->trig_mmio) {
929 iounmap(xd->trig_mmio);
930 xd->trig_mmio = NULL;
931 }
932 }
933 EXPORT_SYMBOL_GPL(xive_cleanup_irq_data);
934
935 static int xive_irq_alloc_data(unsigned int virq, irq_hw_number_t hw)
936 {
937 struct xive_irq_data *xd;
938 int rc;
939
940 xd = kzalloc(sizeof(struct xive_irq_data), GFP_KERNEL);
941 if (!xd)
942 return -ENOMEM;
943 rc = xive_ops->populate_irq_data(hw, xd);
944 if (rc) {
945 kfree(xd);
946 return rc;
947 }
948 xd->target = XIVE_INVALID_TARGET;
949 irq_set_handler_data(virq, xd);
950
951 return 0;
952 }
953
954 static void xive_irq_free_data(unsigned int virq)
955 {
956 struct xive_irq_data *xd = irq_get_handler_data(virq);
957
958 if (!xd)
959 return;
960 irq_set_handler_data(virq, NULL);
961 xive_cleanup_irq_data(xd);
962 kfree(xd);
963 }
964
965 #ifdef CONFIG_SMP
966
967 static void xive_cause_ipi(int cpu)
968 {
969 struct xive_cpu *xc;
970 struct xive_irq_data *xd;
971
972 xc = per_cpu(xive_cpu, cpu);
973
974 DBG_VERBOSE("IPI CPU %d -> %d (HW IRQ 0x%x)\n",
975 smp_processor_id(), cpu, xc->hw_ipi);
976
977 xd = &xc->ipi_data;
978 if (WARN_ON(!xd->trig_mmio))
979 return;
980 out_be64(xd->trig_mmio, 0);
981 }
982
983 static irqreturn_t xive_muxed_ipi_action(int irq, void *dev_id)
984 {
985 return smp_ipi_demux();
986 }
987
988 static void xive_ipi_eoi(struct irq_data *d)
989 {
990 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
991
992 /* Handle possible race with unplug and drop stale IPIs */
993 if (!xc)
994 return;
995 xive_do_source_eoi(xc->hw_ipi, &xc->ipi_data);
996 xive_do_queue_eoi(xc);
997 }
998
999 static void xive_ipi_do_nothing(struct irq_data *d)
1000 {
1001 /*
1002 * Nothing to do, we never mask/unmask IPIs, but the callback
1003 * has to exist for the struct irq_chip.
1004 */
1005 }
1006
1007 static struct irq_chip xive_ipi_chip = {
1008 .name = "XIVE-IPI",
1009 .irq_eoi = xive_ipi_eoi,
1010 .irq_mask = xive_ipi_do_nothing,
1011 .irq_unmask = xive_ipi_do_nothing,
1012 };
1013
1014 static void __init xive_request_ipi(void)
1015 {
1016 unsigned int virq;
1017
1018 /*
1019 * Initialization failed, move on, we might manage to
1020 * reach the point where we display our errors before
1021 * the system falls appart
1022 */
1023 if (!xive_irq_domain)
1024 return;
1025
1026 /* Initialize it */
1027 virq = irq_create_mapping(xive_irq_domain, 0);
1028 xive_ipi_irq = virq;
1029
1030 WARN_ON(request_irq(virq, xive_muxed_ipi_action,
1031 IRQF_PERCPU | IRQF_NO_THREAD, "IPI", NULL));
1032 }
1033
1034 static int xive_setup_cpu_ipi(unsigned int cpu)
1035 {
1036 struct xive_cpu *xc;
1037 int rc;
1038
1039 pr_debug("Setting up IPI for CPU %d\n", cpu);
1040
1041 xc = per_cpu(xive_cpu, cpu);
1042
1043 /* Check if we are already setup */
1044 if (xc->hw_ipi != 0)
1045 return 0;
1046
1047 /* Grab an IPI from the backend, this will populate xc->hw_ipi */
1048 if (xive_ops->get_ipi(cpu, xc))
1049 return -EIO;
1050
1051 /*
1052 * Populate the IRQ data in the xive_cpu structure and
1053 * configure the HW / enable the IPIs.
1054 */
1055 rc = xive_ops->populate_irq_data(xc->hw_ipi, &xc->ipi_data);
1056 if (rc) {
1057 pr_err("Failed to populate IPI data on CPU %d\n", cpu);
1058 return -EIO;
1059 }
1060 rc = xive_ops->configure_irq(xc->hw_ipi,
1061 get_hard_smp_processor_id(cpu),
1062 xive_irq_priority, xive_ipi_irq);
1063 if (rc) {
1064 pr_err("Failed to map IPI CPU %d\n", cpu);
1065 return -EIO;
1066 }
1067 pr_devel("CPU %d HW IPI %x, virq %d, trig_mmio=%p\n", cpu,
1068 xc->hw_ipi, xive_ipi_irq, xc->ipi_data.trig_mmio);
1069
1070 /* Unmask it */
1071 xive_do_source_set_mask(&xc->ipi_data, false);
1072
1073 return 0;
1074 }
1075
1076 static void xive_cleanup_cpu_ipi(unsigned int cpu, struct xive_cpu *xc)
1077 {
1078 /* Disable the IPI and free the IRQ data */
1079
1080 /* Already cleaned up ? */
1081 if (xc->hw_ipi == 0)
1082 return;
1083
1084 /* Mask the IPI */
1085 xive_do_source_set_mask(&xc->ipi_data, true);
1086
1087 /*
1088 * Note: We don't call xive_cleanup_irq_data() to free
1089 * the mappings as this is called from an IPI on kexec
1090 * which is not a safe environment to call iounmap()
1091 */
1092
1093 /* Deconfigure/mask in the backend */
1094 xive_ops->configure_irq(xc->hw_ipi, hard_smp_processor_id(),
1095 0xff, xive_ipi_irq);
1096
1097 /* Free the IPIs in the backend */
1098 xive_ops->put_ipi(cpu, xc);
1099 }
1100
1101 void __init xive_smp_probe(void)
1102 {
1103 smp_ops->cause_ipi = xive_cause_ipi;
1104
1105 /* Register the IPI */
1106 xive_request_ipi();
1107
1108 /* Allocate and setup IPI for the boot CPU */
1109 xive_setup_cpu_ipi(smp_processor_id());
1110 }
1111
1112 #endif /* CONFIG_SMP */
1113
1114 static int xive_irq_domain_map(struct irq_domain *h, unsigned int virq,
1115 irq_hw_number_t hw)
1116 {
1117 int rc;
1118
1119 /*
1120 * Mark interrupts as edge sensitive by default so that resend
1121 * actually works. Will fix that up below if needed.
1122 */
1123 irq_clear_status_flags(virq, IRQ_LEVEL);
1124
1125 #ifdef CONFIG_SMP
1126 /* IPIs are special and come up with HW number 0 */
1127 if (hw == 0) {
1128 /*
1129 * IPIs are marked per-cpu. We use separate HW interrupts under
1130 * the hood but associated with the same "linux" interrupt
1131 */
1132 irq_set_chip_and_handler(virq, &xive_ipi_chip,
1133 handle_percpu_irq);
1134 return 0;
1135 }
1136 #endif
1137
1138 rc = xive_irq_alloc_data(virq, hw);
1139 if (rc)
1140 return rc;
1141
1142 irq_set_chip_and_handler(virq, &xive_irq_chip, handle_fasteoi_irq);
1143
1144 return 0;
1145 }
1146
1147 static void xive_irq_domain_unmap(struct irq_domain *d, unsigned int virq)
1148 {
1149 struct irq_data *data = irq_get_irq_data(virq);
1150 unsigned int hw_irq;
1151
1152 /* XXX Assign BAD number */
1153 if (!data)
1154 return;
1155 hw_irq = (unsigned int)irqd_to_hwirq(data);
1156 if (hw_irq)
1157 xive_irq_free_data(virq);
1158 }
1159
1160 static int xive_irq_domain_xlate(struct irq_domain *h, struct device_node *ct,
1161 const u32 *intspec, unsigned int intsize,
1162 irq_hw_number_t *out_hwirq, unsigned int *out_flags)
1163
1164 {
1165 *out_hwirq = intspec[0];
1166
1167 /*
1168 * If intsize is at least 2, we look for the type in the second cell,
1169 * we assume the LSB indicates a level interrupt.
1170 */
1171 if (intsize > 1) {
1172 if (intspec[1] & 1)
1173 *out_flags = IRQ_TYPE_LEVEL_LOW;
1174 else
1175 *out_flags = IRQ_TYPE_EDGE_RISING;
1176 } else
1177 *out_flags = IRQ_TYPE_LEVEL_LOW;
1178
1179 return 0;
1180 }
1181
1182 static int xive_irq_domain_match(struct irq_domain *h, struct device_node *node,
1183 enum irq_domain_bus_token bus_token)
1184 {
1185 return xive_ops->match(node);
1186 }
1187
1188 static const struct irq_domain_ops xive_irq_domain_ops = {
1189 .match = xive_irq_domain_match,
1190 .map = xive_irq_domain_map,
1191 .unmap = xive_irq_domain_unmap,
1192 .xlate = xive_irq_domain_xlate,
1193 };
1194
1195 static void __init xive_init_host(void)
1196 {
1197 xive_irq_domain = irq_domain_add_nomap(NULL, XIVE_MAX_IRQ,
1198 &xive_irq_domain_ops, NULL);
1199 if (WARN_ON(xive_irq_domain == NULL))
1200 return;
1201 irq_set_default_host(xive_irq_domain);
1202 }
1203
1204 static void xive_cleanup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1205 {
1206 if (xc->queue[xive_irq_priority].qpage)
1207 xive_ops->cleanup_queue(cpu, xc, xive_irq_priority);
1208 }
1209
1210 static int xive_setup_cpu_queues(unsigned int cpu, struct xive_cpu *xc)
1211 {
1212 int rc = 0;
1213
1214 /* We setup 1 queues for now with a 64k page */
1215 if (!xc->queue[xive_irq_priority].qpage)
1216 rc = xive_ops->setup_queue(cpu, xc, xive_irq_priority);
1217
1218 return rc;
1219 }
1220
1221 static int xive_prepare_cpu(unsigned int cpu)
1222 {
1223 struct xive_cpu *xc;
1224
1225 xc = per_cpu(xive_cpu, cpu);
1226 if (!xc) {
1227 struct device_node *np;
1228
1229 xc = kzalloc_node(sizeof(struct xive_cpu),
1230 GFP_KERNEL, cpu_to_node(cpu));
1231 if (!xc)
1232 return -ENOMEM;
1233 np = of_get_cpu_node(cpu, NULL);
1234 if (np)
1235 xc->chip_id = of_get_ibm_chip_id(np);
1236 of_node_put(np);
1237
1238 per_cpu(xive_cpu, cpu) = xc;
1239 }
1240
1241 /* Setup EQs if not already */
1242 return xive_setup_cpu_queues(cpu, xc);
1243 }
1244
1245 static void xive_setup_cpu(void)
1246 {
1247 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1248
1249 /* Debug: Dump the TM state */
1250 pr_devel("CPU %d [HW 0x%02x] VT=%02x\n",
1251 smp_processor_id(), hard_smp_processor_id(),
1252 in_8(xive_tima + xive_tima_offset + TM_WORD2));
1253
1254 /* The backend might have additional things to do */
1255 if (xive_ops->setup_cpu)
1256 xive_ops->setup_cpu(smp_processor_id(), xc);
1257
1258 /* Set CPPR to 0xff to enable flow of interrupts */
1259 xc->cppr = 0xff;
1260 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1261 }
1262
1263 #ifdef CONFIG_SMP
1264 void xive_smp_setup_cpu(void)
1265 {
1266 pr_devel("SMP setup CPU %d\n", smp_processor_id());
1267
1268 /* This will have already been done on the boot CPU */
1269 if (smp_processor_id() != boot_cpuid)
1270 xive_setup_cpu();
1271
1272 }
1273
1274 int xive_smp_prepare_cpu(unsigned int cpu)
1275 {
1276 int rc;
1277
1278 /* Allocate per-CPU data and queues */
1279 rc = xive_prepare_cpu(cpu);
1280 if (rc)
1281 return rc;
1282
1283 /* Allocate and setup IPI for the new CPU */
1284 return xive_setup_cpu_ipi(cpu);
1285 }
1286
1287 #ifdef CONFIG_HOTPLUG_CPU
1288 static void xive_flush_cpu_queue(unsigned int cpu, struct xive_cpu *xc)
1289 {
1290 u32 irq;
1291
1292 /* We assume local irqs are disabled */
1293 WARN_ON(!irqs_disabled());
1294
1295 /* Check what's already in the CPU queue */
1296 while ((irq = xive_scan_interrupts(xc, false)) != 0) {
1297 /*
1298 * We need to re-route that interrupt to its new destination.
1299 * First get and lock the descriptor
1300 */
1301 struct irq_desc *desc = irq_to_desc(irq);
1302 struct irq_data *d = irq_desc_get_irq_data(desc);
1303 struct xive_irq_data *xd;
1304 unsigned int hw_irq = (unsigned int)irqd_to_hwirq(d);
1305
1306 /*
1307 * Ignore anything that isn't a XIVE irq and ignore
1308 * IPIs, so can just be dropped.
1309 */
1310 if (d->domain != xive_irq_domain || hw_irq == 0)
1311 continue;
1312
1313 /*
1314 * The IRQ should have already been re-routed, it's just a
1315 * stale in the old queue, so re-trigger it in order to make
1316 * it reach is new destination.
1317 */
1318 #ifdef DEBUG_FLUSH
1319 pr_info("CPU %d: Got irq %d while offline, re-sending...\n",
1320 cpu, irq);
1321 #endif
1322 raw_spin_lock(&desc->lock);
1323 xd = irq_desc_get_handler_data(desc);
1324
1325 /*
1326 * For LSIs, we EOI, this will cause a resend if it's
1327 * still asserted. Otherwise do an MSI retrigger.
1328 */
1329 if (xd->flags & XIVE_IRQ_FLAG_LSI)
1330 xive_do_source_eoi(irqd_to_hwirq(d), xd);
1331 else
1332 xive_irq_retrigger(d);
1333
1334 raw_spin_unlock(&desc->lock);
1335 }
1336 }
1337
1338 void xive_smp_disable_cpu(void)
1339 {
1340 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1341 unsigned int cpu = smp_processor_id();
1342
1343 /* Migrate interrupts away from the CPU */
1344 irq_migrate_all_off_this_cpu();
1345
1346 /* Set CPPR to 0 to disable flow of interrupts */
1347 xc->cppr = 0;
1348 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1349
1350 /* Flush everything still in the queue */
1351 xive_flush_cpu_queue(cpu, xc);
1352
1353 /* Re-enable CPPR */
1354 xc->cppr = 0xff;
1355 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0xff);
1356 }
1357
1358 void xive_flush_interrupt(void)
1359 {
1360 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1361 unsigned int cpu = smp_processor_id();
1362
1363 /* Called if an interrupt occurs while the CPU is hot unplugged */
1364 xive_flush_cpu_queue(cpu, xc);
1365 }
1366
1367 #endif /* CONFIG_HOTPLUG_CPU */
1368
1369 #endif /* CONFIG_SMP */
1370
1371 void xive_kexec_teardown_cpu(int secondary)
1372 {
1373 struct xive_cpu *xc = __this_cpu_read(xive_cpu);
1374 unsigned int cpu = smp_processor_id();
1375
1376 /* Set CPPR to 0 to disable flow of interrupts */
1377 xc->cppr = 0;
1378 out_8(xive_tima + xive_tima_offset + TM_CPPR, 0);
1379
1380 /* Backend cleanup if any */
1381 if (xive_ops->teardown_cpu)
1382 xive_ops->teardown_cpu(cpu, xc);
1383
1384 #ifdef CONFIG_SMP
1385 /* Get rid of IPI */
1386 xive_cleanup_cpu_ipi(cpu, xc);
1387 #endif
1388
1389 /* Disable and free the queues */
1390 xive_cleanup_cpu_queues(cpu, xc);
1391 }
1392
1393 void xive_shutdown(void)
1394 {
1395 xive_ops->shutdown();
1396 }
1397
1398 bool xive_core_init(const struct xive_ops *ops, void __iomem *area, u32 offset,
1399 u8 max_prio)
1400 {
1401 xive_tima = area;
1402 xive_tima_offset = offset;
1403 xive_ops = ops;
1404 xive_irq_priority = max_prio;
1405
1406 ppc_md.get_irq = xive_get_irq;
1407 __xive_enabled = true;
1408
1409 pr_devel("Initializing host..\n");
1410 xive_init_host();
1411
1412 pr_devel("Initializing boot CPU..\n");
1413
1414 /* Allocate per-CPU data and queues */
1415 xive_prepare_cpu(smp_processor_id());
1416
1417 /* Get ready for interrupts */
1418 xive_setup_cpu();
1419
1420 pr_info("Interrupt handling intialized with %s backend\n",
1421 xive_ops->name);
1422 pr_info("Using priority %d for all interrupts\n", max_prio);
1423
1424 return true;
1425 }
1426
1427 static int __init xive_off(char *arg)
1428 {
1429 xive_cmdline_disabled = true;
1430 return 0;
1431 }
1432 __setup("xive=off", xive_off);